Next Issue
Previous Issue

Table of Contents

Technologies, Volume 2, Issue 1 (March 2014), Pages 1-53

  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Readerexternal link to open them.
View options order results:
result details:
Displaying articles 1-2
Export citation of selected articles as:

Research

Jump to: Review

Open AccessArticle Analysis of North American Newspaper Coverage of Bionics Using the Disability Studies Framework
Technologies 2014, 2(1), 1-30; doi:10.3390/technologies2010001
Received: 6 December 2013 / Revised: 14 January 2014 / Accepted: 22 January 2014 / Published: 6 February 2014
Cited by 1 | PDF Full-text (371 KB) | HTML Full-text | XML Full-text
Abstract
Bionics are a set of technology products that are constantly evolving. Bionics are proposed as body add-ons or replacement for many body parts (ears, eyes, knees, neural prostheses, joints, muscles, kidney, liver, cartilage lungs, discs, pancreas, dental pulp, skin, hippocampus, legs and hands),
[...] Read more.
Bionics are a set of technology products that are constantly evolving. Bionics are proposed as body add-ons or replacement for many body parts (ears, eyes, knees, neural prostheses, joints, muscles, kidney, liver, cartilage lungs, discs, pancreas, dental pulp, skin, hippocampus, legs and hands), and functions such as speech. Two main applications of bionic products are discussed; one being for the restoration of body abilities to a species-typical norm and the other being the addition of abilities to the body that are not species-typical. Disabled people are one main group perceived to be in need of therapeutic interventions that use various bionic products. So far, therapeutic interventions are about restoration to the species-typical norm. However, therapeutic bionic products increasingly give the wearer beyond normal body abilities (therapeutic enhancements). Many so-called non-disabled people want the same enhanced body-abilities especially through non-invasive bionic products (e.g., non-invasive brain machine interfaces, exoskeletons). The media has the ability to shape public perceptions with numerous consequences. The purpose of this study was to provide quantitative and qualitative data on how bionic technologies and its users are portrayed in North American newspapers. Data was obtained from 1977 to 2013 from the Canadian Newsstand complete database which covers over 300 English language Canadian newspapers and two Canadian newspapers, one with national focus (The Globe and Mail) and one with local focus (Calgary Herald), and from 1980–2013 from one American newspaper with national reach (The New York Times). The study found (a) an almost always positive portrayal of bionics; (b) coverage of bionics mostly within a medical framework; (c) a predominantly stereotypical and negative portrayal of individuals with disabilities; and (d) a hierarchy of worthiness between different assistive devices such as a reporting bias favoring artificial legs over wheelchairs. At the same time the study did not find any engagement with social and ethical issues that are already raised about bionics in the literature, such as the increasing desire for enhancements, the use of bionics for non-therapeutic purposes and the issues socially disadvantaged people might face in the wake of bionic advancements. We posit that the newspapers generate a bionic discourse culture that is problematic for disabled people and other socially disadvantaged groups and that they do not prepare readers for the challenges that bionic advancements will pose for the general population in the future. Full article

Review

Jump to: Research

Open AccessReview Local Control of Audio Environment: A Review of Methods and Applications
Technologies 2014, 2(1), 31-53; doi:10.3390/technologies2010031
Received: 22 December 2013 / Revised: 16 January 2014 / Accepted: 22 January 2014 / Published: 10 February 2014
Cited by 1 | PDF Full-text (1012 KB) | HTML Full-text | XML Full-text
Abstract
The concept of a local audio environment is to have sound playback locally restricted such that, ideally, adjacent regions of an indoor or outdoor space could exhibit their own individual audio content without interfering with each other. This would enable people to listen
[...] Read more.
The concept of a local audio environment is to have sound playback locally restricted such that, ideally, adjacent regions of an indoor or outdoor space could exhibit their own individual audio content without interfering with each other. This would enable people to listen to their content of choice without disturbing others next to them, yet, without any headphones to block conversation. In practice, perfect sound containment in free air cannot be attained, but a local audio environment can still be satisfactorily approximated using directional speakers. Directional speakers may be based on regular audible frequencies or they may employ modulated ultrasound. Planar, parabolic, and array form factors are commonly used. The directivity of a speaker improves as its surface area and sound frequency increases, making these the main design factors for directional audio systems. Even directional speakers radiate some sound outside the main beam, and sound can also reflect from objects. Therefore, directional speaker systems perform best when there is enough ambient noise to mask the leaking sound. Possible areas of application for local audio include information and advertisement audio feed in commercial facilities, guiding and narration in museums and exhibitions, office space personalization, control room messaging, rehabilitation environments, and entertainment audio systems. Full article
Figures

Journal Contact

MDPI AG
Technologies Editorial Office
St. Alban-Anlage 66, 4052 Basel, Switzerland
technologies@mdpi.com
Tel. +41 61 683 77 34
Fax: +41 61 302 89 18
Editorial Board
Contact Details Submit to Technologies
Back to Top