Next Article in Journal
Influence of Sucrose and Activated Charcoal on Phytochemistry and Vegetative Growth in Zephyranthes irwiniana (Ravenna) Nic. García (Amaryllidaceae)
Next Article in Special Issue
Shipwrecked on the Rock, or Not Quite: Gypsophytes and Edaphic Islands
Previous Article in Journal
Global Transcriptome Analysis of the Peach (Prunus persica) in the Interaction System of Fruit–Chitosan–Monilinia fructicola
Previous Article in Special Issue
Topographic Complexity Is a Principal Driver of Plant Endemism in Mediterranean Islands
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Article

Ecological and Syntaxonomic Analysis of the Communities of Glebionis coronaria and G. discolor (Malvion neglectae) in the European Mediterranean Area

by
Eusebio Cano
1,*,
Ana Cano-Ortiz
2,
Ricardo Quinto Canas
3,
Jose Carlos Piñar Fuentes
1,
Catarina Rodrigues Meireles
4,
Mauro Raposo
4,
Carlos Pinto Gomes
4,
Valentina Lucia Astrid Laface
5,
Giovanni Spampinato
5 and
Carmelo Maria Musarella
5
1
Department of Animal and Plant Biology and Ecology, Section of Botany, University of Jaén, 23071 Jaén, Spain
2
Department of Didactics of Experimental, Social and Mathematical Sciences, Complutense University of Madrid, 28040 Madrid, Spain
3
Faculty of Sciences and Technology, University of Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
4
Department of Landscape, Environment and Planning, Instituto Mediterrâneo para a Agricultura, Ambiente e Desenvolvimento (MED), Escola de Ciências e Tecnologia, University of Évora, 7004-516 Évora, Portugal
5
Department of AGRARIA, “Mediterranea” University of Reggio Calabria, 89124 Reggio Calabria, Italy
*
Author to whom correspondence should be addressed.
Plants 2024, 13(5), 568; https://doi.org/10.3390/plants13050568
Submission received: 7 February 2024 / Revised: 17 February 2024 / Accepted: 18 February 2024 / Published: 20 February 2024
(This article belongs to the Special Issue Taxonomy, Biodiversity and Ecology of Mediterranean Plants)

Abstract

:
Nitrophilous communities dominated by Glebionis coronaria and Glebionis discolor in the European Mediterranean area were studied. The nomenclature was corrected according to the current taxonomy, following the International Code of Phytosociological Nomenclature (ICPN). The statistical analysis revealed six new associations and one subassociation, with four in Spain, one in Greece, and one in Italy. Additionally, a subassociation of high relevance due to its endemic character was identified. These grasslands exhibit requirements for organic matter and other edaphic nutrients that are closer to those of Malva neglecta communities than to those of Hordeum murinum subsp. leporinum. We confirmed the published syntaxon with the rank of Resedo albae-Glebionenion coronariae suballiance and its subordination to the Malvion neglectae alliance, and we established the type association for this suballiance. Sisimbrietalia officinalis J. Tüxen in Lohmeyer et al. 1962 em. Rivas-Martínez, Báscones, T. E. Díaz, Fernández-González & Loidi 1991. Stellarietea mediae Tüxen, Lohmeyer & Preising ex von Rochow 1951.

1. Introduction

Taxonomy and phytosociology are two long-established tools that underlie the correct interpretation of vegetation and habitats [1,2]. There are numerous studies in these two fields (often as combined works or reviews) that confirm their importance and in which new plant taxa and syntaxa are described (e.g., [3]). Among the many types of vegetation that have been given special importance, we must consider the communities of nitrified grasslands that have been studied by different authors. Gutte [4] proposed the Malva neglecta communities in the Malvenion neglectae suballiance, and later Rivas-Martínez [5] proposed the Malvenion parviflorae suballiance; years later, Rivas-Martínez et al. [6] included the Urtico urentis-Malvetum neglectae communities in the suballiance described by Gutte and eight different associations in Malvenion parviflorae, subordinating both suballiances to the Chenopodion muralis alliance. Both authors carried out exhaustive studies from a phytosociological point of view but did not provide edaphic data. Subsequently, a group of associations of nitrophilic character [7] were studied from the phytosociological and edaphic points of view; among the syntaxa studied, there are the grasslands with Malva neglecta, M. parviflora, Chyrsanthemum coronarium (=Glebionis coronaria), and Hordeum murinum subsp. leporinum. More recently, Cano-Ortiz [8] carried out a study on the Hordeion leporini alliance in the Western Mediterranean area, providing relevés from Greece, Italy, Morocco, Spain, and Portugal. In this study, due to the similarity in the ecology and distribution of Malva neglecta and M. parviflora, the authors state that, taking into account the edaphic parameters and distribution of both Malva species and having priority in the name of the suballiance described by Gutte, the suballiance Malvenion neglectae should be maintained with its new alliance rank Malvion neglectae.
The importance of the communities of G. coronaria and G. discolor is based on two aspects. Firstly, by acting as indicators of edaphic nutrients and presenting requirements in soil texture and oxidizable organic matter (MOO), and secondly, by acting as CO2 sinks and presenting a high biomass. Considering these functions, these communities provide magnificent ecosystem services. Consequently, it is necessary to study the diversity of associations dominated by Glebionis, since this is the basis for managers to be able to apply the ecosystem services offered by these communities.
The grassland communities dominated by G. coronaria and G. discolor were included by several authors [5,9,10,11,12,13,14,15,16,17] in the Hordeion leporini alliance, which is composed of grasslands of Mediterranean optimum, subnitrophilous or nitrophilous character, and spring growth. Grasslands that reach sub-Mediterranean and central European territories with sub-nitrophilous communities were included by different authors in alliances such as Taeniathero-Aegilopion geniculatae [7,18], while the nitrophilous communities of Hordeion leporini and Malvion neglectae were studied by Rivas-Martínez [9], and more recently by Cano-Ortiz et al. [8], who proposed the suballiance Resedo albae-Chrysanthemenion coronariae Cano Ortiz et al., 2014 [8]. Once the taxonomy of Glebionis spp. was established [19,20], as an objective, we set out to adapt the syntaxonomic nomenclature, using the new taxonomy according to the International Code of Phytosociological Nomenclature (ICPN), making the appropriate corrections of names, and incorporating new syntaxa [21].
These ruderal communities have been ignored over time, when in fact they contain great edaphic and thermoclimatic information since G. coronaria is always located in thermo-mediterranean environments, not reaching the meso-mediterranean, contrary to what happens with G. discolor.

2. Results

2.1. Cluster Analysis

The cluster analysis for the 81 samples from Spain and Portugal (Figure 1) reveals the difference between 5 plant associations: ArGc (20 relevés) Anacyclo radiati-Glebionetum coronariae; KaGc (8 relevés) Klaseo alcalae-Glebionetum discoloris; RtGc (8 relevés) Reichardio tingitanae-Glebionetum coronariae; AvG (11 relevés) Anacyclo valentinae-Glebionetum coronariae; and CbGc (34 relevés) Centaureo baeticae-Glebionetum discoloris. These 34 relevés of the cluster CbGc correspond to samples taken by Cano Ortiz [8] (CbGc1 to CbGc21), while the samples from CbGc22 to CbGc34 were obtained by García Fuentes and Cano [22,23], García Fuentes et al. [24], and Rivas Martínez et al. [11]. The five groups are corroborated by phytosociological analysis.
The 101 relevés taken in Italy and Greece are separated in the cluster into three clearly distinct groups: A, B, and C (Figure 2). Group A consists of 4 subgroups: A1 (relevés 1–10), Malvo parviflorae-Chrysanthemetum coronarii, published by Brullo et al. [25] for Aspromonte massif (Reggio Calabria, Southern Italy); A2 (relevés 73–77) Hordeo-Centauretum macracanthae; A3 (relevés 78–82) Chrysanthemo-Silybetum mariani; and A4 (relevés 83–92), Malvo parviflorae-Chrysanthemetum coronarii, published by Brullo [26] for Sicily (Italy). The four subgroups are closely related to each other. Group B presents subgroup B1 (relevés 44–62), Malvo parviflorae-Chrysanthemetum coronarii, published by Ferro [27] for Sicily, and subgroup B2 published by Ferro [28] for the Aeolian Islands (Sicily, Italy) (relevés 63–72), which is included in the association Lavatero creticae-Chrysanthemetum coronarii. Finally, group C is composed of subgroup C1 (relevés 11–43), which is separated from the rest of the groups, thus constituting a new syntaxon, and subgroup C2 (relevés 93–101), which contains the most separated samples from all the others due to the fact that they correspond to Greek territories, far from the others.

2.2. Results of the Multivariate Analysis

The statistical analysis according to Cano-Ortiz reveals that the Glebionis communities are very close to those of Malvion, which is the fundamental reason for including them in this alliance and not in Hordeion leporini, as has been the case over time. In addition to presenting a high value as an ecosystem service, they can be used as an indicator of nutrients and as a sink for CO2. As can be seen in Figure 3, the plant communities included in Malvion neglectae present a variability in their floristic composition, largely explained from the nutritional point of view of the soil. In this case, these communities respond well to an increasing gradient in terms of silt content, CE, pH, and Mg and do not desolubilize in sand-rich soils. In contrast, in the plant communities grown in the Hordeion leporini alliance, the edaphic variables that best define these communities are sandy soil texture as well as low pH and CE.
Once the differences between the two main groups of Hordeion leporini and Malvion neglectae communities were established, the structure of the different communities studied, dominated by Glebionis coronaria s.l., was analyzed. The result of the exploratory PCA shows the correlation between the floristic composition of the communities studied in the two countries and their relationship with the different edaphic and bioclimatic parameters. The first two factors explain 58.79% of the variability of the plant communities, and the different relationships between the factors and the samples can be seen in Figure 4.
At first, it can be observed that AdGc is a more or less generalist community, but with a preference for high values of Itc, this bioclimatic parameter provides information about the thermicity of the area where this community develops. The low values of cosine squared (r2) in the PCA once rotated (0.07 for F1 and 0.068 for F2) suggest that this is a generalist community in the study area.
For the AvGc community, a high correlation can be observed (r2 = 0.104 for F2) with the variables related to humidity. These communities are located in Figure 4, totally opposite to the variables that present an increasing humidity gradient; therefore, they are located in dry and sunny places, in addition to having a certain positive correlation with the apparent density of the soil with the C/N ratio.
The communities called CbGc show high negative correlations with Itc and Tp, as well as correlating positively with soils with high CEC, carbonates, clays, and high pH. This shows the appetence of this floristic combination for calcareous loamy-clay soils in cold places; in fact, they are distributed in the southernmost inland areas of the Iberian Peninsula.
The sampling of CnGc in Italy clearly shows a positive correlation with a gradient of increasing humidity or water content. They are located in rainier and relatively warm places, making the bioclimatic parameters the ones that best explain the floristic composition of this community. A negative correlation can also be observed with edaphic parameters related to high pH values or high carbonate content (r2 = −0.47).
KaGc correlates positively with the variable C/N and negatively with Ic, and the continentality index provides information about the annual thermal oscillation. This community also correlates significantly with low N contents, compared to other communities, as well as with low moisture or water content indices.
Finally, the RtGc community presents similar affinities and correlations to KaGc in the same variables, although with slightly higher squared cosines; therefore, these variables have greater relevance in the distribution of this plant community.

2.3. Canonical Correspondence Analysis Results

Once the phytosociological importance value of each of the species forming the different phytochorions under study was calculated, those taxa whose modified IVI was included in the top 5% (5% percentile) were selected. With these species selected according to their importance within the community, a CCA was carried out with the aim of observing the possible correlations between environmental variables and the presence and abundance of these species. The first two factors account for 39.84% of the variability. Although it is true that this explained variance is a priori low, it should be noted that the CCA seems to be sensitive to the relationship between the number of species and the number of samplings, so much so that in the different simulations and model adjustments carried out, when the number of species to be analyzed was reduced, the explained variance increased because all the variance was explained by a few species. However, it was decided to observe the behavior of the 62 species with the highest IVI, since the bioindicator character of the species is largely preserved.
In principle, differences can be observed in the inclination of various species depending on the country. As can be seen in Figure 5, the CCA clearly shows 5 groups of species. On the one hand, there are species with an inclination for carbonate-rich soils, high pH, and clay soils that are negatively correlated with high Tp, PE, and Iar values, such as Centaurea baetica, Sinapis mairei, Diplotaxis catholica, or Phalaris minor. These species characterize the so-called CbGc communities.
Another group of species has an inclination for clay soils that are poor in sand, rich in carbonates, have a high bulk density, high C/N ratios, and are negatively correlated with variables such as Ic, PEs, and Ios2. These species are Klasea alcalae, Hyparrhenia sinaica, Centaurea pullata, Crepis vesicaria, and Asteriscus acuaticus. These species characterize the phytochorions called KaGc.
On the other hand, there is another cluster of species strongly correlated with the variables associated with high temperatures (Itc) and negatively correlated with Io and Ioe. Partial negative correlations can also be seen with other variables related to soil carbonate content and high pH. Species such as Reichardia tingitana, Brassica repanda, and Tetragonia tetragonioides are characteristic of RtGc communities. These three species clusters correspond to plant communities present in the Iberian Peninsula, which are well characterized from the point of view of species co-occurrence (floristic composition) as well as from a bioclimatic and edaphic point of view. Another grouping of species responds, with positive correlations, to the variable continentality (Ic), as well as being partially correlated with the variables related to water availability both at annual (Io) and summer (Ioe) levels. From an edaphic point of view, they are negatively correlated with variables such as the C/N ratio (CN) or soil bulk density. Species such as Astragalus drupaceus and Sinapis dissecta define these communities. These phytochorions correspond to the so-called AdGc, distributed in the central-eastern Mediterranean belt in Greece, being the eastern-most community studied in this manuscript.
Finally, in the analysis of canonical correspondences, a well-defined cluster of plant species with a clear appetence for arid or low humidity climates and high temperatures can be observed. They are positively correlated with variables such as the aridity index (Iar), the positive annual temperature (Tp), or summer evapotranspiration (PEs). From the edaphic point of view, they correlate negatively with variables such as clay content, pH, or carbonate content. Species such as Anacyclus valentinus, Carrichtera annua, and Lophocloa pumila are examples. These phytochorions, or plant co-communities, correspond to AvGc in this manuscript and are located in the most arid areas of Western Europe.
Within this last cluster, we can distinguish a subcluster of species that are not very correlated with edaphic and bioclimatic variables in general, although with an inclination for warm and relatively arid climates, showing a certain correlation with variables such as PE, Iar, or Tp. From the edaphic point of view, they seem to exclude soils rich in carbonates, with a clayey texture, or with a high pH. The species with these appetences are characteristic of the communities sampled in Italy, maintaining a certain relationship with AvGc. Species such as Centaurea napifolia, Calendula fulgida, Lotus ornithopodioides, and Galactites elegans (synonym of Galactites tomentosus Moench) respond to these characteristics in the Glebionis coronaria communities in Italy. These phytochorions have been referred to as CnGc.

3. Discussion

The communities dominated by Glebionis coronaria, G. discolor, and Hordeum leporinum have structural, edaphic, and floristic differences. According to Cano-Ortiz et al. [8], at the edaphic level, Glebionis communities present soil parameter values of MO, Nt, P, K, and Mg that are closer to those of Malvenion neglectae Gutte 1966 communities than to those of Hordeion leporinii. The frequent presence of Malvenion neglectae species in Glebionis communities and the structure of Malvenion neglectae [4] were reason enough for Cano-Ortiz et al. [8] to propose the new suballiance Resedo albae-Chrysanthemenion coronarii and subordinate it to Malvion neglectae (Gutte 1966) Cano Ortiz et al. 2014, whose name we now correct according to the newly established taxonomy Resedo albae-Glebionenion coronariae (Gutte 1966) Cano Ortiz et al. 2014 corr. (Table 1).
All the communities of the genus Glebionis are of great interest for land management, so it has been necessary to describe them phytosociologically. These plant associations have a narrow edaphic ecology in that they are bioindicators of edaphic nutrients [8], and it is necessary for managers to know the associations described with the abundance of the species. The communities dominated by G. coronaria for the thermo-Mediterranean environments of southwestern Iberia (Spain and Portugal) were published by Cano-Ortiz et al. [7] with the name Anacyclo radiati-Chrysanthemetum coronarii (Rivas-Martínez 1978) Cano-Ortiz et al. 2009, making it necessary to correct the name in all syntaxa (ICPN article 44) Anacyclo radiati-Glebionetum coronariae (Rivas-Martínez 1978) Cano-Ortiz et al. 2009 corr., since this association included the suballiance Resedo albae-Chrysanthemenion coronarii Cano Ortiz et al. 2014 and the alliance Malvion neglectae (Gutte 1966), whose name we now correct according to the newly established taxonomy Resedo albae-Glebionenion coronariae (Gutte 1966) Cano Ortiz et al. 2014 corr. Because Cano-Ortiz et al. [8] do not give the type for the suballiance, it is typified in this work, and we propose as typus Resedo albae-Glebionetum coronariae O. Bolòs & Molinier 1958 nom. corr. Indeed, due to the doubts raised about the taxonomy of G. coronaria, Cano et al. [19] carried out a taxonomic study on both Chrysanthemum coronarium var. concolor and var. discolor and distinguished the taxa of G. coronaria and G. discolor. Based on this new taxonomy, we establish a new syntaxonomy for the Glebionis s.l. communities being included in the suballiance Resedo albae-Glebionenion coronariae (Cano-Ortiz et al., 2014) nom. corr., which is subordinate to Malvion neglectae. However, these authors do not propose the type of the suballiance, so we designate as type the association Resedo albae-Glebionetum coronariae O. Bolòs & Molinier 1958 nom. corr.
Based on the results obtained for Spain and Portugal for the association Anacyclo radiati-Glebionetum coronariae, we propose the following new associations:
  • Centaureo baeticae-Glebionetum discoloris Cano-Ortiz ass. nova (Table 2, Relevés 1–21, holotypus rel. 6), an upper thermo-mediterranean and lower meso-mediterranean grassland growing on nitrified basic substrates in the Betic territories, characterized by G. discolor and Centaurea pullata subsp. baetica differential species compared to Resedo albae-Chrysanthemetum coronarii, described by Bolòs and Molinier [29,30] for the thermo-mediterranean areas of Mallorca, and extending its area to the thermo-mediterranean areas of Valencia [31]. Three types of grasslands dominated by G. coronaria develop in southeastern Iberian thermo-mediterranean territories on basic and neutral substrates.
  • Klaseo alcalae-Glebionetum discoloris ass. nova (Table 3, Relevés 1–8, holotypus rel. 8), a very frequent plant community in the Malacitano-Almijarense biogeographic sector (Malaga province, Spain), which develops on nitrified neutro-basic substrates of anthropized areas such as roadsides and abandoned places. Its dominant species are G. coronaria, Klasea alcalae, and Sinapis alba subsp. mairei.
  • In the Alpujarreño-Gadorense biogeographic unit (Granada province, Spain), the Glebionis coronaria-dominated grassland continues to prevail, with a similar ecology to the previous one but with a different floristic composition: Reichardio tingitanae-Glebionetum coronariae ass. nova (Table 4, Relevés 1–9, holotypus rel. 4).
  • Finally, in the semi-arid thermo-mediterranean territories on basic substrates rich in organic matter of the Almerian sector, there is a community of G. coronaria differentiated from the previous ones by the presence of Anacyclus valentinus Beta vulgaris and Carrichtera annua among other species, which allows us to propose the association Anacyclo valentinae-Glebionetum coronariae ass. nova (Table 5, Relevés 1–11, holotypus rel. 2).
In previous research by Cano et al. [19], we established the species G. coronaria (L.) Cass. ex Spach for exclusively thermo-mediterranean environments and G. discolor (d’Urv.) Cano, Musarella, Cano-Ortiz, Piñar Fuentes, Spampinato & Pinto Gomes for thermo- and meso-mediterranean environments. The morphometric study confirmed different dimensions of achene wings and different arrangements of their glands (Figure 6).
This work was carried out due to several previous taxonomic errors that have remained uncorrected since the time of Linnaeus. Unfortunately, attempts at lectotypification of Chrysanthemum coronarium L. by Dillon were made erroneously. However, Turland [30] confirmed two varieties and proposed a new combination under the name Glebionis coronaria var. discolor (d’Urv.) Turland, using Chrysanthemum coronarium var. discolor d’Urv. as a basionym. After the morphometric study and bioclimatic distribution, different authors have reported both taxa with specific ranks: Cueto et al. [32] for Spain and Bertolucci et al. [33,34] for Italy.
The morphometric differences between G. coronaria and G. discolor are supported by the phytochemical study of Ivashchenko et al. [35], which concludes that there are differences in the amounts of carotene, vitamins, and other molecules present in both species due to the influence of environmental factors. Recently, Gallucci et al. [20] carried out a study of the genetic diversity between G. coronaria and G. discolor through AFLP markers, using material from Spain, Italy, and Portugal, and reached the conclusion that, using the mentioned markers, there are genetic differences between both species.
Recently, both G. coronaria and G. discolor have been accepted in the Flora Vascular de Andalucía (https://www.florandalucia.es/index.php/glebionis-coronaria#:~:text=Antimonia%2C%20belide%20menuda%2C%20besantemon%20oloroso,mogigato%2C%20mohinos%2C%20mohinos%20bastos%2C accessed on 12 February 2024), as well as G. coronaria in the Flora Canaria. However, Benedi [36] includes G. discolor within G. coronaria (L.) Spach, and in remarks he says that several authors consider with distinct rank two forms, those with totally yellow ligule and those with white ligule with a yellow base. It is not surprising that he includes G. discolor in G. coronaria, since his study predates the molecular study.
Taking into consideration articles 40–45 of the ICPN [21], it is not possible to maintain the syntaxonomy that is based on the species C. coronarium, when a vast majority of researchers support G. coronaria and G. discolor. For these reasons, we propose the correction of the names.
Although Álvarez de la Campa [37] described the association Asphodelo fistulosi-Hordeetum leporini A. & O.Bolòs in O.Bolòs 1956 and the sub-association chrysanthemetosum coronarii Álvarez de Campos 2003, the only differential being the taxon Chrysanthemum coronarium L. [=Glebionis coronaria (L.) Cass. ex Spach], due to its thermo-mediterranean environment and similar floristic composition, it could be assimilated to the new AvG association. All these associations are distributed in the south and east parts of the Iberian Peninsula (Figure 7).
In Italian territories, several authors have followed the Spanish and Portuguese syntaxonomy with respect to nitrophilous and sub-nitrophilous communities [25,26,27,28,39,40,41,42,43,44,45,46]. For Italy and Greece, Ferro [27] described the association Malvo parviflorae-Glebionetum coronariae Ferro 1980 corr. for Sicily (B1), which is corroborated by Brullo [26] in Sicily, together with the new associations described by this author, Hordeo-Centauretum macracanthae (A2) and Glebiono-Silybetum mariani Brullo 1983 corr. (A3). However, Brullo et al. [25] studied these Glebionis communities in southern Italy and included them in Malvo parviflorae-Glebionetum coronariae. Community (A1) in the cluster (Figure 2) is very far from the one described by Ferro, being closer to (A2), (A3), and (A4), so these grasslands should be included in the syntaxa described by Brullo [26] (Figure 8).
Group B is constituted by relevés published by Ferro [27,28] for Sicily and for the Aeolian Islands, broken down in the cluster into two subgroups: (B1) Malvo parviflorae-Glebionetum coronariae and (B2) Lavatero creticae-Glebionetum coronariae Ferro 2004 corr., described for the Aeolian Islands. Both associations have strong floristic differences with respect to the group (C1) of the cluster, which allows us to propose a new association (Relevés 1–33) for the territories of Reggio Calabria, characterized by species absent in the association Lavatero creticae-Glebionetum coronariae (B2), these being the differences of the new association Centaureo napifoliae-Glebionetum coronariae ass. nova (Table 6, Relevés 1–19, holotypus rel. 16), an association differentiated from Centauretum napifoliae Brullo 1983. This association grows in dry environments on basic substrates in the thermo-mediterranean belt. The subgroup (B2) Malvo parviflorae-Glebionetum coronariae published by Brullo [26] for Sicily differs from the same (A1) communities published by Brullo et al. [25] for Reggio Calabria. The group (C1) based on relevés from Sicily and Reggio Calabria belongs to a new syntaxon, floristically differentiated from the rest of the relevés of C1 by the presence, among other species, of Calendula suffruticosa subsp. fulgida, C. suffruticosa subsp. fulgida x Calendula arvensis, and Valeriana graciliflora (=Fedia graciliflora). This community is present on basic and loamy substrates in dry-subhumid environments of the lower thermo- and meso-mediterranean territories, which allows us to propose the new subassociation Centaureo napifoliae-Glebionetum coronariae calenduletosum fulgidae subass. nova (Table 6, Relevés 20–33, holotypus rel. 31), while the grasslands dominated by G. coronaria in Greece belong to subgroup (C2), which establishes a new syntaxon named Astragalo drupacei-Glebionetum coronariae ass. nova (Table 7, Relevés 1–9, holotypus rel. 2), an association located on thermo-mediterranean basic substrates (Figure 9).
Proposed syntaxonomical scheme
Stellarietea mediae Tüxen, Lohmeyer & Preising ex von Rochow 1951
Chenopodio-Stellarienea Rivas Goday 1956
Sisimbrietalia officinalis J. Tüxen in Lohmeyer et al. 1962 em. Rivas-Martínez, Báscones, T. E. Díaz, Fernández-González & Loidi 1991
Malvion neglectae (Gutte 1966) Cano Ortiz, Biondi, Pinto-Gomes, Del Río & Cano 2014
Resedo albae-Glebionenion coronariae Cano-Ortiz, Biondi & Cano ex Cano Ortiz, Biondi, Pinto-Gomes, Del Río & Cano 2014 corr.
Resedo albae-Glebionetum coronariae O. Bolòs & Molinier 1958 nom. corr.
Anacyclo radiati-Glebionetum coronariae (Rivas-Martínez 1978) Cano-Ortiz et al. nom. corr.
Malvo parviflorae-Glebionetum coronariae Ferro 1980 nom. corr.
Lavatero creticae-Glebionetum coronariae Ferro 2004 nom. corr.
Glebiono-Silybetum mariani Brullo 1983 nom. corr.
Reichardio tingitanae-Glebionetum coronariae ass. nova (Spain)
Anacyclo valentine-Glebionetum coronariae ass. nova (Spain)
Centaureo baeticae-Glebionetum discoloris ass. nova (Spain)
Klaseo alcalae-Glebionetum coronariae ass. nova (Spain)
Astragalo drupacei-Glebionetum coronariae ass. nova (Greece)
Centaureo napifoliae-Glebionetum coronariae ass. nova (Italy)
Centaureo napifoliae-Glebionetum coronariae calenduletosum fulgidae subass. nova (Italy)

4. Materials and Methods

4.1. Characterization of the Territory and Study Area

The study territory corresponds to the western Mediterranean (Spain, Italy, Portugal, and Greece). Samples were taken in the spring for several years. The study was initiated by Cano-Ortiz, who obtained edaphic and phytosociological samples in Spain and Italy, and continued later [7,8,18]. In order to differentiate the communities dominated by G. coronaria and G. discolor in the European Mediterranean, we rely on 101 phytosociological relevés for Italy and Greece (51 for Italy from other authors, while the 41 from Italy and the 9 from Greece are their own samples) carried out by us and by other authors (Table 8 and Table 9) and 81 new samples for Spain and Portugal.
For the ecological characterization of the different communities studied, edaphic and climatic data have been used. On the one hand, the edaphic data were obtained from the Maps of Soil Chemical Properties at European Scale based on LUCAS 2009/2012 topsoil data [48] and Topsoil Physical Properties for Europe (based on LUCAS topsoil data) [49]. The climate data were obtained from monthly summaries of average maximum and minimum temperatures and precipitations from WorldClim [50] raster layers of 2.5′ arc resolution from 1960 to 2021. The different monthly averages have been produced using map algebra in QGIS 3.22 software. Subsequently, the different bioclimatic indices have been calculated according to the Rivas-Martínez World Bioclimatic Classification [51]. The different variables for each sampling are shown in Table 10.

4.2. Statistical Analysis

Cluster statistical analysis was applied to differentiate the groups of plant communities. This analysis was corroborated and adjusted with the phytosociological study through the presence/absence of species, biogeographical distribution, and ecology. For the statistical ordination treatment, the computer package Community Analysis Pakge III was used. To establish the distribution of the two types of G. coronaria and G. discolor communities, we used the bioclimatic map established by Cano et al. [19] (Figure 10) and our own phytosociological sampling.
Multivariate analyses were used for the ecological characterization of the different communities studied. Taking the edaphic and bioclimatic data as variables, a principal components analysis was carried out, previously selecting the variables that best explained the variability of the communities, as well as a canonical correspondence analysis with the aim of relating the co-occurrence of the different species with the different edaphic and bioclimatic variables. The importance of each of the bioclimatic and edaphic variables was tested using the Kaiser-Meyer-Olkin (KMO) test. This index provides information on when the data are suitable for factor analysis. It is used to assess whether the relationship between variables is strong enough for the factor analysis to produce significant and reliable results. The cut-off criterion was to choose variables with a KMO index > 0.5 (Table 10). The PCA was performed using Pearson’s correlation and with an Oblimin-type rotation of the axes. The oblimin rotation seeks to minimize the number of variables that have high loadings on more than one factor. This can be useful when factors are expected to be correlated in reality, such as in situations where the underlying variables share some relationship or overlap conceptually.
With the environmental variables selected on the basis of the factor analysis, the modified phytosociological importance index (IVI) was then calculated for each of the plant species present in the different samples. Based on the relative frequency in each sampling, the relative dominance in each sampling, and the inverse of the relative occurrence in the different clusters determined in the previous ordination analysis, this step was carried out to “penalize” the importance of the more euryoecious species in favor of the more stenoecious ones.
I V I = F r + D r F r t
where Fr is the relative frequency of occurrence of the species in each sampling cluster; Dr is the mean relative dominance (measured in cover) in each sampling cluster; and Frt is the relative frequency of occurrence in all sampling clusters. Frt penalizes those species found in many different communities.
Subsequently, based on the preliminary results of the factorial analysis and PCA, the analysis of the main components, and the phytosociological importance of each species, a canonical correspondence analysis (CCA) was carried out with the aim of observing ecological patterns according to each of the distribution gradients of the environmental variables in the composition of each phytocorion or plant community studied.
In order to compare the different communities with each other according to soil composition and bioclimate, comparative analyses of variance were carried out. Previously, an exploratory analysis of the data was carried out to check the distribution, normality, and homoscedasticity of the data for a better choice of comparative methods. For this purpose, the Shapiro–Wilks test was used to check the normality of the data. This test showed that most of the variable distributions did not follow a normal distribution, so non-parametric methods were chosen. For the comparison between the different plant communities studied, the Kruskal–Wallis method of comparisons between medians was used, a non-parametric method analogous to the ANOVA analysis.

5. Conclusions

This study clearly highlights the differentiation of the Italian grasslands from the Iberian ones, which are separated into two alliances: the Hordeion leporini alliance distributed throughout the western Mediterranean basin, from which we segregate the communities of G. coronaria and G. discolor according to their different edaphic, floristic, and structural characteristics that allow us to include these grasslands in the Resedo albae-Glebionenion coronariae sub-alliance, which we include in the Malvion neglectae alliance. According to the new taxonomy of the genus Glebionis [19,20], name corrections are made according to the Code of Phytosociological Nomenclature. The statistical study of 81 samples for Spain and Portugal and 101 for Italy and Greece allowed us to establish seven new syntaxa, six of which have association rank and one with subassociation rank.

Author Contributions

Conceptualization, E.C. and C.M.M.; methodology, E.C. and A.C.-O.; software, J.C.P.F.; validation, E.C., C.M.M., C.R.M. and R.Q.C.; formal analysis, E.C.; investigation, E.C., A.C.-O., C.M.M. and G.S.; resources, E.C., C.P.G., C.M.M. and G.S.; data curation, A.C.-O., V.L.A.L. and M.R.; writing—original draft preparation, E.C.; writing—review and editing, E.C., C.M.M. and V.L.A.L.; visualization, E.C. and R.Q.C.; supervision, E.C., C.P.G., C.M.M. and G.S. All authors have read and agreed to the published version of the manuscript.

Funding

This research received no external funding.

Data Availability Statement

Data are contained within the article.

Conflicts of Interest

The authors declare no conflict of interest.

References

  1. Corona, P.; Blasi, C.; Chirici, G.; Facioni, L.; Fattorini, L.; Ferrari, B. Monitoring and assessing old-growth forest stands by plot sampling. Plant Biosyst. 2010, 144, 171–179. [Google Scholar] [CrossRef]
  2. Blasi, C.; Biondi, E.; Izco, J. 100 years of plant sociology: A celebration. Plant Biosyst. 2011, 145, 1–3. [Google Scholar] [CrossRef]
  3. Musarella, C.M.; Brullo, S.; del Galdo, G.G. Contribution to the Orophilous Cushion-Like Vegetation of Central-Southern and Insular Greece. Plants 2020, 9, 1678. [Google Scholar] [CrossRef] [PubMed]
  4. Gutte, P. Die Verbreitung einiger Ruderalpflanzengesellschaften in der witeren Umgebung von Leipzig. Wiss. Z. Martin-Luther-Univ. Halle-Wittemberg. Math.-Naturwiss. Reihe 1966, 15, 937–1010. [Google Scholar]
  5. Rivas-Martínez, S. The vegetation of Hordeion leporini in Spain. Phytosoc Doc. 1978, 9, 377–392. [Google Scholar]
  6. Rivas-Martínez, S.; Fernández González, F.; Loidi, J.; Penas, A. Syntaxonomical checklist vascular plant communities of Spain and Portugal to association level. Itinera Geobot. 2001, 14, 4–341. [Google Scholar]
  7. Cano-Ortiz, A.; Pinto Gomes, C.J.; Esteban, F.J.; Rodríguez Torres, A.; Goñi, J.; De la Haza, I.; Cano, E. Biodiversity of Hordeion leporini in Portugal: A phytosociological and edaphic analysis. Acta Bot. Gallica 2009, 156, 33–48. [Google Scholar] [CrossRef]
  8. Cano-Ortiz, A.; Biondi, E.; Pinto Gomes, C.J.; del Río González, S.; Cano, E. Soil and phytosociological characterisation of grasslands in the western Mediterranean. Am. J. Plant Sci. 2014, 5, 3213–3240. [Google Scholar] [CrossRef]
  9. Rivas-Martínez, S. On the nitrophilous vegetation of Chenopodion muralis. Acta Bot. Malacit. 1978, 4, 71–78. [Google Scholar] [CrossRef]
  10. Peinado, M.; Martínez-Parras, J.M.; Bartolomé, C. Notes on nitrophilous vegetation II: Some phytosociological novelties in Andalusia. Stud. Botánica 1986, 5, 53–69. [Google Scholar]
  11. Rivas-Martinez, S.; Costa, M.; Soriano, P.; Perez, R.; Llorens, L.; Rosello, J.A. Data on the vegetational landscape of Mallorc and Ibiza (Balearic Island, Spain). Itinera Geobot. 1992, 6, 5–98. [Google Scholar]
  12. Rivas-Martínez, S.; Wildpret, W.; Del Arco, M.; Rodríguez, O.; de Paz, P.; García-Gallo, A.; Acebes, J.R.; Díaz González, T.E.; Fernández-González, F. Plant communities of Tenerife Island (Canary Islands). Itinera Geobot. 1993, 7, 69–374. [Google Scholar]
  13. Vargas, M.A.A. Flora and Vegetation of the Valley of Villena (Alicante), 1st ed.; Inst. Cultura Juan Gil-Albert: Alicante, Spain, 1996; pp. 1–26. [Google Scholar]
  14. Costa, C.; Capelo, J.; Jardin, R.; Sequeira, M.; Espirito-Santo, D.; Lousa, M.; Fontinha, S.; Aguiar, C.; Rivas-Martínez, S. Syntaxonomic and floristic catalog of the plant communities of Madeira and Porto Santo. Quercetea 2004, 6, 61–200. [Google Scholar]
  15. Reyes-Betancort, J.A.; Wilpret, W.; León, M.C. The Vegetation of Lanzarote (Canary Islands). Phytocenology 2001, 31, 185–247. [Google Scholar] [CrossRef]
  16. De Mera, A.; Deil, U.; Orellana, J.A.V. Roadside vegetation in the Campo de Gibraltar (SW Spain) and on the Tangier peninsula (NW Morocco). Stud. Bot. 2004, 23, 63–93. [Google Scholar]
  17. Orellana, J.A.; de Mera, A. New contributions to the knowledge of the luso- extremaduran vegetation. A study of the Villuercas (Extremadura, Spain) and San mamede (Alto Alentejo, Portugal) mountain ranges. Acta Botánica Malacit. 2008, 33, 169–214. [Google Scholar] [CrossRef]
  18. Cano-Ortiz, A.; Pinto Gomes, C.J.; Esteban, F.; Cano, E. Determination of the nutritional state of soils by means of the phytosociological method and different statistical techniques (Bayesian statistics and decision trees), (Spain). Acta Bot. Gall. 2009, 156, 607–624. [Google Scholar] [CrossRef]
  19. Cano, E.; Musarella, C.M.; Cano-Ortiz, A.; Piñar Fuentes, J.C.; Spampinato, G.; Pinto Gomes, C.J. Morphometric analysis and bioclimatic distribution of Glebionis coronaria s.l. (Asteraceae) in the Mediterranean area. Phytokeys 2017, 81, 103–126. [Google Scholar] [CrossRef] [PubMed]
  20. Gallucci, A.; Musarella, C.; Cano-Ortiz, A.; Piñar Fuentes, J.; Quinto Canas, R.; Villano, C. Preliminary assessment of genetic diversity between Glebionis coronaria and G. discolor (Asteraceae) by AFLP markers. Acta Agric. Slov. 2023, 119, 1–7. [Google Scholar] [CrossRef]
  21. Theurillat, J.P.; Willner, W.; Fernández-González, F.; Bültmann, H.; Čarni, A.; Gigante, D.; Mucina, L.; Weber, H. International Code of Phytosociological Nomenclature. 4th edition. Appl. Veg. Sci. 2021, 24, e12491. [Google Scholar] [CrossRef]
  22. García Fuentes, A.; Cano, E. Contribution to the knowledge of nitrophilous grasslands. Inst. Est. Giennenses 1993, 148, 275–287. [Google Scholar]
  23. García Fuentes, A.; Cano, E. Malas Mal Hierbas del Olivar Giennense, 1st ed; IEG: Jaen, Spain, 1996; pp. 1–213. [Google Scholar]
  24. Garcia Fuentes, A.; Cano, E.; Torres, J.A.; Nieto, J. Notes on the nitrophilous vegetation of the Guadalquivir basin. Nat. Bética 1994, 6, 125–153. [Google Scholar]
  25. Brullo, S.; Scelsi, F.; Spampinato, G. La Vegetazione dell’Aspromonte. Studio Fitosociologico; Laruffa Editore: Regio Calabria, Italy, 2001. [Google Scholar]
  26. Brullo, S. L’Hordeion leporini in Sicily. Arch. Bot. E Biogeogr. Ital. 1983, 58, 55–88. [Google Scholar]
  27. Ferro, G. La vegetazione di Butera (Sicilia meridionale). Atti Dell’istituto Bot. E Lab. Crittogam. Univ. Di Pavia 1980, 13, 51–118. [Google Scholar]
  28. Ferro, G. Nuovi dati sulla flora e sulla vegetazione dei coltivi e degli incolti di Lipari (Isole Eolie). Quad. Di Bot. Ambient. E Appl. 2004, 15, 21–39. [Google Scholar]
  29. Bolòs, O. Plant communities of the regions near the coast located between the Llobregat and Segura rivers. Mem. Real Acad. Sci. Barc. 1967, 38, 3–281. [Google Scholar]
  30. Turland, N.J. Proposal to conserve the name Chrysanthemum coronarium (Compositae) with a conserved type. Taxon 2004, 53, 1072–1074. [Google Scholar] [CrossRef]
  31. Bolòs, O.; Molinier, R. Recherches phytosociologiques dans l’lle de Majorque. Collect. Bot. 1958, 5, 699–865. [Google Scholar]
  32. Cueto, M.; Melendo, M.; Giménez, E.; Fuentes, J.; López Carrique, E.; Blanca, G. First updated checklist of the vascular flora of Andalusia (S of Spain), one of the main biodiversity centres in the Mediterranean Basin. Phytotaxa 2018, 339, 1–95. [Google Scholar] [CrossRef]
  33. Bartolucci, F.; Domina, G.; Andreatta, S.; Argenti, C.; Bacchetta, G.; Ballelli, S.; Banfi, E.; Barberis, D.; Barberis, G.; Bedini, G.; et al. Notulae to the Italian native vascular flora: 11. Ital. Bot. 2021, 11, 77–92. [Google Scholar] [CrossRef]
  34. Bartolucci, F.; Domina, G.; Adorni, M.; Bacchetta, G.; Bajona, E.; Banfi, E.; Barbadoro, F.; Biscotti, N.; Bonsanto, D.; Conti, F.; et al. Notulae to the Italian native vascular flora: 15. Ital. Bot. 2023, 15, 91–109. [Google Scholar] [CrossRef]
  35. Ivashchenko, I.; Bakalova, A.; Rakhmetov, D.; Fishchenko, V. Biochemical peculiarities of Glebionis coronaria (Asteraceae) introduced in Central Polissya of Ukraine. Plant Fungal Res. 2019, 2, 32–39. [Google Scholar] [CrossRef]
  36. Benedí, C. Glebionis in Plantas Vasculares de la Península Ibérica e Islas Baleares. In Flora Ibérica 16 (III); Real Jardín Botánico: Madrid, Spain, 2019; pp. 1974–1979. [Google Scholar]
  37. Álvarez de la Campa Faya, J.M. Vegetació del Massís del Port. Ph.D. Thesis, Universitat de Barcelona, Barcelona, Spain, 2003; p. 373. [Google Scholar]
  38. Rivas-Martínez, S.; Penas, Á.; Díaz González, T.E.; Cantó, P.; del Río, S.; Costa, J.C.; Herrero, L.; Molero, J. Biogeographic units of the Iberian Peninsula and Baelaric Islands to district level. A concise synopsis. Veg. Iber. Penins. 2017, 1, 131–188. [Google Scholar]
  39. Kruska, K. Contribuir alla conoscenza della vegetación Ruderale delle Marché. Doc. Phytosociol. 1985, 9, 359–368. [Google Scholar]
  40. Biondi, E.; Baldoni, M. La vegetazione di margine stradale dell’ordine Brometalia rubenti-tectori nell’Italia Centrale. Ann. Bot. 1991, 49, 214–217. [Google Scholar]
  41. Biondi, E.; Vagge, I.; Baldoni, M.; Taffetani, F. La vegetazione del Parco fluviale del Taro (Emilia-Romagna). Phytosociology 1997, 34, 69–110. [Google Scholar]
  42. Fanelli, G.; Lucchese, F. Lo status delle communità deiBrometalia rubenti- tectorum del Mediterraneo in differenti schemi sintattonomici. Rend. Lincei 1998, 9, 241–255. [Google Scholar] [CrossRef]
  43. Fanelli, G.; Lucchese, F.; Paura, B. Le praterie a Stipa austroitalica di due settori adriatici meridionali (Molise e Gargano). Fitosociologia 2001, 38, 25–36. [Google Scholar]
  44. Baldoni, M.; Biondi, E.; Loiotile, A. La vegetazione infestante i vigneti nelle Marche. Fitosociologia 2001, 38, 63–68. [Google Scholar]
  45. Biondi, E.; Bagella, S.; Cassavechia, S.; Pinzi, M.; Vagge, I. La vegetazione a Dasypyrum villosum (L.) P. Candargy lungo le coste dell’Italia Settentrionale. Doc. Phytosociol. 1999, 19, 439–446. [Google Scholar]
  46. Fanelli, G. Dasypyrum villosum Vegetation in the Territory of Rome. Rend. Lincei 1998, 9, 149–170. [Google Scholar] [CrossRef]
  47. Blasi, C.; Capotorti, G.; Copiz, R.; Guida, D.; Mollo, B.; Smiraglia, D.; Zavattero, L. Classification and mapping of the ecoregions of Italy. Plant Biosyst. -Int. J. Deal. All Asp. Plant Biol. 2014, 148, 1255–1345. [Google Scholar] [CrossRef]
  48. Ballabio, C.; Lugato, E.; Fernández-Ugalde, O.; Orgiazzi, A.; Jones, A.; Borrelli, P.; Montanarella, L.; Panagos, P. Mapping LUCAS topsoil chemical properties at European scale using Gaussian process regression. Geoderma 2019, 355, 113912. [Google Scholar] [CrossRef] [PubMed]
  49. Ballabio, C.; Panagos, P.; Montanarella, L. Mapping topsoil physical properties at European scale using the LUCAS database. Geoderma 2016, 261, 110–123. [Google Scholar] [CrossRef]
  50. Fick, S.E.; Hijmans, R.J. WorldClim 2: New 1 km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 2017, 37, 4302–4315. [Google Scholar] [CrossRef]
  51. Rivas-Martínez, S.; Rivas-Sáenz, S.; Penas, A.S. Worldwide bioclimatic classification system. Glob. Geobot. 2011, 1, 1–634. [Google Scholar]
Figure 1. Cluster analysis of grasslands dominated by Glebionis coronaria and Glebionis discolor in the Iberian Peninsula.
Figure 1. Cluster analysis of grasslands dominated by Glebionis coronaria and Glebionis discolor in the Iberian Peninsula.
Plants 13 00568 g001
Figure 2. Cluster analysis of grasslands dominated by Glebionis coronaria and Glebionis discolor in Italy and Greece.
Figure 2. Cluster analysis of grasslands dominated by Glebionis coronaria and Glebionis discolor in Italy and Greece.
Plants 13 00568 g002
Figure 3. Edaphic relationships of Hordeion leporini and Malvion neglectae communities [8].
Figure 3. Edaphic relationships of Hordeion leporini and Malvion neglectae communities [8].
Plants 13 00568 g003
Figure 4. Representative biplot of the first two factors (F1 and F2) of the principal component analysis (PCA) of the communities studied in Spain, Italy, and Greece. AdGc = Astragalo drupacei-Glebionetum coronariae (Greece); AvGc = Anacyclo valentinae-Glebionetum coronariae (Spain); CbGc = Centaureo baeticae-Glebionetum discoloris (Spain); CnGc = Centaureo napifoliae-Glebionetum coronariae typicum (Italy); CnGc_Cf = Centaureo napifoliae-Glebionetum coronariae calenduletosum fulgidae (Italy); KaGc = Klaseo alcalae-Glebionetum discoloris (Spain); RtGc = Reichardio tingitanei-Glebionetum coronariae (Spain).
Figure 4. Representative biplot of the first two factors (F1 and F2) of the principal component analysis (PCA) of the communities studied in Spain, Italy, and Greece. AdGc = Astragalo drupacei-Glebionetum coronariae (Greece); AvGc = Anacyclo valentinae-Glebionetum coronariae (Spain); CbGc = Centaureo baeticae-Glebionetum discoloris (Spain); CnGc = Centaureo napifoliae-Glebionetum coronariae typicum (Italy); CnGc_Cf = Centaureo napifoliae-Glebionetum coronariae calenduletosum fulgidae (Italy); KaGc = Klaseo alcalae-Glebionetum discoloris (Spain); RtGc = Reichardio tingitanei-Glebionetum coronariae (Spain).
Plants 13 00568 g004
Figure 5. CCA correlation analysis between bioclimatic and edaphic parameters of the abundance of species that make up the different communities.
Figure 5. CCA correlation analysis between bioclimatic and edaphic parameters of the abundance of species that make up the different communities.
Plants 13 00568 g005
Figure 6. Disc cypsela of Glebionis coronaria (a) and G. discolor (b) photographed with high-resolution confocal microscopy [19].
Figure 6. Disc cypsela of Glebionis coronaria (a) and G. discolor (b) photographed with high-resolution confocal microscopy [19].
Plants 13 00568 g006
Figure 7. Distribution map of associations in the Iberian Peninsula. Map adapted from Rivas-Martínez et al. [38].
Figure 7. Distribution map of associations in the Iberian Peninsula. Map adapted from Rivas-Martínez et al. [38].
Plants 13 00568 g007
Figure 8. Distribution map of associations in Italy. Map adapted from Blasi et al. [47].
Figure 8. Distribution map of associations in Italy. Map adapted from Blasi et al. [47].
Plants 13 00568 g008
Figure 9. Distribution map of associations in Greece.
Figure 9. Distribution map of associations in Greece.
Plants 13 00568 g009
Figure 10. Bioclimatic distribution of Glebionis coronaria and G. discolor in the Mediterranean basin [19].
Figure 10. Bioclimatic distribution of Glebionis coronaria and G. discolor in the Mediterranean basin [19].
Plants 13 00568 g010
Table 1. Edaphic analysis of the communities dominated by Hordeum leporinum, Glebionis coronaria, and Glebionis discolor [8].
Table 1. Edaphic analysis of the communities dominated by Hordeum leporinum, Glebionis coronaria, and Glebionis discolor [8].
AcHArHBsHArCCbGUuM
CIC15.3659.13110.54412.32811.6810.889
MOO1.5411.561.6671.6221.5741.904
Nt0.1150.1020.1330.1050.1290.179
Pa9.78913.95715.426.920.9536.19
Mgc1.6831.8561.0682.1312.7161.698
Kc0.790.2560.3750.6981.4761.266
pF 15 atm15.3228.6138.20311.97514.2413.197
Tx arc17.75819.7814.50319.76324.2421.293
Tx ar20.44862.41154.25455.82637.8546.001
Tx lim61.79417.80331.24524.41337.9432.712
CE0.3550.2090.1220.1930.4910.565
pH8.2757.437.4757.777.9437.776
pF15atm15.3228.6138.20311.97514.23813.197
CIC = cation exchange capacity in meq/100 g; MOO = oxidable organic matter in %; Nt = total nitrogen in %; Pa = assimilable phosphorus in ppm; Mgc = exchangeable magnesium in meq/100g; Kc = exchangeable potassium in meq/100 g; pF 15 atm = pressure at 15 atm (water retention capacity) in %; Tx arc = clayey texture in %; Tx ar = sandy texture in %; Tx lim = silty texture in %; EC = conductivity mmhos/cm; pH. AcH—Anacyclo clavati-Hordeetum leporini Cano-Ortiz et al. 2009. ArH—Anacyclo radiati-Hordeetum leporinii O. Bolòs & Rivas-Martínez in Rivas-Martínez 1978. BsH—Bromo scoparii-Hordeetum leporinii Rivas Martínez 1978. ArGb—Anacyclo radiati-Glebionetum coronariae (Rivas-Martínez 1978) Cano-Ortiz et al., 2009 corr. CbG—Centaureo baeticae-Glebionetum coronariae ass. nova. UuM—Urtico urentis-Malvetum neglectae (Knapp) Lohmeyer in Tüxen 1950.
Table 2. Centaureo baeticae-Glebionetum discoloris ass. nova (Andalusia, Spain. Inv. 1–21, holotypus inv. 6).
Table 2. Centaureo baeticae-Glebionetum discoloris ass. nova (Andalusia, Spain. Inv. 1–21, holotypus inv. 6).
N° inventory123456789101112131415161718192021
N° clusterCbG1CbG2CbG3CbG4CbG5CbG6CbG7CbG8CbG9CbG10CbG11CbG12CbG13CbG14CbG15CbG16CbG17CbG18CbG19CbG20CbG21
Surface (m2)111111111111111111111
Coverage (%)1009510010090100100100100100100100100100100100100100100100100
Altitude (m)240298230407235412369373438406319207179200196217446446333249240
Orientation.SWS.E................
Inclination (%).102.1................
Average hight veg (cm)1301101009580150170145130160140160160160120160160200135130200
Characteristics association and upper units
Glebionis discolor (d’Urv) Cano et al.555545555555555555555
Centaurea pullata L. subsp. baetica Talavera+1+ +11++++ 11 + 11++
Bromus diandrus Roth s.l.22+2 1111111+ +++
Erodium malacoides (L.) L’Hér.11+1211+ 1 112 +
Avena sterilis L.2 1 121 112+ 22+2
Lactuca serriola L. + +11 + + 1+ +++ +
Malva parviflora L. +1 1 1+1+ 1 +
Malva neglecta Wallr.+2+++ 1+1 +
Calendula arvensis L.1 131 +1 ++ +
Sinapis alba L. subsp. mairei (H. Lindb.) Maire1 2+ + +1 ++
Medicago polymorpha L. ++ 3 ++11 +
Echium plantagineum L. + +3++1 1
Rapistrum rugosum (L.) All. 2 +++2 +
Hordeum murinum L. subsp. leporinum Link 212 2 ++
Diplotaxis catholica (L.) DC. ++ 1 1 + +
Galium parisiense L. ++ 1 ++
Rumex conglomeratus Murray 1+ + +
Papaver rhoeas L. + 1 2 +
Anagallis coerulea Schreber + ++ +
Sonchus tenerrimus L. + + +
Lolium rigidum Gaudin + 2 +
Eruca vesicaria (L.) Cav. + 1 +
Crepis vesicaria L. subsp. haenseleri (Boiss.) Sell. + +1
Avena longiglumis Durieu 1++
Nonea vesicaria (L.) Rchb. + +
Melilotus indica (L.) All. ++
Medicago arabica (L.) Hudson 2 +
Lolium multiflorum Lam. ++
Lathyrus clymenum L. 1 +
Geranium rotundifolium L. + +
Erodium moschatum (L.) L’Hér 1 +
Erodium ciconium (L.) L’Hér 1 +
Diplotaxis virgata (Cav.) DC.+ +
Bromus madritensis L. + +
Vicia sativa L. subsp. nigra (L.) Ehrh. +
Vicia monthana Retz., +
Vicia hybrida L. 1
Vicia benghalensis L. 2
Stellaria alsine Grimm 1
Stachys arvensis (L.) L. +
Sonchus oleraceus L. 1
Raphanus raphanistrum L. +
Plantago lanceolata L. +
Plantago lagopus L. 2
Ononis viscosa L. +
Ononis biflora Desf. +
Medicago orbicularis (L.) Bartal. 2
Medicago doliata Carming. var. muricata Heyn. +
Lolium temulentum L. 1
Lactuca virosa L. 1
Glossopappus macrotus (Durieu) Briq. +
Gastridium ventricosum (Gouan) Sch. et Th. +
Galactites tomentosa Moench +
Fumaria reuteri Boiss. +
Euphorbia helioscopia L. +
Bromus intermedius Guss. +
Brassica nigra (L.) Koch1
Bellardia trixago (L.) All. +
Avena barbata Potter +
Companion species
Silybum marianum (L.) Gaertner 1 1 + ++1+ 1++ +
Carduus bourgaeanus Boiss. & Reuter 1 +1 ++21+1 1
Foeniculum vulgare Miller subsp. piperitum (C. Presl) Bég+ + + + + +
Phalaris minor Retz. 1 11 + +
Convolvulus althaeoides L. + + +
Carduus pycnocephalus L. 11 1
Holcus setiglumis Boiss. et Reuter ++
Trifolium tomentosum L. +
Silene coeli-rosa (L.) Godron 2
Oryzopsis miliacea (L.) Asch. et Sch. subsp. thomasii (Duby) Nyman +
Onopordum nervosum Boiss. +
Mercurialis annua L. +
Marrubium vulgare L. +
Lamarckia aurea (L.) Moench 2
Geranium dissectum L. +
Ecballium elaterium (L.) A. Rich. 1
Daucus carota L. subsp. maximus (Desf.) Ball +
Dactylis glomerata L. +
Calystegia sepium (L.) R.Br. 1
Table 3. Klaseo alcalae-Glebionetum discoloris ass. nova (holotypus inv. 8).
Table 3. Klaseo alcalae-Glebionetum discoloris ass. nova (holotypus inv. 8).
N° inventory12345678
N° clusterKaG1KaG2KaG3KaG4KaG5KaG6KaG7KaG8
Surface m222222222
Coverage (%)90858595959595100
Altitude (m)170135662020606581
Orientation.S.S.EEE
Inclination (%).2.2.232
Average hight veg (cm)7060604050506070
Characteristics association and upper units
Glebionis discolor (d’Urv.) Cano et al.44455555
Sinapis alba L. subsp. mairei (H. Lindb.) Maire22+212.+
Andryala laxiflora DC.1.1....+
Avena barbata Pott ex Link+.......
Klasea alcalae (Coss.) Cantó & Rivas Mart.23422.24
Euphorbia boetica Boiss.22......
Echium plantagineum L.+1+ +1+1
Plantago lagopus L.1..1....
Avena sterilis L.++++.++.
Calendula arvensis L. 1.......
Sisymbrium officinale (L.) Scop.+1......
Lathyrus clymenum L.++..+...
Biscutella baetica Boiss. & Reut.+.......
Crepis vesicaria L..1+1.1++
Urospermun picroides (L.) Scop. ex Schmidt.11+..+1
Hordeum murinum L. subsp. leporinum Link.1.1111.
Lavatera cretica L..+......
Reseda alba L..+++.+.1
Lathyrus latifolius L..+......
Galactites tomentosa Moench.+.++1+.
Euphorbia helioscopia L...21++..
Eruca vesicaria (L.) Cav...+.....
Anagallis arvensis L...+.....
Ononis viscosa L...+....+
Malva neglecta Wallr....+.112
Beta vulgaris L. subsp. maritima (L.) Arcangeli...+.1+1
Centaurea pullata L. ...+1...
Glebionis coronaria (L.) Cass. ex Spach...+2..+
Bromus diandrus Roth....1...
Sonchus oleraceus L.......+.
Anacyclus clavatus (Desf.) Pers.......+.
Stipa capensis Thumb........+
Mercurialis annua L........+
Companion species
Plantago bellardii All.+.......
Genista equisetiformis (Spach) Rivas Goday & Rivas Mart.+++.....
Convolvulus althaeoides L.++++++1.
Bituminaria bituminosa (L.) C.H.Stirt.+111..1.
Lavandula multifida L.++....+.
Hyparrhenia sinaica (Delile) Llauradó ex G. López++.+....
Lotus edulis L..1+.....
Inula viscosa (L.) Aiton..+.....
Foeniculum vulgare Miller..+.....
Melica ciliata L...+.....
Asteriscus maritimus (L.) Less...1....
Asteriscus aquaticus (L.) Less.....+2.
Asparagus albus L....++...
Calicotome villosa (Poir.) Link...+....
Ricinus communis L....+....
Pallenis spinosa (L.) Cass......+++
Plantago afra L.......1.
Lamarckia aurea (L.) Moench.......+
Table 4. Reichardio tingitanae-Glebionetum coronariae ass. nova (Holotypus inv. 4).
Table 4. Reichardio tingitanae-Glebionetum coronariae ass. nova (Holotypus inv. 4).
N° inventory123456789
N° ClusterRt-G1Rt-G2Rt-G3Rt-G4Rt-G5Rt-G6Rt-G7Rt-G8Rt-G9
Surface (m2)444224444
Coverage (%)851008590100100709095
Altitude (m)4850308022320
Average hight veg. (cm)302540304035304045
Characteristics association and upper units
Glebionis coronaria (L.) Cass. ex Spach454455345
Anacyclus clavatus (Desf.) Pers.23+22221+
Hordeum murinum L. leporinum Link23+1+ 12
Bromus diandrus Roth12 11 112
Echium plantagineum L. 1221 12
Reichardia tingitana (L.) Roth +11 1+ 1
Malva neglecta Wallr.+ +1 + 1
Chenopodium opulifolium Schrader1 + 11 1
Brassica repanda (Willd.) DC. subsp. confusa (Emb. & Maire) Heywood 1 +12
Stipa capensis Thumb. 2 1
Lobularia maritima (L.) Desv. + 11 +
Sisymbrium officinalis (L.) Scop.1 211
Plantago serraria L.++ + 1
Tetragonia tetragonoides (Pall.) Kuntze 1 2
Plantago lagopus L. 1 2 2
Malva parviflora L. + 1
Glebionis discolor (d’Urv.) Cano et al. + 1
Avena longiglumis Durieu 1 1
Erodium malacoides (L.) L’Hér. ++ +
Picris echioides L. ++
Companion species
Ricinus communis L.11 11+
Lamackia aurea (L.) Moench ++ 1+
Cynodon dactylon (L.) Pers. 1 1
Euphorbia nicaensis All. 1 1
Piptatherum miliaceum (L.) Cosson + +
Foeniculum vulgare Miller + +
Silybum marianum (L.) Gaertner1+ +
Polypogon viridis (Gouan) Breistr.+ +
Reseda lutea L. + 1
Amaranthus retroflexus L.1
Silene scabriflora Brot. subsp. tuberculata (Ball) Talavera+
Sonchus asper (L.) Hill+
Xanthium spinosum L.1
Anagallis arvensis L.+
Papaver rhoeas L.+
Rumex crispus L.1
Misopates orontium (L.) Rafin.+
Xanthium strumarium L.1
Lolium rigidum Gaudin1
Silene colorata Poiret+
Urtica membranacea Poiret+
Erodium laciniatum (Cav.) Willd2
Anagallis arvensis L. +
Xanthium strumarium L. 1
Rumex crispus L. +
Lolium rigidum Gaudin 1
Solanum nigrum L. 1
Medicago polymorpha L. +
Plantago afra L. 2
Crepis vesicaria L. +
Solanum nigrum L. +
Galactites tomentosa Moench +
Asphodelus fistulosus L. +
Inula viscosa (L.) Aiton +
Convolvulus althaeoides L. 1
Tordilium maximum L. +
Anagallis arvensis L. +
Medicago coronata (L.) Bartal. +
Medicago arabica (L.) Hudson +
Leontodon salzmannii (Schultz) Ball 1
Ononis ramosissima Desf. 1
Plantago afra L. 1
Convolvulus althaeoides L. +
Crepis vesicaria L. +
Misopates orontium (L.) Rafin. 1
Euphorbia falcata L. 1
Urospermum picroides (L.) Scop. +
Oxalis pes-capreae L. +
Mercurialis ambigua (L.) Arcangeli 1
Anagallis arvensis L. +
Plantago afra L. 1
Misopates orontium (L.) Rafin. +
Euphorbia falcata L. 1
Brachypodium distachyon (L.) Beauv. +
Lolium rigidum Gaudin 1
Silene nutans L. +
Medicago arabica (L.) Hudson +
Melilotus indica (L.) All. +
Avena sterilis L. +
Sonchus oleraceus L. +
Solanum nigrum L. +
Papaver somniferum L. +
Hirschfeldia incana (L.) Lagr.-Foss. +
Lotus collinus (Boiss.) Heldr. +
Anthyllis tetraphylla L. +
Xanthium strumarium L. +
Spergularia rubra (L.) J. & C. Presl. +
Andryala laxiflora DC. +
Lolium rigidum Gaudin 1
Papaver rhoeas L. +
Crepis vesicaria L. +
Polycarpon tetraphyllum L. +
Campanula erinus L. +
Lactuca saligna L. +
Trifolium campestre Schreber +
Silene scabriflora Brot. +
Cynosurus echinatus L. +
Lagurus ovatus L. +
Xanthium strumarium L. +
Lactuca saligna L. 1
Lolium rigidum Gaudin 1
Avena sterilis L. +
Anagallis arvensis L. +
Crepis vesicaria L. +
Papaver somniferum L. +
Medicago murex Willd. +
Polypogon maritimus Willd. 1
Convolvulus arvensis L. 1
Lactuca saligna L. 1
Sonchus tenerrimus L. 1
Table 5. Anacyclo valentianae-Glebionetum coronariae ass. nova (inv. 1–11, holotypus inv. 2).
Table 5. Anacyclo valentianae-Glebionetum coronariae ass. nova (inv. 1–11, holotypus inv. 2).
N° inventory1234567891011
N° clusterAvG1AvG2AvG3AvG4AvG5AvG6AvG7AvG8AvG9AvG10AvG11
Coverage (%)959080100808510010010050100
Surface (m2)40404025254084101020
Altitude (m)14982285688290256231175228120
Orientation
Inclination (%)
Average hight veg (cm)
Characteristics association and upper units
Glebionis coronaria (L.) Cass. ex Spach54454434525
Sonchus oleraceus L.11++++2+ +
Anacyclus valentinus L.+1+++ ++ +
Echium creticum L. subsp. coincyanum (Lacaita) R. Fernándes1++11+ 2
Hordeum murinum L. subsp. leporinum (Link) Arcangeli+++++ 21+
Eruca vesicaria (L.) Cav. 1 213+
Moricandia arvensis (L.) DC. + ++ 1 2
Lavatera cretica L.1111 2 1
Rapistrum rugosum (L.) All.2 3++1
Calendula arvensis L. ++212
Avena sterilis L.11+ 11
Beta vulgaris L.12 311
Bromus rubens L.+1 + +
Carrichtera annua (L.) DC. + + 21
Lolium rigidum Gaudin11+1 1
Lophochloa pumila (Desf.) Bor + ++
Malva parviflora L. +2
Malva sylvestris L. + + +
Medicago polymorpha L.1 + 2
Anacyclus clavatus (Desf.) Pers. 1 2 +
Anagallis arvensis L. 1 +
Papaver rhoeas L. + +1 +
Reichardia tingitana (L.) Roth ++ +
Anchusa azurea Mill. 1
Bartsia trixago L.+
Borago officinalis L. +
Brassica fruticulosa Cirillo subsp. cossoniana (Boiss. & Reut.) Maire 3
Bromus diandrus Roth +
Bromus hordeaceus L.+
Bromus intermedius Guss. subsp. divaricatus Bonnier & Layens +
Bromus madritensis L.1+1
Bromus sterilis L.1
Calendula tripterocarpa Rupr. 1
Centaurea melitensis L. 1
Chenopodium album L. 1 1+
Chenopodium murale L. + +
Glebionis discolor (d’Urv.) Cano et al. + +
Diplotaxis erucoides (L.) DC. +
Emex spinosa (L.) Campd.1 +
Erodium chium (L.) Willd. 1
Erodium malacoides (L.) L’Hér.1 3
Euphorbia serrata L. +
Galium tricornutum Dandy +
Halogeton sativus (Loefl. ex L.) Moq. +
Hedypnois cretica (L.) Dum.Curs.1
Lactuca serriola L. 21
Lamium amplexicaule L. 1
Moricandia moricandiodes (Boiss.) Heywood +
Papaver hybridum L. + +
Plantago lagopus L.+ +
Reseda lutea L. subsp. lutea L. +
Rostraria pumila (Desf.) Tzvelev +
Scolymus hispanicus L.+
Scorpiurus muricatus L.+ +
Silene secundiflora Otth in DC. +
Silene vulgaris (Moench) Garcke 1
Sisymbrium irio L. 1
Sisymbrium officinale (L.) Scop. 2 +
Sisymbrium orientale L. 1
Sonchus tenerrimus L. +
Stipa capensis Thunb.+1 +
Torilis arvensis (Huds.) Link +
Tripodion tetraphyllum (L.) Fourr.+
Urospermum picroides (L.) Scop. ex F. W. Schmidt + +
Companion species
Phalaris brachystachys Link1++ +
Piptatherum miliaceum (L.) Coss.++ 1 +
Convolvulus arvensis L. +++ 1
Convolvulus althaeoides L.+ 1+
Lamarckia aurea (L.) Moench + + 1 +
Carduus bourgeanus Boiss. & Reut.1 + 2
Carthamus lanatus L. ++
Cichorium intybus L.+
Cirsium vulgare (Savi) Ten. +
Misopates orontium (L.) Rafin. +
Onopordum macracanthum Schousb.+
Oxalis pres-caprae L. +
Verbascum pulverulentum Vill.+
Volutaria lippii (L.) Maire + 3
Plantago afra L.+ +
Arisarum vulgare Targ. -Tozz.+
Artemisia barrelieri Besser.+
Table 6. Centaureo napifoliae-Glebionetum coronariae ass. nova (inv. 1–19 holotypus inv. 16). Centaureo napifoliae-Glebionetum coronariae calenduletosum fulgidae subass. nova (inv. 20–33 holotypus inv. 31).
Table 6. Centaureo napifoliae-Glebionetum coronariae ass. nova (inv. 1–19 holotypus inv. 16). Centaureo napifoliae-Glebionetum coronariae calenduletosum fulgidae subass. nova (inv. 20–33 holotypus inv. 31).
N° inventory123456789101112131415161718192021222324252627282930313233
N° cluster111213141516182022252933343536373841433940172123242630313242192728
Surface m2151515101520252015201020201015101015151210152025122012122015151512
Coverage (%)10010085851009090901009585100100959095951009010095959580951009010090100809090
Altitude (m)41035851770177502744356101408385854043396349247142100115327323193151315210217534
Orientation..SW..............S........SEE..SW..
Inclination (%)..3..............15........2010..10..
Average hight veg (dm)718107912101018108131014141310813861515815168121091288
Characteristics association and upper units
Glebionis coronaria (L.) Cass. ex Spach55445544441+55+545445544451115414
Glebionis discolor (d’Urv.) Cano et al.1+ ++ 123444+ ++ + 21113455++41
Avena barbata Pott ex Link 11+111 +11 1 1 11++11 1
Avena sterilis L. +11111+1 1 1 211222+1+11 2122+1
Beta vulgaris L. 2 1 1 + 121 +1+1++1 1 112
Borago officinalis L.+ + 1+ +1 2++1 + 1+1 +++
Bromus madritensis L. + ++1 11++ 1 2111+ 11 112+1
Bromus sterilis L.+1 +1+ 1+++1 11 +1 +1+11
Galactites elegans (All.) Nyman ex Soldano +12+11112111 111 22 2122111 21111
Lavatera cretica L.221+221 11111 1+++ 1 111111+ +1
Sonchus oleraceus L.+1+++1+1++1 1+ +1++11++ ++11111
Lotus ornithopodioides L.+ + 11 1 2 1+ 1111+111 11
Oxalis pes-caprae L.+11+11 31 1+11 11 1+1 + 12 +
Erodium malacoides (L.) L’Hér.21 1++1 2 211 +++ 11+ 1
Melilotus sulcatus Desf. +1+1++ + + + ++1 1
Mercurialis annua L.+++11+ +11 21+ + +1 + 1+1
Anagallis foemina Miller1 + + + 1+ + ++
Brassica fruticulosa Cirillo1 +111 1 1 1 1 11 +
Sulla coronaria (L.) Medik.+++ ++2 + + 1 1+ + +
Anagallis arvensis L.+ 1+ + + + + +
Hordeum murinum L. subsp. leporinum (Link) Arcangeli + + 1++ 2 + +++
Chenopodium murale L.2+ 1 +
Solanum nigrum L.++ + +
Euphorbia helioscopia L. ++ + + + ++ ++1 +
Dasypyrum villosum (L.) P. Candargy 1 1++ 1+ + 11
Medicago polymorpha L. 1+ + + 11 + + 11 1 11
Galium aparine L. + + + 1 + ++++
Papaver rhoeas L. 1 +1 + ++ 1 +++
Urospermum picroides (L.) Schmidt + 1 1 ++ + + +1+
Vicia sativa L. + +++ + + + + + 1 + +
Sinapis arvensis L. 1 ++ + + + 2 + 1
Stipa capensis Thunb. 1+ + + + + +
Bromus hordeaceus L. ++ + + + + 1
Fumaria capreolata L. + + + +
Trifolium nigrescens Viv. ++ ++ + ++
Geranium molle L. + + 1 1
Calendula arvensis L. + ++1++2 +1
Melilotus indicus (L.) All.1 2 + +
Medicago truncatula Gaertn. +2 + 1
Sisymbrium officinale (L.) Scop.+ + +
Malva parviflora L. 2+1 1 2 + +
Stellaria media (L.) Vill. + + +
Hirschfeldia incana (L.) Lagr.-Foss. 1 +1 2 1
Capsella bursa-pastoris (L.) Medik. ++
Centaurea napifolia L. + ++ ++ 2
Diplotaxis erucoides (L.) DC. subsp. erucoides + +11+ +
Plantago lagopus L. ++ + ++
Echium plantagineum L. 1+ + 21+ +
Silene gallica L. + + + + +
Reseda alba L. + + + +
Lathyrus clymenum L. + +
Trifolium campestre Schreber+ +
Medicago orbicularis (L.) Bartal.+
Lophochloa cristata (L.) Hill 1 1 +
Sonchus asper (L.) Hill + + +
Lolium rigidum Gaudin + +1
Urtica membranacea Poir. ex Savigny + +
Misopates orontium (L.) Rafin. +
Papaver dubium L. +
Euphorbia terracina L. + +
Fumaria parviflora Lam. +
Chenopodium album L. +
Plantago lanceolata L. +
Ridolfia segetum (L.) Moris 1 + ++
Sinapis alba L. + +2 1+
Gladiolus italicus Mill. + + + 1
Erodium cicutarium (L.) L’Hér. + +
Vicia narbonensis L. + +
Anacyclus tomentosus (All.) DC. + 1
Centaurea solstitialis L. + 1
Rumex conglomeratus Murray +
Tragopogon porrifolius L. +
Raphanus raphanistrum L. + 1
Lactuca serriola L. +
Medicago scutellata (L.) Mill. +
Reichardia picroides (L.) Roth + + +
Sherardia arvensis L. + 1+ + 1 +
Scolymus grandiflorus Desf. ++ +
Vulpia myuros (L.) C.C.Gmel. + +
Brassica nigra (L.) W.D.J.Koch 1
Silene vulgaris (Moench) Garcke subsp. tenoreana (Colla) Soldano & F.Conti +
Hypochaeris radicata L. +
Linum decumbens Desf. +
Valerianella discoidea (L.) Loisel. +
Coleostephus myconis (L.) Cass. ex Rchb. f. +
Lathyrus aphaca L. + +
Hypochaeris achyrophorus L. + 1
Senecio leucanthemifolius Poir. + +
Erodium botrys (Cav.) Bertol. + 1
Anacyclus clavatus (Desf.) Pers. +
Melilotus elegans Salzm. ex Ser. 1
Sisymbrium orientale L. +
Calendula fulgida x arvensis ++++1+1222 22
Calendula suffruticosa Vahl subsp. fulgida (Raf.) Guadagno +111
Fedia graciliflora Fisch. & C.A. Mey. + +
Galium verrucosum Huds. subsp. verrucosum +
Isatis tinctoria L. + +
Eruca vesicaria (L.) Cav. +
Lotus edulis L. +
Hedypnois rhagadioloides (L.) F.W. Schmidt +
Silene fuscata Brot. +
Chrysanthemum segetum L. +
Bromus tectorum L. +
Hyoscyamus albus L. +
Companion species
Carduus pycnocephalus L. 11 +2+1+ 21 + 1 1+ 1
Convolvulus althaeoides L.++1+11 + + + +1++
Cynodon dactylon (L.) Pers. +1 + ++ 1 +++
Foeniculum vulgare Miller subsp. piperitum (Ucria) Coutinho + + ++ +++++ + 1 + +
Ricinus communis L.++ ++ + + +
Piptatherum miliaceum (L.) Coss. subsp. miliaceum+++ + ++ + +
Plantago afra L. + + + + 1
Ecballium elaterium (L.) A. Rich. + + 1 +
Emex spinosa (L.) Campd. +
Eryngium campestre L. ++
Ferula communis L. + +
Foeniculum vulgare Miller 1 +
Lavatera arborea L.1 +
Matthiola tricuspidata (L.) R. Br.+
Notobasis syriaca (L.) Cass. + + 1
Phalaris brachystachys Link 1
Phalaris paradoxa L. + + +
Piptatherum miliaceum (L.) Coss. subsp. thomasii (Duby) Freitag 1
Silybum marianum (L.) Gaertner + +
Smyrnium olusatrum L. +
Theligonum cynocrambe L. +
Tordylium apulum L. 1+ ++
Acanthus mollis L. +
Ammi visnaga (L.) Lam. +
Asparagus albus L. +
Asphodeliine lutea (L.) Rchb. +
Brachypodium distachyum (L.) Beauv. + + +
Carthamus lanatus L.1
Convolvulus arvensis L. +
Cynara cardunculus L. +
Daucus carota L. subsp. maximus (Desf.) Ball + +
Table 7. Astragalo drupacei-Glebionetum coronariae ass. nova (holotypus inv. 2).
Table 7. Astragalo drupacei-Glebionetum coronariae ass. nova (holotypus inv. 2).
N° Inventory104105106107108109110111112
N° Cluster
Coverage (%)859590959090909090
Surface (m2)444444444
Altitude (m)252025202020100100100
OrientarionSSWSE.....
Inclination (%)682020.....
Average hight veg (cm)6075906070808080150
Characteristics association and upper units
Glebionis coronaria (L.) Cass. ex Spach451155555
Hordeum murinum L. subsp. leporinum (Link) Arcangeli211222121
Malva parviflora L.222222213
Astragalus drupaceus Orphan. ex Boiss.1111+ 111
Sinapis alba L. subsp. dissecta (Lag.) Bonnier12+ 1112
Avena barbata Pott ex Link21 22+21
Bromus diandrus Roth s.l.112122 2
Lavatera arborea L. 1232222
Sonchus oleraceus L.1++11 1+
Reseda alba L. subsp. alba21 111
Urtica urens L. 1+ 11 2
Papaver rhoeas L.++ +1
Glebionis discolor (d’Urv.) Cano et al.2145
Plantago lagopus L.22 2
Sisymbrium polyceratium L. 22 2
Echium plantagineum L. 111
Erodium moschatum (L.) L’Hér. +1
Eruca vesicaria (L.) Cav.1+
Euphorbia peplus L.++
Urtica pilulifera L. 1 2
Anagallis arvensis L. + +
Hyoscyamus albus L. 2+
Lolium temulentum L. + +
Leontodon hispidus L. +1
Sisymbrium irio L.++
Rapistrum rugosum (L.) All. 11
Urospermum dalechampii (L.) F.W. Schmidt++
Rumex conglomeratus Murray 11
Stipa capensis Thunb.11
Cynosurus echinatus L.+
Diplotaxis viminea (L.) DC. +
Diptychocarpus strictus Trautv. 1
Echium arenarium Guss. +
Erodium maritimum (L.) L’Hér.+
Fumaria capreolata L. +
Galium tricornutum Dandy 1
Hedypnois cretica (L.) Willd. +
Lagurus ovatus L.+
Lepidium hirtum (L.) Sm.+
Anacyclus clavatus (Desf.) Pers. 1
Anthemis orientalis (L.) Degen 1
Beta vulgaris L. subsp maritima (L.) Arcang. 1
Bromus hordeaceus L. 1
Calendula arvensis L. 1
Cerinthe minor L. +
Papaver dubium L. +
Trifolium cherleri L. +
Urtica membranacea Poir. ex Savigny+
Vicia narbonensis L. +
Sherardia arvensis L. +
Sonchus tenerrimus L. 1
Stellaria media (L.) Vill. +
Companion species
Oxalis pes-caprae L.222212+
Mercurialis annua L.11 ++ 1
Rubia peregrina L. + + +++
Ricinus communis L. 1+++
Silybum marianum (L.) Gaertner +1 1
Atriplex halimus L. 1+
Brachypodium distachyon (L.) Beauv.11
Plantago coronopus L. 1+
Asphodelus fistulosus L. 2
Atriplex glauca L. +
Carduus pycnocephalus L. 2
Carduus tenuiflorus Curtis+
Convolvulus arvensis L. 1
Nicotiana glauca Graham +
Tordylium apulum L. +
Table 8. Location and coordinates of the sampling points of the plant communities studied. The coordinates of the inventories of Portugual have not been included in this table because they have already been published previously in [10].
Table 8. Location and coordinates of the sampling points of the plant communities studied. The coordinates of the inventories of Portugual have not been included in this table because they have already been published previously in [10].
AssociationN° InventoryN° ClusterLocationLatitudeLongitudeAssociationN° InventoryN° ClusterLocationLatitudeLongitude
AvG1AvG1Los Gallardos. A 1.7 Km37.1568−1.9503CnG111Torrente Fiumarella (Reggio Calabria, Italy)38.022315.6433
AvG2AvG2Cuevas de Almanzora37.285−1.8902CnG212Torrente Fiumarella (Reggio Calabria, Italy)37.981915.6594
AvG3AvG3Peñas Negras37.0518−2.0417CnG313Capo dell’Armi (Reggio Calabria, Italy)37.953715.6847
AvG4AvG4Cuevas de Almanzora37.2888−1.8753CnG414Saline Joniche (Reggio Calabria, Italy)37.954415.7036
AvG5AvG5Cuevas de Almanzora37.2989−1.8665CnG515Sant’Elia (Reggio Calabria, Italy)37.931715.7471
AvG6AvG6Entre los lobos y La Muleria37.3042−1.7958CnG616Sant’Elia (Reggio Calabria, Italy)37.930715.7419
AvG7AvG7Ferroliva37.4133−1.814CnG718C.da Paliga, Melito P.S. (Reggio Calabria, Italy)37.932315.7904
AvG8AvG8Pozo de la Higuera37.4372−1.7424CnG820Melito P.S. (Reggio Calabria, Italy)37.967815.8036
AvG9AvG9Restaurant Cuevas de Pulpí37.367−1.7337CnG922Strada Lacco di Melito P.S. (R. Calabria, Italy)37.966315.803
AvG10AvG10Pozo de la Higuera37.4374−1.7405CnG1025San Carlo (Reggio Calabria, Italy)37.948415.8834
AvG11AvG11Barranco del tomate37.2797−1.9014CnG1129Fiumara dell’Amendolea (R. Calabria, Italy)37.973615.8894
AdG104104Acropolis (Atenas)37.972723.7207CnG1233Catona (Reggio Calabria, Italy)38.19215.6431
AdG105105Acropolis (Atenas)37.984923.7067CnG1334Mota, Marinella di Palmi (R. Calabria, Italy)38.356215.837
AdG106106Thira (Santorini)36.401625.473CnG1435Near Rosarno (Reggio Calabria, Italy)38.474115.9514
AdG107107Oia (Santorini)36.461825.3753CnG1536Marina di Gioiosa (Reggio Calabria, Italy)38.312316.3044
AdG108108Kalamata37.027922.1022CnG1637Exit from Siderno (Reggio Calabria, Italy)38.255816.2831
AdG109109Nafplio37.566422.8196CnG1738Prox. Gerace (Reggio Calabria, Italy)38.267716.2219
AdG110110Epidauro37.699523.1044CnG1841Strada Gerace-Cittanova Paso Zita (Reggio Calabria, Italy)38.290416.1955
AdG111111Micenas37.721622.7436CnG1943Canolo (Reggio Calabria, Italy)38.315416.201
AdG112113Micenas37.716122.7396CnG2039Canolo (Reggio Calabria, Italy)38.319516.2042
CbG1CbG1See coordinates37.7105−4.3025CnG2140Canolo-Agnana (Reggio Calabria, Italy)38.296816.2524
CbG2CbG2See coordinates37.691−4.3051CnG2217Siderno Superiore (Reggio Calabria, Italy)38.289216.2736
CbG3CbG3See coordinates37.6903−4.3048CnG2321Aeropuerto Reggio Calabria (Italy)38.075415.6585
CbG4CbG4See coordinates37.6278−4.1268CnG2423Prox. Siderno Superiore (Reggio Calabria, Italy)38.289216.2736
CbG5CbG5See coordinates38.0361−4.2196CnG2524Strada Catania-Giardini (Sicily, Italy)37.376814.7287
CbG6CbG6See coordinates37.8271−4.0468CnG2626A 14 Km de Gela (Sicily, Italy)37.167114.2851
CbG7CbG7See coordinates37.9283−4.061CnG2730A 14 Km de Gela (Sicily, Italy)37.167114.2851
CbG8CbG8See coordinates37.9285−4.0646CnG2831Monte Gibliscemi (Sicily, Italy)37.210614.2712
CbG9CbG9See coordinates37.9381−4.0662CnG2932Carretera Etna-Catania (Sicily, Italy)37.507314.2284
CbG10CbG10See coordinates37.9423−4.0787CnG3042Capodasa-Estrada 117 a Palermo (Sicily, Italy)37.511114.2174
CbG11CbG11See coordinates37.9905−4.1237CnG3119Carretera Etna-Catania (Sicily, Italy)37.547614.3959
CbG12CbG12See coordinates38.024−4.128CnG3227Estrada Provincial-Etna-Catania (Sicily, Italy)37.56614.4042
CbG13CbG13See coordinates38.0384−4.1142CnG3328Autostrada Catania (Sicily, Italy)37.469114.8726
CbG14CbG14See coordinates38.0314−4.0659KaG1KaG1Equestrian Club Proximities36.7017−4.3875
CbG15CbG15See coordinates38.0356−4.0375KaG2KaG2Proximities Mediterranean Highway/Almendrales Road36.7417−4.4056
CbG16CbG16See coordinates38.0242−3.9499KaG3KaG3Proximities of Casa Pedro and Ana Restaurant 36.7375−4.4042
CbG17CbG17See coordinates37.8719−4.1692KaG4KaG4 Sierra del Coo-Abandoned Garden36.7264−4.4042
CbG18CbG18See coordinates37.8736−4.1688KaG5KaG5Gibralfaro Road. Proximities Mount Victoria35.7264−4.4042
CbG19CbG19See coordinates37.8802−4.1895KaG6KaG6Climb to Gibralfaro36.725−4.4056
CbG20CbG20See coordinates37.9168−4.2078KaG7KaG7Climb to Gibralfaro36.725−4.4056
CbG21CbG21See coordinates37.9266−4.2072KaG8KaG8Proximities Arroyo Toquero36.7361−4.4056
RtG1Rt-G1Rambla prox. Guadalfeo (Lobres, Granada)36.7698−3.5624
RtG2Rt-G2Rambla del Guadalfeo36.7703−3.55
RtG3Rt-G3Prox. Lobres36.7744−3.5706
RtG4Rt-G4Lobres (Estación Eléctrica)36.6476−3.552
RtG5Rt-G5prox. Casa Rosa (Salobreña, Granada)36.7396−3.5893
RtG6Rt-G6Prox. Playa Granada (Motril, Granada)36.7249−3.5256
RtG7Rt-G7Desembocadura del Guadalfeo (Motril)36.5278−3.5771
RtG8Rt-G8Urbanizaciones de Salobreña (Granada)36.7355−3.5857
RtG9Rt-G9Prox. Torrenueva (Granada)36.7129−3.4944
Table 9. Material studied for Italy and Greece.
Table 9. Material studied for Italy and Greece.
Italy-GreeceRel. Cluster
Malvo parviflorae-Chrysanthemetum coronarii (Brullo et al., 2001) [25] Reggio Calabria (Italy)1–10
Own relevés Sicilia and Reggio Calabria (Italy)11–43
Malvo parviflorae-Chrysanthemetum coronarii (Ferro, 1980, table 13) [27]44–62
Lavatero creticae-Chrysanthemetum coronarii (Ferro, 2004, table 5) [28]63–72
Hordeo-Centauretum macracanthae (Brullo, 1983, table 10) [26]73–77
Chrysanthemo-Silybetum mariani (Brullo, 1983, table 11) [26]78–82
Malvo parviflorae-Chrysanthemetum coronarii (Brullo, 1983, table 1) [26]83–92
Own relevés (Cano) (Greece)93–101
Table 10. Variables used in the statistical analysis.
Table 10. Variables used in the statistical analysis.
VariableMinMaxMeanStand. Dev.KMO
N0.983.301.450.340.94
Ios40.020.160.080.020.80
Ios30.091.210.520.220.79
PREC_TOTAL257.35870.65553.23173.970.78
Tp1210.3320481529.08230.450.78
pH_CaCl5.587.637.000.460.78
Io1.826.203.600.940.76
Ios20.061.090.370.280.76
pH_H2O6.168.307.630.480.73
Coar_Frag.8.3026.8414.253.810.73
PE591.14825.48666.1561.190.72
CaCO331.28507.86217.0194.770.72
Bulk_Dens0.851.471.210.140.70
IH−59.5337.94−17.6322.420.68
PEs94.87132.23104.649.780.68
Iar0.722.471.320.430.68
Ioe0.401.380.820.220.68
AWC0.070.140.110.010.67
CN8.7715.5911.611.440.65
K153.31612.03337.32100.650.60
Sand10.8564.4530.108.830.58
Clay11.9850.4429.715.930.58
Itc296.67451.67376.4839.310.55
Ic12.8316.5714.581.020.54
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

Share and Cite

MDPI and ACS Style

Cano, E.; Cano-Ortiz, A.; Quinto Canas, R.; Piñar Fuentes, J.C.; Rodrigues Meireles, C.; Raposo, M.; Pinto Gomes, C.; Laface, V.L.A.; Spampinato, G.; Musarella, C.M. Ecological and Syntaxonomic Analysis of the Communities of Glebionis coronaria and G. discolor (Malvion neglectae) in the European Mediterranean Area. Plants 2024, 13, 568. https://doi.org/10.3390/plants13050568

AMA Style

Cano E, Cano-Ortiz A, Quinto Canas R, Piñar Fuentes JC, Rodrigues Meireles C, Raposo M, Pinto Gomes C, Laface VLA, Spampinato G, Musarella CM. Ecological and Syntaxonomic Analysis of the Communities of Glebionis coronaria and G. discolor (Malvion neglectae) in the European Mediterranean Area. Plants. 2024; 13(5):568. https://doi.org/10.3390/plants13050568

Chicago/Turabian Style

Cano, Eusebio, Ana Cano-Ortiz, Ricardo Quinto Canas, Jose Carlos Piñar Fuentes, Catarina Rodrigues Meireles, Mauro Raposo, Carlos Pinto Gomes, Valentina Lucia Astrid Laface, Giovanni Spampinato, and Carmelo Maria Musarella. 2024. "Ecological and Syntaxonomic Analysis of the Communities of Glebionis coronaria and G. discolor (Malvion neglectae) in the European Mediterranean Area" Plants 13, no. 5: 568. https://doi.org/10.3390/plants13050568

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop