Identification of Abiotic Stress Protein Biomarkers by Proteomic Screening of Crop Cultivar Diversity
Abstract
:1. Introduction
2. Differential Proteomics to Identify Genotype Differences in Abiotic Stress Tolerance in Crops
2.1. Corn
2.1.1. Water Deficit, Dehydration and Drought
2.1.2. UV-Irradiation
2.2. Wheat
2.2.1. Drought
2.2.2. Salinity
2.2.3. Salinity, Drought, Heat, or Cold
2.3. Rice
2.3.1. Drought
2.3.2. Salinity
2.3.3. Nitrogen Deficiency
2.4. Soybean
2.4.1. Aluminium
2.4.2. UV-Irradiation
2.4.3. Salt
2.5. Barley
2.5.1. Drought
2.5.2. Drought and Heat
2.5.3. Salinity
2.5.4. Boron
2.6. Brassica
Low Phosphate
2.7. Sugar Beet
Drought
2.8. Peanut
Drought
2.9. Sugarcane
Drought
2.10. Strawberry
Cold
2.11. Tomato
Salinity
2.12. Chickpea
Drought
2.13. Grape
Drought and salinity
2.14. Banana
Drought
3. Common Stress Responses
4. Quantitative Approaches, Phenotyping and Technical Constraints
5. Conclusion
Acknowledgments
Conflicts of Interest
References
- Paton, A.J.; Brumitt, N.; Govaerts, R.; Harman, K.; Hinchcliffe, S.; Allkin, B.; Lughadha, E.N. Towards target 1 of the global strategy for plant conservation: A working list of all known plant species-progress and prospects. Taxon 2008, 57, 602–611. [Google Scholar]
- Prescott-Allen, R.; Prescott-Allen, C. How many plants feed the world. Conserv. Biol. 1990, 4, 365–374. [Google Scholar] [CrossRef]
- Esquinas-Alcázar, J. Protecting crop genetic diversity for food security: political, ethical and technical challenges. Nat. Rev. Genet. 2005, 6, 946–953. [Google Scholar] [CrossRef] [PubMed]
- McCouch, S. Feeding the future. Nature 2013, 499, 23–24. [Google Scholar] [CrossRef] [PubMed]
- Zamir, D. Improving plant breeding with exotic genetic libraries. Nat. Rev. Genet. 2001, 2, 983–989. [Google Scholar] [CrossRef] [PubMed]
- Martynov, S.P.; Dobrotvorskaya, T.V. Genealogical analysis of diversity of Russian winter wheat cultivars (Triticum aestivum L.). Genet. Resour. Crop Evol. 2006, 53, 379–386. [Google Scholar] [CrossRef]
- Sutton, T. Functional genomics and abiotic stress tolerance in cereals. In Adapting Agriculture to Climate Change: National Agricultural Biotechnology Council Report 21; Eaglesham, A., Hardy, R.W.F., Eds.; National Agricultural Biotechnology Council: Ithaca, NY, USA, 2009; pp. 57–64. [Google Scholar]
- Lobell, D.B.; Gourdji, S.M. The influence of climate change on global crop productivity. Plant Physiol. 2012, 160, 1686–1697. [Google Scholar] [CrossRef] [PubMed]
- Kang, S.; Post, W.M.; Nichols, J.A.; Wang, D.; West, T.O.; Bandaru, V.; Izaurralde, R.C. Marginal lands: Concept, Assessment and Management. J. Agric. Sci. 2013, 5, 129–139. [Google Scholar] [CrossRef]
- Ledford, H. Plant Biologists fear for cress project. Nature 2010, 464, 154. [Google Scholar] [CrossRef] [PubMed]
- Koornneef, M.; Meinke, D. The development of Arabidopsis as a model plant. Plant J. 2010, 61, 909–921. [Google Scholar] [CrossRef] [PubMed]
- Weigel, D. Natural variation in Arabidopsis: From molecular genetics to ecological genomics. Plant Physiol. 2012, 158, 2–22. [Google Scholar] [CrossRef] [PubMed]
- Bolger, M.E.; Weisshaar, B.; Scholz, U.; Stein, N.; Usadel, B.; Mayer, K.F. Plant genome sequencing—Applications for crop improvement. Curr. Opin. Biotech. 2014, 26, 31–37. [Google Scholar] [CrossRef] [PubMed]
- Benešová, M.; Holá, D.; Lukáš, F.; Jedelský, P.L.; Hnilička, F.; Wilhelmová, N.; Rothová, O.; Kočová, M.; Procházková, D.; Honnerová, J.; et al. The physiology and proteomics of drought tolerance in maize: Early stomatal closure as a cause of lower tolerance to short-term dehydration. PLoS ONE 2012, 7, e38017. [Google Scholar] [CrossRef] [PubMed]
- Riccardi, F.; Gazeau, P.; de Vienne, D.; Zivy, M. Protein changes in response to progressive water deficit in maize. Plant Physiol. 1998, 117, 1253–1263. [Google Scholar] [CrossRef] [PubMed]
- Casati, P.; Zhang, X.; Burlingame, A.L.; Walbot, V. Analysis of leaf proteome after UV-B irradiation in maize lines differing in sensitivity. Mol. Cell. Proteom. 2005, 4, 1673–1685. [Google Scholar] [CrossRef] [PubMed]
- Ford, K.L.; Cassin, A.; Bacic, A. Quantitative proteomic analysis of wheat cultivars with differing drought stress tolerance. Front. Plant Sci. 2011, 2, 44. [Google Scholar] [CrossRef] [PubMed]
- Alvarez, S.; Choudhury, S.R.; Pandey, S. Comparative quantitative proteomics analysis of the aba response of roots of drought-sensitive and drought-tolerant wheat varieties identifies proteomic signatures of drought adaptability. J. Proteome Res. 2014, 13, 1688–1701. [Google Scholar] [CrossRef] [PubMed]
- Hao, P.; Zhu, J.; Gu, A.; Lv, D.; Ge, P.; Chen, X.L.; Yan, Y. An integrative proteome analysis of different seedling organs in tolerant and sensitive wheat cultivars under drought stress and recovery. Proteomics 2015, 15, 1544–1563. [Google Scholar] [CrossRef] [PubMed]
- Jacoby, R.P.; Millar, A.H.; Taylor, N.L. Investigating the role of respiration in plant salinity tolerance by analysing mitochondrial proteomes from wheat and a salinity tolerant amphiploid (Wheat × Lophopyrum elongatum). J. Proteome Res. 2013, 12, 4807–4829. [Google Scholar] [CrossRef] [PubMed]
- Kamal, A.H.M.; Kim, K.-H.; Shin, K.-H.; Choi, J.-S.; Baik, B.-K.; Hisashi, T.; Heo, H.Y.; Park, C.S.; Woo, S.H. Abiotic stress responsive proteins of wheat grain determined using proteomics technique. Aust. J. Crop Sci. 2010, 4, 196–208. [Google Scholar]
- Peng, Z.; Wang, M.; Li, F.; Lv, H.; Li, C.; Xia, G. A proteomic study of the response of salinity and drought in an introgression strain of bread wheat. Mol. Cell Proteom. 2009, 8, 2676–2686. [Google Scholar] [CrossRef] [PubMed]
- Ji, K.; Wang, Y.; Sun, W.; Lou, Q.; Mei, H.; Shen, S.; Chen, H. Drought-responsive mechanisms in rice genotypes with contrasting drought tolerance during reproductive stage. J. Plant Physiol. 2012, 169, 336–344. [Google Scholar] [CrossRef] [PubMed]
- Salekdeh, G.H.; Siopongco, J.; Wade, L.J.; Ghareyazie, B.; Bennett, J. A proteomic approach to analysing drought- and salt-responsiveness in rice. Field Crops Res. 2002, 76, 19–219. [Google Scholar] [CrossRef]
- Maksup, S.; Roytrakul, S.; Supaibulwatana, K. Physiological and comparative proteomic analyses of Thai jasmine rice and two check cultivars in response to drought stress. J. Plant Interact. 2014, 9, 43–55. [Google Scholar] [CrossRef]
- Song, C.; Zeng, F.; Feibo, W.; Ma, W.; Zhang, G. Proteomic analysis of nitrogen stress-responsive proteins in two rice cultivars differing in N utilization efficiency. J. Integr. OMICS 2011, 1, 78–87. [Google Scholar]
- Duressa, D.; Soliman, K.; Taylor, R.; Senwo, Z. Proteomic analysis of soybean roots under aluminium stress. Int. J. Plant Genom. 2011, 2011, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Xu, C.; Sullivan, J.H.; Garrett, W.M.; Caperna, T.J.; Natarajan, S. Impact of solar ultraviolet-B on the proteome in soybean lines differing in flavonoid contents. Phytochemistry 2008, 69, 38–48. [Google Scholar] [CrossRef] [PubMed]
- Ma, H.; Song, L.; Huang, Z.; Shu, Y.; Wang, S.; Wang, Z.; Tong, J.; Gu, W.; Ma, H.; Xiao, L. Comparative proteomic analysis of seedling leaves of different tolerant soybean genotypes. J. Proteom. 2012, 75, 1529–1546. [Google Scholar] [CrossRef] [PubMed]
- Witzel, K.; Weidner, A.; Surabhi, G.-K.; Börner, A.; Mock, H.-P. Salt stress-induced alternations in the root proteome of barley genotypes with contrasting response towards salinity. J. Exp. Bot. 2009, 60, 3545–3557. [Google Scholar] [CrossRef] [PubMed]
- Witzel, K.; Matros, A.; Strickert, M.; Kaspar, S.; Peukert, M.; Mühling, K.H.; Börner, A.; Mock, H.-P. Salinity stress in roots of contrasting barley genotypes reveals time-distinct and genotype-specific patterns for defined proteins. Mol. Plant 2014, 7, 336–355. [Google Scholar] [CrossRef] [PubMed]
- Rasoulnia, A.; Bihamta, M.R.; Peyghambari, S.A.; Alizadeh, H.; Rahnama, A. Proteomic response of barley leaves to salinity. Mol. Biol. Rep. 2011, 38, 5055–5063. [Google Scholar] [CrossRef] [PubMed]
- Fatehi, F.; Hosseinzadeh, A.; Alizadeh, H.; Brimavandi, T.; Struik, P.C. The proteome response of salt-resistant and salt-sensitive barley genotypes to long-term salinity stress. Mol. Biol. Rep. 2012, 39, 6387–6397. [Google Scholar] [CrossRef] [PubMed]
- Kausar, R.; Arshad, M.; Shahzad, A.; Komatsu, S. Proteomics analysis of sensitive and tolerant barley genotypes under drought stress. Amino Acids 2013, 44, 345–359. [Google Scholar] [CrossRef] [PubMed]
- Rollins, J.A.; Habte, E.; Templer, S.E.; Colby, T.; Schmidt, J.; von Korff, M. Leaf proteome alterations in the context of physiological and morphological responses to drought and heat stress in barley (Hordeum vulgare L.). J. Exp. Bot. 2013, 64, 3201–3212. [Google Scholar] [CrossRef] [PubMed]
- Patterson, J.; Ford, K.; Cassin, A.; Natera, S.; Bacic, A. Increased abundance of proteins involved in phytosiderophore production in boron-tolerant barley. Plant Physiol. 2007, 144, 1612–1631. [Google Scholar] [CrossRef] [PubMed]
- Jedmowski, C.; Ashoub, A.; Beckhaus, T.; Berberich, T.; Karas, M.; Brüggemann, W. Comparative analysis of barley leaf proteome as affected by drought stress. Planta 2013, 237, 771–781. [Google Scholar]
- Yao, Y.; Sun, H.; Xu, F.; Zhang, X.; Liu, S. Comparative proteome analysis of metabolic changes by low phosphorus stress in two Brassica napus genotypes. Planta 2011, 233, 523–537. [Google Scholar] [CrossRef] [PubMed]
- Kottapalli, K.R.; Rakwal, R.; Shibato, J.; Burow, G.; Tissue, D.; Burke, J.; Puppala, N.; Burow, M.; Payton, P. Physiology and proteomics of the water-deficit stress response in three contrasting peanut genotypes. Plant Cell Environ. 2009, 32, 380–407. [Google Scholar] [CrossRef] [PubMed]
- Jangpromma, N.; Kitthaisong, S.; Lomthaisong, K.; Daduang, S.; Jaisil, P.; Thammasirirak, S. A proteomics analysis of drought-responsive proteins as biomarkers for drought-tolerant sugarcane cultivars. Am. J. Biochem. Biotech. 2010, 6, 89–102. [Google Scholar] [CrossRef]
- Koehler, G.; Wilson, R.C.; Goodpaster, J.V.; Sonsteby, A.; Lai, X.; Witzmann, F.A.; You, J.-S.; Rohloff, J.; Randall, S.K.; Alsheikh, M. Proteomic study of low-temperature responses in strawberry cultivars (Fragaria × ananassa) that differ in cold tolerance. Plant Physiol. 2012, 159, 1787–1805. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hajheidari, M.; Abdollahian-Noghabi, M.; Askari, H.; Heidari, M.; Sadeghian, S.Y.; Ober, E.S.; Salekdeh, G.H. Proteome analysis of sugar beet leaves under drought stress. Proteomics 2005, 5, 950–960. [Google Scholar] [CrossRef] [PubMed]
- Manaa, A.; Mimouni, H.; Wasti, S.; Gharbi, E.; Aschi-Smiti, S.; Faurobert, M.; Ahmed, H.B. Comparative proteomic analysis of tomato (Solanum lycopersicum) leaves under salinity stress. Plant Omics J. 2013, 6, 268–277. [Google Scholar]
- Subba, P.; Kumar, R.; Gayali, S.; Shekhar, S.; Parveen, S.; Pandey, A.; Datta, A.; Chakraborty, S.; Chakraborty, N. Characterisation of the nuclear proteome of a dehydration-sensitive cultivar of chickpea and comparative proteomic analysis with a tolerant cultivar. Proteomics 2013, 13, 1973–1992. [Google Scholar] [CrossRef] [PubMed]
- Vincent, D.; Ergül, A.; Bohlman, M.C.; Tattersall, E.A.; Tillett, R.L.; Wheatley, M.D.; Woolsey, R.; Quilici, D.R.; Joets, J.; Schlauch, K.; et al. Proteomic analysis reveals differences between Vitis vinifera L. cv. Chardonnay and cv. Cabernet Sauvignon and their response to water deficit and salinity. J. Exp. Bot. 2007, 58, 1873–1892. [Google Scholar] [CrossRef] [PubMed]
- Vanhove, A.-C.; Vermaelen, W.; Panis, B.; Swennen, R.; Carpentier, S.C. Screening the banana biodiversity for drought tolerance: Can an invitro growth model and proteomics be used as a tool to discover tolerant varieties and understand homeostasis. Front. Plant Sci. 2012, 3, 176. [Google Scholar] [CrossRef] [PubMed]
- Iusem, N.D.; Bartholomew, D.M.; Hitz, W.D.; Scolnik, P.A. Tomato (Lycopersicon esculentum) transcript induced by water deficit and ripening. Plant Physiol. 1993, 102, 1353–1354. [Google Scholar] [CrossRef] [PubMed]
- Riccardi, F.; Gazeau, P.; Jacquemot, M.P.; Vincent, D.; Zivy, M. Deciphering genetic variations of proteome responses to water deficit in maize leaves. Plant Physiol. Biochem. 2004, 42, 1003–1011. [Google Scholar] [CrossRef] [PubMed]
- Hideg, É.; Jansen, M.A.K.; Strid, Å. UV-B exposure, ROS, and stress: Inseparable companions or loosely linked associates? Trends Plant Sci. 2013, 18, 107–115. [Google Scholar] [CrossRef] [PubMed]
- Bauwe, H.; Kolukisaoglu, Ű. Genetic manipulation of glycine decarboxylation. J. Exp. Bot. 2003, 54, 1523–1535. [Google Scholar] [CrossRef] [PubMed]
- Sutton, T.; Baumann, U.; Hayes, J.; Collins, N.C.; Shi, B.-J.; Schnurbusch, T.; Hay, A.; Mayo, G.; Pallotta, M.; Tester, M.; et al. Boron-toxicity tolerance in barley arising from efflux transporter amplification. Science 2007, 318, 1446–1449. [Google Scholar] [CrossRef] [PubMed]
- Schnurbusch, T. Boron toxicity tolerance in barley through reduced expression of the multifunctional aquaporin HvNIP2;1. Plant Physiol. 2010, 153, 1706–1715. [Google Scholar] [CrossRef] [PubMed]
- Negishi, T.; Nakanishi, H.; Yazaki, J.; Kishimoto, N.; Fujii, F.; Shimbo, K.; Yamamoto, K.; Sakata, K.; Sasaki, T.; Kikuchi, S.; et al. cDNA microarray analysis of gene expression during Fe-deficiency stress in barley suggests that polar transport of vesicles is implicated in phytosiderophore secretion in Fe-deficient barley roots. Plant J. 2002, 30, 83–94. [Google Scholar] [CrossRef] [PubMed]
- Vanhove, A.-C.; Vermaelen, W.; Swennen, R.; Carpentier, S.C. A look behind the scenes: Characterization of the HSP70 family during osmotic stress in a non-model crop. Proteomics 2015, 119, 10–20. [Google Scholar] [CrossRef] [PubMed]
- Suzuki, N.; Koussevitzky, S.; Mittler, R.; Miller, G. ROS and redox signalling in the response of plants to abiotic stress. Plant Cell Environ. 2012, 35, 259–270. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Vincour, B.; Shoseyov, O.; Altman, A. Role of plant heat shock proteins and molecular chaperones in the abiotic stress response. Trends Plant Sci. 2004, 9, 245–252. [Google Scholar] [CrossRef] [PubMed]
- Park, C.-J.; Seo, Y.-S. Heat shock proteins: a review of the molecular chaperones for plant immunity. Plant Pathol. J. 2015, 31, 323–333. [Google Scholar] [CrossRef] [PubMed]
- Popelkova, H.; Yocum, C.F. PsbO, the manganese-stabilizing protein: Analysis of the structure-function relations that provide insights into its role in photosystem II. J. Photochem. Photobiol. B: Biol. 2011, 104, 179–190. [Google Scholar] [CrossRef] [PubMed]
- Sugihara, K.; Hanagata, N.; Dubinsky, Z.; Baba, S.; Karube, I. Molecular characterization of cDNA encoding oxygen evolving enhancer protein 1 increased by salt treatment in the mangrove Bruguiera gymnorrhiza. Plant Cell Physiol. 2000, 41, 1279–1285. [Google Scholar] [CrossRef] [PubMed]
- Rabilloud, T.; Lelong, C. Two-dimensional gel electrophoresis in proteomics: A tutorial. J. Proteom. 2011, 74, 1829–1841. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dephoure, N.; Gygi, S.P. Hyperplexing: A method for higher-order multiplexed quantitative proteomics provides a map of the dynamic response to rapamycin in yeast. Sci. Signal. 2012, 5, rs2. [Google Scholar] [CrossRef] [PubMed]
- Zivy, M.; Wienkoop, S.; Renaut, J.; Pinheiro, C.; Goulas, E.; Carpentier, S. The quest for tolerant varieties: The importance of integrating “omics” techniques to phenotyping. Front. Plant Sci. 2015, 6, 448. [Google Scholar] [CrossRef] [PubMed]
- Wu, X.; Gong, F.; Cao, D.; Hu, X.; Wang, W. Advances in crop proteomics: PTMs of proteins under abiotic stress. Proteomics 2016, 16, 847–865. [Google Scholar] [CrossRef] [PubMed]
- Petrak, J.; Ivanek, R.; Toman, O.; Cmejla, R.; Cmejlova, J.; Vyoral, D.; Zivny, J.; Vulpe, C.D. Deja vu in proteomics. A hit parade of repeatedly identified differentially expressed proteins. Proteomics 2008, 8, 1744–1749. [Google Scholar] [CrossRef] [PubMed]
- Wang, P.; Bouwman, F.G.; Mariman, E.C. Generally detected proteins in comparative proteomics—A matter of cellular stress response? Proteomics 2009, 9, 2955–2966. [Google Scholar] [CrossRef] [PubMed]
- Drucker, E.; Krapfenbauer, K. Pitfalls and limitations in translation from biomarker discovery to clinical utility in predictive and personalised medicine. EPMA J. 2013, 4, 7. [Google Scholar] [CrossRef] [PubMed]
- Levin, Y. The role of statistical power analysis in quantitative proteomics. Proteomics 2011, 11, 2565–2567. [Google Scholar] [CrossRef] [PubMed]
- Ghanem, M.E.; Marrou, H.; Sinclair, T.R. Physiological phenotyping of plants for crop improvement. Trends Plant Sci. 2015, 20, 139–144. [Google Scholar] [CrossRef] [PubMed]
Crop | Stress | Genotypes | Plant Age | Stress Duration | Plant Tissue | Quant. Method a | # Biol. Reps. b | Protein Extraction | Val. c | Ref. |
---|---|---|---|---|---|---|---|---|---|---|
Corn | Drought–dehydration | CE704–tolerant, 2023–resistant | 40 days | 6 days | Leaves | iTRAQ/2DGE | NS/3 | total protein | No | [14] |
Drought–water deficit | Lc–sensitive, Io–tolerant | 3 weeks old | 4, 6, 8, 10, 12, 14 days | Leaves | 2DGE | 3 or 5 | total protein | No | [15] | |
UV-B irradiation | W23–sensitive, Cacahuacintle-tolerant, Confite Puneño–tolerant | 28 days | 21 days | Leaves | DIGE | 3 | total protein | Yes | [16] | |
Wheat | Drought | Excalibur-tolerant, RAC875-tolerant, Kukri-sensitive | adult plants unknown age | cyclic | Leaves | iTRAQ | 1 | total protein | No | [17] |
ABA | Nesser–tolerant, Opata–sensitive | 10 day old seedlings | 6 h | Roots | iTRAQ | 3 | total protein | Yes | [18] | |
Drought | Hanxuan10–tolerant, Chinese Spring–sensitive | seedlings | 48 h | roots, leaves and sections including leaf sheath and stem | 2DGE | 3 | total protein | No | [19] | |
Salt 200 mM | CS–sensitive, AMP–tolerant | 7 weeks | 7 weeks | Shoots/Roots | DIGE | 3 | mitochondria | No | [20] | |
Drought, heat, salt, cold | China-108, Yennon-78, Norin-61, Kantou-107 | 4 months | N.S. | Seeds | 2DGE | 1 | total protein | No | [21] | |
Drought and salt | Shanrong 3–tolerant, Jinan 177–sensitive | seedlings | 24 h | Shoots/Roots | 2DGE | 3 | total protein | No | [22] | |
Rice | Drought | Zhenshan97B–susceptible, IRAT109–tolerant | 50 days | 20 days | Leaves | 2DGE | NS | total protein | No | [23] |
Drought | IR62266–tolerant, CT9993–sensitive | up to 53 days | various | Leaves | 2DGE | NS | total protein | No | [24] | |
Drought | KDML105–unknown, NSG19–tolerant, IR20–sensitive | 25 days | up to 96 h | Leaves | 1DGE | 3 | total protein | No | [25] | |
Salinity 100 mM | Pokkali–tolerant, IR29–sensitive | 28 days | 14 days | Roots | 2DGE | 3 | total protein | No | [24] | |
Nitrogen deficiency | Chunyou 58–tolerant Yongyou 6–sensitive | 4th leaf | up to 7 days | Leaves | 2DGE | 3 | total protein | No | [26] | |
Soybean | Aluminium | PI416937–tolerant, Young–sensitive | seedlings | up to 72 h | Roots | DIGE | NS | total protein | No | [27] |
UV-B irradiation | Clark–tolerant, Magenta–sensitive | 12 days | 9 days | Seedlings | 2DGE | 5 | total protein | No | [28] | |
Salinity 150 mM | Jackson–sensitive, Lee–tolerant | 21 days | up to 144 h | Leaves | 2DGE | 3 | total protein | No | [29] | |
Barley | Salinity 50–250 mM | Morex–tolerant, Steptoe–sensitive | seedlings | 13 days | Roots | 2DGE IPG 3–10 | 3 | total protein | yes | [30] |
Salinity 100–150 mM | Morex–tolerant, Steptoe–sensitive | seedlings | up to 16 days | Roots | 2DGE IPG 4–7 | 3 | total protein | yes | [31] | |
Salinity 300 mM | Afzal–tolerant, Line 527–sensitive | seedlings | 4 days | Leaves | 2DGE | 3 | total protein | No | [32] | |
Salinity 300 mM | Afzal–tolerant, Line 527–sensitive | 7 weeks | 3 weeks | Leaves | 2DGE | NS | total protein | No | [33] | |
Drought | 004223–tolerant, 004186–sensitive | 6 day old seedlings | 3 days | Shoots | 2DGE | 3 | total protein | No | [34] | |
Drought | Arta–tolerant, Keel–tolerant | 33 days | 7 days | Leaves | DIGE | 3 | total protein | No | [35] | |
Boron | DH +-tolerant, DH-–sensitive | seedlings | 2 weeks | Roots | iTRAQ | 2 | soluble protein | No | [36] | |
Drought | 15141–tolerant, 15163–sensitive | Seedlings–unknown age | 7 days | Leaves | DIGE | 3 | total protein | No | [37] | |
Brassica | Low phosphorus | 102–tolerant, 105–sensitive | 41 days | 26 days | Leaves/Roots | 2DGE | 3 | total protein | No | [38] |
Peanut | Drought–water deficit | COC041-tolerant, COC166-sensitive | 74 days | 7 days | Leaves | 2DGE | 3 | total protein | Yes | [39] |
Sugar cane | Drought | K86-161-tolerant, KhonKhan-sensitive | 15 weeks | 21 days | Leaves | 2DGE | NS | total protein | Yes | [40] |
Strawberry | Cold | Frida-sensitive, Jonsok-tolerant | 8 weeks + hardening 2–48 days | 48 h | Crowns | 2DGE and LFQP | 3 | total protein | No | [41] |
Sugar beet | Drought | 7112 7219 | 157 days | N.S. | Leaves | 2DGE | 10 | total protein | No | [42] |
Tomato | Salinity 100 mM | Roma–tolerant, Supermarmande–sensitive | 24 days | 14 days | Leaves | 2DGE | 4 | total protein | No | [43] |
Chickpea | Drought | JG-62–tolerant, ICCV-2–sensitive | 27 days | 1–6 days | Shoots | 2DGE | 2 | nuclei | No | [44] |
Grape | Drought and Salinity (250 mM final) | Chardonnay–tolerant, Cabernet Sauvignon–sensitive | Two-year-old rooted cuttings | up to 16 days | Shoots | 2DGE | 3 | total protein | No | [45] |
Banana | Drought (sorbitol) | Mbwazirume Williams Popoulou Obino L’Ewai Cachaco | 4 week old explants | 48 days | Leaves | DIGE | 6 | total protein | No | [46] |
© 2016 by the author; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Barkla, B.J. Identification of Abiotic Stress Protein Biomarkers by Proteomic Screening of Crop Cultivar Diversity. Proteomes 2016, 4, 26. https://doi.org/10.3390/proteomes4030026
Barkla BJ. Identification of Abiotic Stress Protein Biomarkers by Proteomic Screening of Crop Cultivar Diversity. Proteomes. 2016; 4(3):26. https://doi.org/10.3390/proteomes4030026
Chicago/Turabian StyleBarkla, Bronwyn J. 2016. "Identification of Abiotic Stress Protein Biomarkers by Proteomic Screening of Crop Cultivar Diversity" Proteomes 4, no. 3: 26. https://doi.org/10.3390/proteomes4030026
APA StyleBarkla, B. J. (2016). Identification of Abiotic Stress Protein Biomarkers by Proteomic Screening of Crop Cultivar Diversity. Proteomes, 4(3), 26. https://doi.org/10.3390/proteomes4030026