Next Article in Journal
Mixed Order Fractional Differential Equations
Previous Article in Journal
Dynamics of Amoebiasis Transmission: Stability and Sensitivity Analysis
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Article

Graph Structures in Bipolar Neutrosophic Environment

by
Muhammad Akram
1,*,
Muzzamal Sitara
1 and
Florentin Smarandache
2
1
Department of Mathematics, University of the Punjab, New Campus, Lahore 54590, Pakistan
2
Mathematics & Science Department, University of New Mexico, 705 Gurley Ave., Gallup, NM 87301, USA
*
Author to whom correspondence should be addressed.
Mathematics 2017, 5(4), 60; https://doi.org/10.3390/math5040060
Submission received: 14 September 2017 / Revised: 18 October 2017 / Accepted: 27 October 2017 / Published: 6 November 2017

Abstract

:
A bipolar single-valued neutrosophic (BSVN) graph structure is a generalization of a bipolar fuzzy graph. In this research paper, we present certain concepts of BSVN graph structures. We describe some operations on BSVN graph structures and elaborate on these with examples. Moreover, we investigate some related properties of these operations.

1. Introduction

Fuzzy graphs are mathematical models for dealing with combinatorial problems in different domains, including operations research, optimization, computer science and engineering. In 1965, Zadeh [1] proposed fuzzy set theory to deal with uncertainty in abundant meticulous real-life phenomena. Fuzzy set theory is affluently applicable in real-time systems consisting of information with different levels of precision. Subsequently, Atanassov [2] introduced the idea of intuitionistic fuzzy sets in 1986. However, for many real-life phenomena, it is necessary to deal with the implicit counter property of a particular event. Zhang [3] initiated the concept of bipolar fuzzy sets in 1994. Evidently bipolar fuzzy sets and intuitionistic fuzzy sets seem to be similar, but they are completely different sets. Bipolar fuzzy sets have large number of applications in image processing and spatial reasoning. Bipolar fuzzy sets are more practical, advantageous and applicable in real-life phenomena. However, both bipolar fuzzy sets and intuitionistic fuzzy sets cope with incomplete information, because they do not consider indeterminate or inconsistent information that clearly appears in many systems of different fields, including belief systems and decision-support systems. Smarandache [4] introduced neutrosophic sets as a generalization of fuzzy sets and intuitionistic fuzzy sets. A neutrosophic set has three constituents: truth membership, indeterminacy membership and falsity membership, for which each membership value is a real standard or non-standard subset of the unit interval [ 0 , 1 + ] . In real-life problems, neutrosophic sets can be applied more appropriately by using the single-valued neutrosophic sets defined by Smarandache [4] and Wang et al. [5]. Deli et al. [6] considered bipolar neutrosophic sets as a generalization of bipolar fuzzy sets. They also studied some operations and applications in decision-making problems.
On the basis of Zadeh’s fuzzy relations [7], Kauffman defined fuzzy graphs [8]. In 1975, Rosenfeld [9] discussed a fuzzy analogue of different graph-theoretic ideas. Later on, Bhattacharya [10] gave some remarks on fuzzy graphs in 1987. Akram [11] first introduced the notion of bipolar fuzzy graphs. In 2011, Dinesh and Ramakrishnan [12] studied fuzzy graph structures and discussed their properties. In 2016, Akram and Akmal [13] proposed the concept of bipolar fuzzy graph structures. Certain concepts on graphs have been discussed in [14,15,16,17,18,19]. Ye [20,21,22] considered several applications of single-valued neutrosophic sets. Inthis research paper, we present certain concepts of bipolar single-valued neutrosophic graph structures (BSVNGSs). We introduce some operations on BSVNGSs and elaborate on these with examples. Moreover, we investigate some relevant and remarkable properties of these operators.
We have used standard definitions and terminologies in this paper. For other notations, terminologies and applications not mentioned in the paper, the readers are referred to [23,24,25,26,27,28,29].

2. Bipolar Single-Valued Neutrosophic Graph Structures

Definition 1.
[4] A neutrosophic set N on a non-empty set V is an object of the form
N = { ( v , T N ( v ) , I N ( v ) , F N ( v ) ) : v V }
where T N , I N , F N : V [ 0 , 1 + ] and there is no restriction on the sum of T N ( v ) , I N ( v ) and F N ( v ) for all v V .
Definition 2.
[5] A single-valued neutrosophic set N on a non-empty set V is an object of the form
N = { ( v , T N ( v ) , I N ( v ) , F N ( v ) ) : v V }
where T N , I N , F N : V [ 0 , 1 ] and the sum of T N ( v ) , I N ( v ) and F N ( v ) is confined between 0 and 3 for all v V .
Definition 3.
[23] A BSVN set on a non-empty set V is an object of the form
B = { ( v , T B P ( v ) , I B P ( v ) , F B P ( v ) , T B N ( v ) , I B N ( v ) , F B N ( v ) ) : v V }
where T B P , I B P , F B P : V [ 0 , 1 ] and T B N , I B N , F B N : V [ 1 , 0 ] . The positive values T B P ( v ) , I B P ( v ) and F B P ( v ) denote the truth, indeterminacy and falsity membership values of an element v V , whereas negative values T B N ( v ) , I B N ( v ) and F B N ( v ) indicate the implicit counter property of truth, indeterminacy and falsity membership values of an element v V .
Definition 4.
[23] A BSVN graph on a non-empty set V is a pair G = ( B , R ) , where B is a BSVN set on V and R is a BSVN relation in V such that
T R P ( b , d ) T B P ( b ) T B P ( d ) , I R P ( b , d ) I B P ( b ) I B P ( d ) , F R P ( b , d ) F B P ( b ) F B P ( d ) ,
T R N ( b , d ) T B N ( b ) T B N ( d ) , I R N ( b , d ) I B N ( b ) I B N ( d ) , F R N ( b , d ) F B N ( b ) F B N ( d )
f o r a l l b , d V .
We now define the BSVNGS.
Definition 5.
[30] A BSVNGS of a graph structure G ˇ s = ( V , V 1 , V 2 , , V m ) is denoted by G ˇ b n = ( B , B 1 , B 2 , , B m ) , where B = < b , T P ( b ) , I P ( b ) , F P ( b ) , T N ( b ) , I N ( b ) , F N ( b ) > is a BSVN set on the set V and B k = < ( b , d ) , T k P ( b , d ) , I k P ( b , d ) , F k P ( b , d ) , T k N ( b , d ) , I k N ( b , d ) , F k N ( b , d ) > are the BSVN sets on V k such that
T k P ( b , d ) min { T P ( b ) , T P ( d ) } , I k P ( b , d ) min { I P ( b ) , I P ( d ) } , F k P ( b , d ) max { F P ( b ) , F P ( d ) } ,
T k N ( b , d ) max { T N ( b ) , T N ( d ) } , I k N ( b , d ) max { I N ( b ) , I N ( d ) } , F k N ( b , d ) min { F N ( b ) , F N ( d ) }
for all b , d V . Note that 0 T k P ( b , d ) + I k P ( b , d ) + F k P ( b , d ) 3 , 3 T k N ( b , d ) + I k N ( b , d ) + F k N ( b , d ) 0 for all ( b , d ) V k , and ( b , d ) represents an edge between two vertices b and d. In this paper we use b d in place of ( b , d ) .
Example 1.
Consider a graph structure G ˇ s = ( V , V 1 , V 2 , V 3 ) such that V = { b 1 , b 2 , b 3 , b 4 , b 5 , b 6 , b 7 , b 8 } , V 1 = { b 1 b 2 , b 2 b 7 , b 4 b 8 , b 6 b 8 , b 5 b 6 , b 3 b 4 } , V 2 = { b 1 b 5 , b 5 b 7 , b 3 b 6 , b 7 b 8 } , and V 3 = { b 1 b 3 , b 2 b 4 } . Let B be a BSVN set on V given in Table 1 and B 1 , B 2 and B 3 be BSVN sets on V 1 , V 2 and V 3 , respectively, given in Table 2.
By direct calculations, it is easy to show that G ˇ b n = ( B , B 1 , B 2 , B 3 ) is a BSVNGS. This BSVNGS is shown in Figure 1. Generated with LaTeXDraw 2.0.8 on Saturday March 11 20:30:24 PKT 2017.
Definition 6.
A BSVNGS G ˇ b n = ( B , B 1 , B 2 , , B m ) is called a B k -cycle if ( s u p p ( B ) , s u p p ( B 1 ) , s u p p ( B 2 ) , , s u p p ( B m ) ) is a B k -cycle.
Example 2.
Consider a BSVNGS G ˇ b n = ( B , B 1 , B 2 ) as shown in Figure 2.
G ˇ b n is a B 1 -cycle, as ( s u p p ( B ) , s u p p ( B 1 ) , s u p p ( B 2 ) ) , is a B 1 -cycle, that is, b 2 - b 3 - b 4 - b 5 - b 2 .
Definition 7.
A BSVNGS G ˇ b n = ( B , B 1 , B 2 , , B m ) is a BSVN fuzzy B k -cycle (for any k) if G ˇ b n is a B k -cycle and no unique B k -edge b d exists in G ˇ b n , such that T B k P ( b d ) = min { T B k P ( e f ) : e f B k = s u p p ( B k ) } , I B k P ( b d ) = min { I B k P ( e f ) : e f B k = s u p p ( B k ) } , F B k P ( b d ) = max { F B k P ( e f ) : e f B k = s u p p ( B k ) } , T B k N ( b d ) = max { T B k N ( e f ) : e f B k = s u p p ( B k ) } , I B k N ( b d ) = max { I B k N ( e f ) : e f B k = s u p p ( B k ) } or F B k N ( b d ) = min { F B k N ( e f ) : e f B k = s u p p ( B k ) } .
Example 3.
Consider a BSVNGS G ˇ b n = ( B , B 1 , B 2 ) as depicted in Figure 3.
T B 2 P ( b d ) = min { T B 2 P ( e f ) : e f B 2 = s u p p ( B 2 ) } , I B 2 P ( b d ) = min { I B 2 P ( e f ) : e f B 2 = s u p p ( B 2 ) } , F B 2 P ( b d ) = max { F B 2 P ( e f ) : e f B 2 = s u p p ( B 2 ) } , T B 2 N ( b d ) = max { T B 2 N ( e f ) : e f B 2 = s u p p ( B 2 ) } , I B 2 N ( b d ) = max { I B 2 N ( e f ) : e f B 2 = s u p p ( B 2 ) } or F B 2 N ( b d ) = min { F B 2 N ( e f ) : e f B 2 = s u p p ( B 2 ) } .
Definition 8.
A sequence of vertices (distinct) in a BSVNGS G ˇ b n = ( B , B 1 , B 2 , , B m ) is called a B k -path, that is, b 1 , b 2 , , b m , such that b k 1 b k is a BSVN B k -edge, for all k = 2 , , m .
Example 4.
Consider a BSVNGS G ˇ b n = ( B , B 1 , B 2 ) as represented in Figure 4.
In this BSVNGS, the sequence of distinct vertices b 1 , b 4 , b 3 , b 2 is a BSVN B 2 -path.
Definition 9.
Let G ˇ b n = ( B , B 1 , B 2 , , B m ) be a BSVNGS. The positive truth strength T P . P B k , positive falsity strength F P . P B k , and positive indeterminacy strength I P . P B k of a B k -path, P B k = b 1 , b 2 , , b n , are defined as
T P . P B k = h = 2 n [ T B k P ( b h 1 b h ) ] , I P . P B k = h = 2 n [ I B k P ( b h 1 b h ) ] , F P . P B k = h = 2 n [ F B k P ( b h 1 b h ) ]
Similarly, the negative truth strength T N . P B k , negative falsity strength F N . P B k , and negative indeterminacy strength I N . P B k of a B k -path are defined as
T N . P B k = h = 2 n [ T B k N ( b h 1 b h ) ] , I N . P B k = h = 2 n [ I B k N ( b h 1 b h ) ] , F N . P B k = h = 2 n [ F B k N ( b h 1 b h ) ]
Example 5.
Consider a BSVNGS G ˇ b n = ( B , B 1 , B 2 , B 3 ) as shown in Figure 5.
In this BSVNGS, there is a B 1 -path, that is, P B 1 = b 5 , b 6 , b 8 , b 4 , b 3 . Thus, T N . P B 1 = 0.2 , I N . P B 1 = 0.2 , F N . P B 2 = 0.6 , T P . P B 1 = 0.2 , I P . P B 1 = 0.2 and F P . P B 2 = 0.6 .
Definition 10.
Let G ˇ b n = ( B , B 1 , B 2 , , B m ) be a BSVNGS. Then
  • The B k -positive strength of connectedness of truth between two nodes b and d is defined by T B k P ( b d ) = l 1 { T B k P l ( b d ) } , such that T B k P l ( b d ) = ( T B k P l 1 T B k P 1 ) ( b d ) for l 2 and T B k P 2 ( b d ) = ( T B k P 1 T B k P 1 ) ( b d ) = y ( T B k P 1 ( b y ) T B k P 1 ( y d ) ) .
  • The B k -positive strength of connectedness of indeterminacy between two nodes b and d is defined by I B k P ( b d ) = l 1 { I B k P l ( b d ) } , such that I B k P l ( b d ) = ( I B k P l 1 I B k P 1 ) ( b d ) for l 2 and I B k P 2 ( b d ) = ( I B k P 1 I B k P 1 ) ( b d ) = y ( I B k P 1 ( b y ) I B k P 1 ( y d ) ) .
  • The B k -positive strength of connectedness of falsity between two nodes b and d is defined by F B k P ( b d ) = l 1 { F B k P l ( b d ) } , such that F B k P l ( b d ) = ( F B k P l 1 F B k P 1 ) ( b d ) for l 2 and F B k P 2 ( b d ) = ( F B k P 1 F B k P 1 ) ( b d ) = y ( F B k P 1 ( b y ) F B k P 1 ( y d ) ) .
  • The B k -negative strength of connectedness of truth between two nodes b and d is defined by T B k N ( b d ) = l 1 { T B k N l ( b d ) } , such that T B k N l ( b d ) = ( T B k N l 1 T B k N 1 ) ( b d ) for l 2 and T B k N 2 ( b d ) = ( T B k N 1 T B k N 1 ) ( b d ) = y ( T B k N 1 ( b y ) T B k N 1 ( y d ) ) .
  • The B k -negative strength of connectedness of indeterminacy between two nodes b and d is defined by I B k N ( b d ) = l 1 { I B k N l ( b d ) } , such that I B k N l ( b d ) = ( I B k N l 1 I B k N 1 ) ( b d ) for l 2 and I B k N 2 ( b d ) = ( I B k N 1 I B k N 1 ) ( b d ) = y ( I B k N 1 ( b y ) I B l N 1 ( y d ) ) .
  • The B k -negative strength of connectedness of falsity between two nodes b and d is defined by F B k N ( b d ) = l 1 { F B k N l ( b d ) } , such that F B k N l ( b d ) = ( F B k N l 1 F B k N 1 ) ( b d ) for l 2 and F B k N 2 ( b d ) = ( F B k N 1 F B k N 1 ) ( b d ) = y ( F B k N 1 ( b y ) F B k N 1 ( y d ) ) .
Definition 11.
Let G ˇ b n = ( B , B 1 , B 2 , , B m ) be a BSVNGS and “b” be a node in G ˇ b n . Let ( B , B 1 , B 2 , , B m ) be a BSVN subgraph structure of G ˇ b n induced by B \ { b } such that e b , f b
T B P ( b ) = I B P ( b ) = F B P ( b ) = T B k P ( b e ) = I B k P ( b e ) = F B k P ( b e ) = 0
T B N ( b ) = I B N ( b ) = F B N ( b ) = T B k N ( b e ) = I B k N ( b e ) = F B k N ( b e ) = 0
T B P ( e ) = T B P ( e ) , I B P ( e ) = I B P ( e ) , F B P ( e ) = F B P ( e ) , T B N ( e ) = T B N ( e ) , I B N ( e ) = I B N ( e ) , F B N e ) = F B N ( e )
T B k P ( e f ) = T B k P ( e f ) , I B k P ( e f ) = I B k P ( e f ) , F B k P ( e f ) = F B k P ( e f ) , T B k N ( e f ) = T B k N ( e f ) , I B k N ( e f ) = I B k N ( e f )
F B k N ( e f ) = F B k N ( e f ) ,   e d g e s   b e , e f G ˇ b n
Then b is a BSVN fuzzy B k cut-vertex if T B k P ( e f ) > T B k P ( e f ) , I B k P ( e f ) > I B k P ( e f ) , F B k P ( e f ) > F B k P ( e f ) , T B k N ( e f ) < T B k N ( e f ) , I B k N ( e f ) < I B k N ( e f ) and F B k N ( e f ) < F B k N ( e f ) , for some e , f B \ { b } . Note that vertex b is a BSVN fuzzy B k T P cut-vertex if T B k P ( e f ) > T B k P ( e f ) , it is a BSVN fuzzy B k I P cut-vertex if I B k P ( e f ) > I B k P ( e f ) , and it is a BSVN fuzzy B k F P cut-vertex if F B k P ( e f ) > F B k P ( e f ) . Moreover, vertex b is a BSVN fuzzy B k T N cut-vertex if T B k N ( e f ) < T B k N ( e f ) , it is a BSVN fuzzy B k I N cut-vertex if I B k N ( e f ) < I B k N ( e f ) and it is a BSVN fuzzy B k F N cut-vertex if F B k N ( e f ) < F B k N ( e f ) .
Example 6.
Consider a BSVNGS G ˇ b n = ( B , B 1 , B 2 ) as depicted in Figure 6, and let G ˇ b h = ( B , B 1 , B 2 ) be a BSVN subgraph structure of the BSVNGS G ˇ b n , which is obtained through deletion of vertex b 2 .
The vertex b 2 is a BSVN fuzzy B 1 I P cut-vertex and a BSVN fuzzy B 1 I N cut-vertex, because I B 1 P ( b 2 b 5 ) = 0 , I B 1 P ( b 2 b 5 ) = 0.5 , I B 1 P ( b 4 b 3 ) = 0.7 , I B 1 P ( b 4 b 3 ) = 0.7 , I B 1 P ( b 3 b 5 ) = 0.3 , I B 1 P ( b 3 b 5 ) = 0.4 . I B 1 N ( b 2 b 5 ) = 0 > 0.5 = I B 1 N ( b 2 b 5 ) , I B 1 N ( b 4 b 3 ) = 0.7 = I B 1 N ( b 4 b 3 ) and I B 1 N ( b 3 b 5 ) = 0.3 > 0.4 = I B 1 N ( b 3 b 5 ) .
Definition 12.
Suppose G ˇ b n = ( B , B 1 , B 2 , , B m ) is a BSVNGS and b d is a B k -edge. Let ( B , B 1 , B 2 , , B m ) be a BSVN fuzzy spanning subgraph structure of G ˇ b n , such that
T B k P ( b d ) = 0 = I B k P ( b d ) = F B k P ( b d ) , T B k N ( b d ) = 0 = I B k N ( b d ) = F B k N ( b d )
T B k P ( g h ) = T B k P ( g h ) , I B k P ( g h ) = I B k P ( g h )
F B k P ( b d ) = F B k P ( b d ) , T B k N ( g h ) = T B k N ( g h ) , I B k N ( g h ) = I B k N ( g h ) , F B k N ( b d ) = F B k N ( b d ) ,     e d g e s   g h b d
Then b d is a BSVN fuzzy B k -bridge if T B k P ( e f ) > T B k P ( e f ) , I B k P ( e f ) > I B k P ( e f ) , F B k P ( e f ) > F B k P ( e f ) , T B k N ( e f ) < T B k N ( e f ) , I B k N ( e f ) < I B k N ( e f ) and F B k N ( e f ) < F B k N ( e f ) , for some e , f V . Note that b d is a BSVN fuzzy B k T P bridge if T B k P ( e f ) > T B k P ( e f ) , it is a BSVN fuzzy B k I P bridge if I B k P ( e f ) > I B k P ( e f ) and it is a BSVN fuzzy B k F P bridge if F B k P ( e f ) > F B k P ( e f ) . Moreover, b d is a BSVN fuzzy B k T N bridge if T B k N ( e f ) < T B k N ( e f ) , it is a BSVN fuzzy B k I N bridge if I B k N ( e f ) < I B k N ( e f ) and it is a BSVN fuzzy B k F N bridge if F B k N ( e f ) < F B k N ( e f ) .
Example 7.
Consider a BSVNGS G ˇ b n = ( B , B 1 , B 2 ) as depicted in Figure 6 and G ˇ b s = ( B , B 1 , B 2 ) , a BSVN spanning subgraph structure of the BSVNGS G ˇ b n obtained by deleting B 1 -edge ( b 2 b 5 ) and that is shown in Figure 7.
This edge ( b 2 b 5 ) is a BSVN fuzzy B 1 -bridge, as T B 1 P ( b 2 b 5 ) = 0.3 , T B 1 P ( b 2 b 5 ) = 0.4, I B 1 P ( b 2 b 5 ) = 0.3 , I B 1 P ( b 2 b 5 ) = 0.4 , F B 1 P ( b 2 b 5 ) = 0.4 , F B 1 P ( b 2 b 5 ) = 0.5 . , T B 1 N ( b 2 b 5 ) = 0.3 > 0.4 = T B 1 N ( b 2 b 5 ) , I B 1 N ( b 2 b 5 ) = 0.3 > 0.4 = I B 1 N ( b 2 b 5 ) , and F B 1 N ( b 2 b 5 ) = 0.4 > 0.5 = F B 1 N ( b 2 b 5 ) .
Definition 13.
A BSVNGS G ˇ b n = ( B , B 1 , B 2 , , B m ) is a B k -tree if ( s u p p ( B ) , s u p p ( B 1 ) , s u p p ( B 2 ) , , s u p p ( B m ) ) is a B k -tree. Alternatively, G ˇ b n is a B k -tree if G ˇ b n has a subgraph induced by s u p p ( B k ) that forms a tree.
Example 8.
Consider the BSVNGS G ˇ b n = ( B , B 1 , B 2 ) as depicted in Figure 8.
This BSVNGS G ˇ b n = ( B , B 1 , B 2 ) is a B 2 -tree, as ( s u p p ( B ) , s u p p ( B 1 ) , s u p p ( B 2 ) ) is a B 2 -tree.
Definition 14.
A BSVNGS G ˇ b n = ( B , B 1 , B 2 , , B m ) is a BSVN fuzzy B k -tree if G ˇ b n has a BSVN fuzzy spanning subgraph structure H ˇ b n = ( B , B 1 , B 2 , , B m ) such that for all B k -edges, b d not in H ˇ b n :
  • H ˇ b n is a B k -tree.
  • T B k P ( b d ) < T B k P ( b d ) , I B k P ( b d ) < I B k P ( b d ) , F B k P ( b d ) < F B k P ( b d ) , T B k N ( b d ) > T B k N ( b d ) , I B k N ( b d ) > I B k N ( b d ) , and F B k N ( b d ) > F B k N ( b d ) .
In particular, G ˇ b n is a BSVN fuzzy B k T P tree if T B k P ( b d ) < T B k P ( b d ) , it is a BSVN fuzzy B k I P tree if I B k P ( b d ) < I B k P ( b d ) , and it is a BSVN fuzzy B k F P tree if F B k P ( b d ) > F B k P ( b d ) . Moreover, G ˇ b n is a BSVN fuzzy B k T N tree if T B k N ( b d ) > T B k N ( b d ) , it is a BSVN fuzzy B k I N tree if I B k N ( b d ) > I B k N ( b d ) , and it is a BSVN fuzzy B k F N tree if F B k N ( b d ) < F B k N ( b d ) .
Example 9.
Consider the BSVNGS G ˇ b n = ( B , B 1 , B 2 ) as depicted in Figure 9.
It is B 2 -tree, rather than a B 1 -tree. However, it is a BSVN fuzzy B 1 -tree, because it has a BSVN fuzzy spanning subgraph ( B , B 1 , B 2 ) as a B 1 -tree, which is obtained through the deletion of the B 1 -edge b 2 b 5 from G ˇ b n . Moreover, T B 1 P ( b 2 b 5 ) = 0.3 , T B 1 P ( b 2 b 5 ) = 0.2 , I B 1 P ( b 2 b 5 ) = 0.3 , I B 1 P ( b 2 b 5 ) = 0.1 , F B 1 P ( b 2 b 5 ) = 0.4 , F B 1 ( b 2 b 5 ) = 0.5 . T B 1 N ( b 2 b 5 ) = 0.3 < 0.2 = T B 1 N ( b 2 b 5 ) , I B 1 N ( b 2 b 5 ) = 0.3 < 0.1 = I B 1 N ( b 2 b 5 ) and F B 1 N ( b 2 b 5 ) = 0.4 > 0.5 = F B 1 ( b 2 b 5 ) .
Now we define the operations on BSVNGSs.
Definition 15.
Let G ˇ b 1 = ( B 1 , B 11 , B 12 , , B 1 m ) and G ˇ b 2 = ( B 2 , B 21 , B 22 , , B 2 m ) be two BSVNGSs. The Cartesian product of G ˇ b 1 and G ˇ b 2 , denoted by
G ˇ b 1 × G ˇ b 2 = ( B 1 × B 2 , B 11 × B 21 , B 12 × B 22 , , B 1 m × B 2 m )
is defined as
(i)
T ( B 1 × B 2 ) P ( b d ) = ( T B 1 P × T B 2 P ) ( b d ) = T B 1 P ( b ) T B 2 P ( d ) I ( B 1 × B 2 ) P ( b d ) = ( I B 1 P × I B 2 P ) ( b d ) = I B 1 P ( b ) I B 2 P ( d ) F ( B 1 × B 2 ) P ( b d ) = ( F B 1 P × F B 2 P ) ( b d ) = F B 1 P ( b ) F B 2 P ( d )
(ii)
T ( B 1 × B 2 ) N ( b d ) = ( T B 1 N × T B 2 N ) ( b d ) = T B 1 N ( b ) T B 2 N ( d ) I ( B 1 × B 2 ) N ( b d ) = ( I B 1 N × I B 2 N ) ( b d ) = I B 1 N ( b ) I B 2 N ( d ) F ( B 1 × B 2 ) N ( b d ) = ( F B 1 N × F B 2 N ) ( b d ) = F B 1 N ( b ) F B 2 P ( d )
for all ( b d ) V 1 × V 2 ,
(iii)
T ( B 1 k × B 2 k ) P ( b d 1 ) ( b d 2 ) = ( T B 1 k P × T B 2 k P ) ( b d 1 ) ( b d 2 ) = T B 1 P ( b ) T B 2 k P ( d 1 d 2 ) I ( B 1 k × B 2 k ) P ( b d 1 ) ( b d 2 ) = ( I B 1 k P × I B 2 k P ) ( b d 1 ) ( b d 2 ) = I B 1 P ( b ) I B 2 k P ( d 1 d 2 ) F ( B 1 k × B 2 k ) P ( b d 1 ) ( b d 2 ) = ( F B 1 k P × F B 2 k P ) ( b d 1 ) ( b d 2 ) = F B 1 P ( b ) F B 2 k P ( d 1 d 2 )
(iv)
T ( B 1 k × B 2 k ) N ( b d 1 ) ( b d 2 ) = ( T B 1 k N × T B 2 k N ) ( b d 1 ) ( b d 2 ) = T B 1 N ( b ) T B 2 k N ( d 1 d 2 ) I ( B 1 k × B 2 k ) N ( b d 1 ) ( b d 2 ) = ( I B 1 k N × I B 2 k N ) ( b d 1 ) ( b d 2 ) = I B 1 N ( b ) I B 2 k N ( d 1 d 2 ) F ( B 1 k × B 2 k ) N ( b d 1 ) ( b d 2 ) = ( F B 1 k N × F B 2 k N ) ( b d 1 ) ( b d 2 ) = F B 1 N ( b ) F B 2 k N ( d 1 d 2 )
for all b V 1 , ( d 1 d 2 ) V 2 k , a n d
(v)
T ( B 1 k × B 2 k ) P ( b 1 d ) ( b 2 d ) = ( T B 1 k P × T B 2 k P ) ( b 1 d ) ( b 2 d ) = T B 2 P ( d ) T B 1 k P ( b 1 b 2 ) I ( B 1 k × B 2 k ) P ( b 1 d ) ( b 2 d ) = ( I B 1 k P × I B 2 k P ) ( b 1 d ) ( b 2 d ) = I B 2 P ( d ) I B 2 k P ( b 1 b 2 ) F ( B 1 k × B 2 k ) P ( b 1 d ) ( b 2 d ) = ( F B 1 k P × F B 2 k P ) ( b 1 d ) ( b 2 d ) = F B 2 P ( d ) F B 2 k P ( b 1 b 2 )
(vi)
T ( B 1 k × B 2 k ) N ( b 1 d ) ( b 2 d ) = ( T B 1 k N × T B 2 k N ) ( b 1 d ) ( b 2 d ) = T B 2 N ( d ) T B 1 k N ( b 1 b 2 ) I ( B 1 k × B 2 k ) N ( b 1 d ) ( b 2 d ) = ( I B 1 k N × I B 2 k N ) ( b 1 d ) ( b 2 d ) = I B 2 N ( d ) I B 2 k N ( b 1 b 2 ) F ( B 1 k × B 2 k ) N ( b 1 d ) ( b 2 d ) = ( F B 1 k N × F B 2 k N ) ( b 1 d ) ( b 2 d ) = F B 2 N ( d ) F B 2 k N ( b 1 b 2 )
for all d V 2 , ( b 1 b 2 ) V 1 k .
Example 10.
Consider G ˇ b 1 = ( B 1 , B 11 , B 12 ) and G ˇ b 2 = ( B 2 , B 21 , B 22 ) as BSVNGSs of GSs G ˇ s 1 = ( V 1 , V 11 , V 12 ) and G ˇ s 2 = ( V 2 , V 21 , V 22 ) , respectively, as depicted in Figure 10, where V 11 = { b 1 b 2 } , V 12 = { b 3 b 4 } , V 21 = { d 1 d 2 } , and V 22 = { d 2 d 3 } .
The Cartesian product of G ˇ b 1 and G ˇ b 2 , defined as G ˇ b 1 × G ˇ b 2 = { B 1 × B 2 , B 11 × B 21 , B 12 × B 22 } , is depicted in Figure 11 and Figure 12.
Theorem 1.
The Cartesian product G ˇ b 1 × G ˇ b 2 = ( B 1 × B 2 , B 11 × B 21 , B 12 × B 22 , , B 1 m × B 2 m ) of two BSVNSGSs of GSs G s 1 ˇ and G s 2 ˇ is a BSVNGS of G s 1 ˇ × G s 2 ˇ .
Proof. 
Consider two cases:
Case 1.
For b V 1 , d 1 d 2 V 2 k ,
T ( B 1 k × B 2 k ) P ( ( b d 1 ) ( b d 2 ) ) = T B 1 P ( b ) T B 2 k P ( d 1 d 2 ) T B 1 P ( b ) [ T B 2 P ( d 1 ) T B 2 P ( d 2 ) ] = [ T B 1 P ( b ) T B 2 P ( d 1 ) ] [ T B 1 P ( b ) T B 2 P ( d 2 ) ] = T ( B 1 × B 2 ) P ( b d 1 ) T ( B 1 × B 2 ) P ( b d 2 )
T ( B 1 k × B 2 k ) N ( ( b d 1 ) ( b d 2 ) ) = T B 1 N ( b ) T B 2 k N ( d 1 d 2 ) T B 1 N ( b ) [ T B 2 N ( d 1 ) T B 2 N ( d 2 ) ] = [ T B 1 N ( b ) T B 2 N ( d 1 ) ] [ T B 1 N ( b ) T B 2 N ( d 2 ) ] = T ( B 1 × B 2 ) N ( b d 1 ) T ( B 1 × B 2 ) N ( b d 2 )
I ( B 1 k × B 2 k ) P ( ( b d 1 ) ( b d 2 ) ) = I B 1 P ( b ) I B 2 k P ( d 1 d 2 ) I B 1 P ( b ) [ I B 2 P ( d 1 ) I B 2 P ( d 2 ) ] = [ I B 1 P ( b ) I B 2 P ( d 1 ) ] [ I B 1 P ( b ) I B 2 P ( d 2 ) ] = I ( B 1 × B 2 ) P ( b d 1 ) I ( B 1 × B 2 ) P ( b d 2 )
I ( B 1 k × B 2 k ) N ( ( b d 1 ) ( b d 2 ) ) = I B 1 N ( b ) I B 2 k N ( d 1 d 2 ) I B 1 N ( b ) [ I B 2 N ( d 1 ) I B 2 N ( d 2 ) ] = [ I B 1 N ( b ) I B 2 N ( d 1 ) ] [ I B 1 N ( b ) I B 2 N ( d 2 ) ] = I ( B 1 × B 2 ) N ( b d 1 ) I ( B 1 × B 2 ) N ( b d 2 )
F ( B 1 k × B 2 k ) P ( ( b d 1 ) ( b d 2 ) ) = F B 1 P ( b ) F B 2 k P ( d 1 d 2 ) F B 1 P ( b ) [ F B 2 P ( d 1 ) F B 2 P ( d 2 ) ] = [ F B 1 P ( b ) F B 2 P ( d 1 ) ] [ F B 1 P ( b ) F B 2 P ( d 2 ) ] = F ( B 1 × B 2 ) P ( b d 1 ) F ( B 1 × B 2 ) P ( b d 2 )
F ( B 1 k × B 2 k ) N ( ( b d 1 ) ( b d 2 ) ) = F B 1 N ( b ) F B 2 k N ( d 1 d 2 ) F B 1 N ( b ) [ F B 2 N ( d 1 ) F B 2 N ( d 2 ) ] = [ F B 1 N ( b ) F B 2 N ( d 1 ) ] [ F B 1 N ( b ) F B 2 N ( d 2 ) ] = F ( B 1 × B 2 ) N ( b d 1 ) F ( B 1 × B 2 ) N ( b d 2 )
for b d 1 , b d 2 V 1 × V 2 .
Case 2.
For b V 2 , d 1 d 2 V 1 k ,
T ( B 1 k × B 2 k ) P ( ( d 1 b ) ( d 2 b ) ) = T B 2 P ( b ) T B 1 k P ( d 1 d 2 ) T B 2 P ( b ) [ T B 1 P ( d 1 ) T B 1 P ( d 2 ) ] = [ T B 2 P ( b ) T B 1 P ( d 1 ) ] [ T B 2 P ( b ) T B 1 P ( d 2 ) ] = T ( B 1 × B 2 ) P ( d 1 b ) T ( B 1 × B 2 ) P ( d 2 b )
T ( B 1 k × B 2 k ) N ( ( d 1 b ) ( d 2 b ) ) = T B 2 N ( b ) T B 1 k N ( d 1 d 2 ) T B 2 N ( b ) [ T B 1 N ( d 1 ) T B 1 N ( d 2 ) ] = [ T B 2 N ( b ) T B 1 N ( d 1 ) ] [ T B 2 N ( b ) T B 1 N ( d 2 ) ] = T ( B 1 × B 2 ) N ( d 1 b ) T ( B 1 × B 2 ) N ( d 2 b )
I ( B 1 k × B 2 k ) P ( ( d 1 b ) ( d 2 b ) ) = I B 2 P ( b ) I B 1 k P ( d 1 d 2 ) I B 2 P ( b ) [ I B 1 P ( d 1 ) I B 1 P ( d 2 ) ] = [ I B 2 P ( b ) I B 1 P ( d 1 ) ] [ I B 2 P ( b ) I B 1 P ( d 2 ) ] = I ( B 1 × B 2 ) P ( d 1 b ) I ( B 1 × B 2 ) P ( d 2 b )
I ( B 1 k × B 2 k ) N ( ( d 1 b ) ( d 2 b ) ) = I B 2 N ( b ) I B 1 k N ( d 1 d 2 ) I B 2 N ( b ) [ I B 1 N ( d 1 ) I B 1 N ( d 2 ) ] = [ I B 2 N ( b ) I B 1 N ( d 1 ) ] [ I B 2 N ( b ) I B 1 N ( d 2 ) ] = I ( B 1 × B 2 ) N ( d 1 b ) I ( B 1 × B 2 ) N ( d 2 b )
F ( B 1 k × B 2 k ) P ( ( d 1 b ) ( d 2 b ) ) = F B 2 P ( b ) F B 1 k P ( d 1 d 2 ) F B 2 P ( b ) [ F B 1 P ( d 1 ) F B 1 P ( d 2 ) ] = [ F B 2 P ( b ) F B 1 P ( d 1 ) ] [ F B 2 P ( b ) F B 1 P ( d 2 ) ] = F ( B 1 × B 2 ) P ( d 1 b ) F ( B 1 × B 2 ) P ( d 2 b )
F ( B 1 k × B 2 k ) N ( ( d 1 b ) ( d 2 b ) ) = F B 2 N ( b ) F B 1 k N ( d 1 d 2 ) F B 2 N ( b ) [ F B 1 N ( d 1 ) F B 1 N ( d 2 ) ] = [ F B 2 N ( b ) F B 1 N ( d 1 ) ] [ F B 2 N ( b ) F B 1 N ( d 2 ) ] = F ( B 1 × B 2 ) N ( d 1 b ) F ( B 1 × B 2 ) P ( d 2 b )
for d 1 b , d 2 b V 1 × V 2 .
Both cases hold for all k { 1 , 2 , , m } . This completes the proof.  ☐
Definition 16.
Let G ˇ b 1 = ( B 1 , B 11 , B 12 , , B 1 m ) and G ˇ b 2 = ( B 2 , B 21 , B 22 , , B 2 m ) be two BSVNGSs. The cross product of G ˇ b 1 and G ˇ b 2 , denoted by
G ˇ b 1 G ˇ b 2 = ( B 1 B 2 , B 11 B 21 , B 12 B 22 , , B 1 m B 2 m )
is defined as
(i)
T ( B 1 B 2 ) P ( b d ) = ( T B 1 P T B 2 P ) ( b d ) = T B 1 P ( b ) T B 2 P ( d ) I ( B 1 B 2 ) P ( b d ) = ( I B 1 P I B 2 P ) ( b d ) = I B 1 P ( b ) I B 2 P ( d ) F ( B 1 B 2 ) P ( b d ) = ( F B 1 P F B 2 P ) ( b d ) = F B 1 P ( b ) F B 2 P ( d )
(ii)
T ( B 1 B 2 ) N ( b d ) = ( T B 1 N T B 2 N ) ( b d ) = T B 1 N ( b ) T B 2 N ( d ) I ( B 1 B 2 ) N ( b d ) = ( I B 1 N I B 2 N ) ( b d ) = I B 1 N ( b ) I B 2 N ( d ) F ( B 1 B 2 ) N ( b d ) = ( F B 1 N F B 2 N ) ( b d ) = F B 1 N ( b ) F B 2 P ( d )
for all ( b d ) V 1 × V 2 , and
(iii)
T ( B 1 k B 2 k ) P ( b 1 d 1 ) ( b 2 d 2 ) = ( T B 1 k P T B 2 k P ) ( b 1 d 1 ) ( b 2 d 2 ) = T B 1 k P ( b 1 b 2 ) T B 2 k P ( d 1 d 2 ) I ( B 1 k B 2 k ) P ( b 1 d 1 ) ( b 2 d 2 ) = ( I B 1 k P I B 2 k P ) ( b 1 d 1 ) ( b 2 d 2 ) = I B 1 k P ( b 1 b 2 ) I B 2 k P ( d 1 d 2 ) F ( B 1 k B 2 k ) P ( b 1 d 1 ) ( b 2 d 2 ) = ( F B 1 k P F B 2 k P ) ( b 1 d 1 ) ( b 2 d 2 ) = F B 1 k P ( b 1 b 2 ) F B 2 k P ( d 1 d 2 )
(iv)
T ( B 1 k B 2 k ) N ( b 1 d 1 ) ( b 2 d 2 ) = ( T B 1 k N T B 2 k N ) ( b 1 d 1 ) ( b 2 d 2 ) = T B 1 k N ( b 1 b 2 ) T B 2 k N ( d 1 d 2 ) I ( B 1 k B 2 k ) N ( b 1 d 1 ) ( b 2 d 2 ) = ( I B 1 k N I B 2 k N ) ( b 1 d 1 ) ( b 2 d 2 ) = I B 1 k N ( b 1 b 2 ) I B 2 k N ( d 1 d 2 ) F ( B 1 k B 2 k ) N ( b 1 d 1 ) ( b 2 d 2 ) = ( F B 1 k N F B 2 k N ) ( b 1 d 1 ) ( b 2 d 2 ) = F B 1 k N ( b 1 b 2 ) F B 2 k N ( d 1 d 2 )
for all ( b 1 b 2 ) V 1 k , ( d 1 d 2 ) V 2 k .
Example 11.
The cross product of BSVNGSs G ˇ b 1 and G ˇ b 2 shown in Figure 10 is defined as G ˇ b 1 G ˇ b 2 = { B 1 B 2 , B 11 B 21 , B 12 B 22 } and is depicted in Figure 13.
Theorem 2.
The cross product G ˇ b 1 G ˇ b 2 = ( B 1 B 2 , B 11 B 21 , B 12 B 22 , , B 1 m B 2 m ) of two BSVNSGSs of GSs G s 1 ˇ and G s 2 ˇ is a BSVNGS of G s 1 ˇ G s 2 ˇ .
Proof. 
For b 1 b 2 V 1 k , d 1 d 2 V 2 k ,
T ( B 1 k B 2 k ) P ( ( b 1 d 1 ) ( b 2 d 2 ) ) = T B 1 k P ( b 1 b 2 ) T B 2 k P ( d 1 d 2 ) [ T B 1 P ( b 1 ) T B 1 P ( b 2 ] [ T B 2 P ( d 1 ) T B 2 P ( d 2 ) ] = [ T B 1 P ( b 1 ) T B 2 P ( d 1 ) ] [ T B 1 P ( b 2 ) T B 2 P ( d 2 ) ] = T ( B 1 B 2 ) P ( b 1 d 1 ) T ( B 1 B 2 ) P ( b 2 d 2 )
T ( B 1 k B 2 k ) N ( ( b 1 d 1 ) ( b 2 d 2 ) ) = T B 1 k N ( b 1 b 2 ) T B 2 k N ( d 1 d 2 ) [ T B 1 N ( b 1 ) T B 1 N ( b 2 ] [ T B 2 N ( d 1 ) T B 2 N ( d 2 ) ] = [ T B 1 N ( b 1 ) T B 2 N ( d 1 ) ] [ T B 1 N ( b 2 ) T B 2 N ( d 2 ) ] = T ( B 1 B 2 ) N ( b 1 d 1 ) T ( B 1 B 2 ) N ( b 2 d 2 )
I ( B 1 k B 2 k ) P ( ( b 1 d 1 ) ( b 2 d 2 ) ) = I B 1 k P ( b 1 b 2 ) I B 2 k P ( d 1 d 2 ) [ I B 1 P ( b 1 ) I B 1 P ( b 2 ] [ I B 2 P ( d 1 ) I B 2 P ( d 2 ) ] = [ I B 1 P ( b 1 ) I B 2 P ( d 1 ) ] [ I B 1 P ( b 2 ) I B 2 P ( d 2 ) ] = I ( B 1 B 2 ) P ( b 1 d 1 ) I ( B 1 B 2 ) P ( b 2 d 2 )
I ( B 1 k B 2 k ) N ( ( b 1 d 1 ) ( b 2 d 2 ) ) = I B 1 k N ( b 1 b 2 ) I B 2 k N ( d 1 d 2 ) [ I B 1 N ( b 1 ) I B 1 N ( b 2 ] [ I B 2 N ( d 1 ) I B 2 N ( d 2 ) ] = [ I B 1 N ( b 1 ) I B 2 N ( d 1 ) ] [ I B 1 N ( b 2 ) I B 2 N ( d 2 ) ] = I ( B 1 B 2 ) N ( b 1 d 1 ) I ( B 1 B 2 ) N ( b 2 d 2 )
F ( B 1 k B 2 k ) P ( ( b 1 d 1 ) ( b 2 d 2 ) ) = F B 1 k P ( b 1 b 2 ) F B 2 k P ( d 1 d 2 ) [ F B 1 P ( b 1 ) F B 1 P ( b 2 ] [ F B 2 P ( d 1 ) F B 2 P ( d 2 ) ] = [ F B 1 P ( b 1 ) F B 2 P ( d 1 ) ] [ F B 1 P ( b 2 ) F B 2 P ( d 2 ) ] = F ( B 1 B 2 ) P ( b 1 d 1 ) F ( B 1 B 2 ) P ( b 2 d 2 )
F ( B 1 k B 2 k ) N ( ( b 1 d 1 ) ( b 2 d 2 ) ) = F B 1 k N ( b 1 b 2 ) F B 2 k N ( d 1 d 2 ) [ F B 1 N ( b 1 ) F B 1 N ( b 2 ] [ F B 2 N ( d 1 ) F B 2 N ( d 2 ) ] = [ F B 1 N ( b 1 ) F B 2 N ( d 1 ) ] [ F B 1 N ( b 2 ) F B 2 N ( d 2 ) ] = F ( B 1 B 2 ) N ( b 1 d 1 ) F ( B 1 B 2 ) N ( b 2 d 2 )
where b 1 d 1 , b 2 d 2 V 1 V 2 and h { 1 , 2 , , m } .  ☐
Definition 17.
Let G ˇ b 1 = ( B 1 , B 11 , B 12 , , B 1 m ) and G ˇ b 2 = ( B 2 , B 21 , B 22 , , B 2 m ) be two BSVNGSs. The composition of G ˇ b 1 and G ˇ b 2 , denoted by
G ˇ b 1 G ˇ b 2 = ( B 1 B 2 , B 11 B 21 , B 12 B 22 , , B 1 m B 2 m )
is defined as
(i)
T ( B 1 B 2 ) P ( b d ) = ( T B 1 P T B 2 P ) ( b d ) = T B 1 P ( b ) T B 2 P ( d ) I ( B 1 B 2 ) P ( b d ) = ( I B 1 P I B 2 P ) ( b d ) = I B 1 P ( b ) I B 2 P ( d ) F ( B 1 B 2 ) P ( b d ) = ( F B 1 P F B 2 P ) ( b d ) = F B 1 P ( b ) F B 2 P ( d )
(ii)
T ( B 1 B 2 ) N ( b d ) = ( T B 1 N T B 2 N ) ( b d ) = T B 1 N ( b ) T B 2 N ( d ) I ( B 1 B 2 ) N ( b d ) = ( I B 1 N I B 2 N ) ( b d ) = I B 1 N ( b ) I B 2 N ( d ) F ( B 1 B 2 ) N ( b d ) = ( F B 1 N F B 2 N ) ( b d ) = F B 1 N ( b ) F B 2 N ( d )
for all ( b d ) V 1 × V 2 ,
(iii)
T ( B 1 k B 2 k ) P ( b d 1 ) ( b d 2 ) = ( T B 1 k P T B 2 k P ) ( b d 1 ) ( b d 2 ) = T B 1 P ( b ) T B 2 k P ( d 1 d 2 ) I ( B 1 k B 2 k ) P ( b d 1 ) ( b d 2 ) = ( I B 1 k P I B 2 k P ) ( b d 1 ) ( b d 2 ) = I B 1 P ( b ) I B 2 k P ( d 1 d 2 ) F ( B 1 k B 2 k ) P ( b d 1 ) ( b d 2 ) = ( F B 1 k P F B 2 k P ) ( b d 1 ) ( b d 2 ) = F B 1 P ( b ) F B 2 k P ( d 1 d 2 )
(iv)
T ( B 1 k B 2 k ) N ( b d 1 ) ( b d 2 ) = ( T B 1 k N T B 2 k N ) ( b d 1 ) ( b d 2 ) = T B 1 N ( b ) T B 2 k N ( d 1 d 2 ) I ( B 1 k B 2 k ) N ( b d 1 ) ( b d 2 ) = ( I B 1 k N I B 2 k N ) ( b d 1 ) ( b d 2 ) = I B 1 N ( b ) I B 2 k N ( d 1 d 2 ) F ( B 1 k B 2 k ) N ( b d 1 ) ( b d 2 ) = ( F B 1 k N F B 2 k N ) ( b d 1 ) ( b d 2 ) = F B 1 N ( b ) F B 2 k N ( d 1 d 2 )
for all b V 1 , ( d 1 d 2 ) V 2 k ,
(v)
T ( B 1 k B 2 k ) P ( b 1 d ) ( b 2 d ) = ( T B 1 k P T B 2 k P ) ( b 1 d ) ( b 2 d ) = T B 2 P ( d ) T B 1 k P ( b 1 b 2 ) I ( B 1 k B 2 k ) P ( b 1 d ) ( b 2 d ) = ( I B 1 k P I B 2 k P ) ( b 1 d ) ( b 2 d ) = I B 2 P ( d ) I B 1 k P ( b 1 b 2 ) F ( B 1 k B 2 k ) P ( b 1 d ) ( b 2 d ) = ( F B 1 k P F B 2 k P ) ( b 1 d ) ( b 2 d ) = F B 2 P ( d ) F B 1 k P ( b 1 b 2 )
(vi)
T ( B 1 k B 2 k ) N ( b 1 d ) ( b 2 d ) = ( T B 1 k N T B 2 k N ) ( b 1 d ) ( b 2 d ) = T B 2 N ( d ) T B 1 k N ( b 1 b 2 ) I ( B 1 k B 2 k ) N ( b 1 d ) ( b 2 d ) = ( I B 1 k N I B 2 k N ) ( b 1 d ) ( b 2 d ) = I B 2 N ( d ) I B 1 k N ( b 1 b 2 ) F ( B 1 k B 2 k ) N ( b 1 d ) ( b 2 d ) = ( F B 1 k N F B 2 k N ) ( b 1 d ) ( b 2 d ) = F B 2 N ( d ) F B 1 k N ( b 1 b 2 )
for all d V 2 , ( b 1 b 2 ) V 1 k , and
(vii)
T ( B 1 k B 2 k ) P ( b 1 d 1 ) ( b 2 d 2 ) = ( T B 1 k P T B 2 k P ) ( b 1 d 1 ) ( b 2 d 2 ) = T B 1 k P ( b 1 b 2 ) T B 2 P ( d 1 ) T B 2 P ( d 2 ) I ( B 1 k B 2 k ) P ( b 1 d 1 ) ( b 2 d 2 ) = ( I B 1 k P I B 2 k P ) ( b 1 d 1 ) ( b 2 d 2 ) = I B 1 k P ( b 1 b 2 ) I B 2 P ( d 1 ) I B 2 P ( d 2 ) F ( B 1 k B 2 k ) P ( b 1 d 1 ) ( b 2 d 2 ) = ( F B 1 k P F B 2 k P ) ( b 1 d 1 ) ( b 2 d 2 ) = F B 1 k P ( b 1 b 2 ) F B 2 P ( d 1 ) F B 2 P ( d 2 )
(viii)
T ( B 1 k B 2 k ) N ( b 1 d 1 ) ( b 2 d 2 ) = ( T B 1 k N T B 2 k N ) ( b 1 d 1 ) ( b 2 d 2 ) = T B 1 k N ( b 1 b 2 ) T B 2 N ( d 1 ) T B 2 N ( d 2 ) I ( B 1 k B 2 k ) N ( b 1 d 1 ) ( b 2 d 2 ) = ( I B 1 k N I B 2 k N ) ( b 1 d 1 ) ( b 2 d 2 ) = I B 1 k N ( b 1 b 2 ) I B 2 N ( d 1 ) I B 2 N ( d 2 ) F ( B 1 k B 2 k ) N ( b 1 d 1 ) ( b 2 d 2 ) = ( F B 1 k N F B 2 k N ) ( b 1 d 1 ) ( b 2 d 2 ) = F B 1 k N ( b 1 b 2 ) F B 2 N ( d 1 ) F B 2 N ( d 2 )
for all ( b 1 b 2 ) V 1 k , ( d 1 d 2 ) V 2 k such that d 1 d 2 .
Example 12.
The composition of BSVNGSs G ˇ b 1 and G ˇ b 2 shown in Figure 10 is defined as G ˇ b 1 G ˇ b 2 = { B 1 B 2 , B 11 B 21 , B 12 B 22 } and is depicted in Figure 14 and Figure 15.
Theorem 3.
The composition G ˇ b 1 G ˇ b 2 = ( B 1 B 2 , B 11 B 21 , B 12 B 22 , , B 1 m B 2 m ) of two BSVNGSs of GSs G s 1 ˇ and G s 2 ˇ is a BSVNGS of G s 1 ˇ G s 2 ˇ .
Proof. 
Consider three cases:
Case 1.
For b V 1 , d 1 d 2 V 2 k ,
T ( B 1 k B 2 k ) P ( ( b d 1 ) ( b d 2 ) ) = T B 1 P ( b ) T B 2 k P ( d 1 d 2 ) T B 1 P ( b ) [ T B 2 P ( d 1 ) T B 2 P ( d 2 ) ] = [ T B 1 P ( b ) T B 2 P ( d 1 ) ] [ T B 1 P ( b ) T B 2 P ( d 2 ) ] = T ( B 1 B 2 ) P ( b d 1 ) T ( B 1 B 2 ) P ( b d 2 )
T ( B 1 k B 2 k ) N ( ( b d 1 ) ( b d 2 ) ) = T B 1 N ( b ) T B 2 k N ( d 1 d 2 ) T B 1 N ( b ) [ T B 2 N ( d 1 ) T B 2 N ( d 2 ) ] = [ T B 1 N ( b ) T B 2 N ( d 1 ) ] [ T B 1 N ( b ) T B 2 N ( d 2 ) ] = T ( B 1 B 2 ) N ( b d 1 ) T ( B 1 B 2 ) N ( b d 2 )
I ( B 1 k B 2 k ) P ( ( b d 1 ) ( b d 2 ) ) = I B 1 P ( b ) I B 2 k P ( d 1 d 2 ) I B 1 P ( b ) [ I B 2 P ( d 1 ) I B 2 P ( d 2 ) ] = [ I B 1 P ( b ) I B 2 P ( d 1 ) ] [ I B 1 P ( b ) I B 2 P ( d 2 ) ] = I ( B 1 B 2 ) P ( b d 1 ) I ( B 1 B 2 ) P ( b d 2 )
I ( B 1 k B 2 k ) N ( ( b d 1 ) ( b d 2 ) ) = I B 1 N ( b ) I B 2 k N ( d 1 d 2 ) I B 1 N ( b ) [ I B 2 N ( d 1 ) I B 2 N ( d 2 ) ] = [ I B 1 N ( b ) I B 2 N ( d 1 ) ] [ I B 1 N ( b ) I B 2 N ( d 2 ) ] = I ( B 1 B 2 ) N ( b d 1 ) I ( B 1 B 2 ) N ( b d 2 )
F ( B 1 k B 2 k ) P ( ( b d 1 ) ( b d 2 ) ) = F B 1 P ( b ) F B 2 k P ( d 1 d 2 ) F B 1 P ( b ) [ F B 2 P ( d 1 ) F B 2 P ( d 2 ) ] = [ F B 1 P ( b ) F B 2 P ( d 1 ) ] [ F B 1 P ( b ) F B 2 P ( d 2 ) ] = F ( B 1 B 2 ) P ( b d 1 ) F ( B 1 B 2 ) P ( b d 2 )
F ( B 1 k B 2 k ) N ( ( b d 1 ) ( b d 2 ) ) = F B 1 N ( b ) F B 2 k N ( d 1 d 2 ) F B 1 N ( b ) [ F B 2 N ( d 1 ) F B 2 N ( d 2 ) ] = [ F B 1 N ( b ) F B 2 N ( d 1 ) ] [ F B 1 N ( b ) F B 2 N ( d 2 ) ] = F ( B 1 B 2 ) N ( b d 1 ) F ( B 1 B 2 ) N ( b d 2 )
for b d 1 , b d 2 V 1 V 2 .
Case 2.
For b V 2 , d 1 d 2 V 1 k ,
T ( B 1 k B 2 k ) P ( ( d 1 b ) ( d 2 b ) ) = T B 2 P ( b ) T B 1 k P ( d 1 d 2 ) T B 2 P ( b ) [ T B 1 P ( d 1 ) T B 1 P ( d 2 ) ] = [ T B 2 P ( b ) T B 1 P ( d 1 ) ] [ T B 2 P ( b ) T B 1 P ( d 2 ) ] = T ( B 1 B 2 ) P ( d 1 b ) T ( B 1 B 2 ) P ( d 2 b )
T ( B 1 k B 2 k ) N ( ( d 1 b ) ( d 2 b ) ) = T B 2 N ( b ) T B 1 k N ( d 1 d 2 ) T B 2 N ( b ) [ T B 1 N ( d 1 ) T B 1 N ( d 2 ) ] = [ T B 2 N ( b ) T B 1 N ( d 1 ) ] [ T B 2 N ( b ) T B 1 N ( d 2 ) ] = T ( B 1 B 2 ) N ( d 1 b ) T ( B 1 B 2 ) N ( d 2 b )
I ( B 1 k B 2 k ) P ( ( d 1 b ) ( d 2 b ) ) = I B 2 P ( b ) I B 1 k P ( d 1 d 2 ) I B 2 P ( b ) [ I B 1 P ( d 1 ) I B 1 P ( d 2 ) ] = [ I B 2 P ( b ) I B 1 P ( d 1 ) ] [ I B 2 P ( b ) I B 1 P ( d 2 ) ] = I ( B 1 B 2 ) P ( d 1 b ) I ( B 1 B 2 ) P ( d 2 b )
I ( B 1 k B 2 k ) N ( ( d 1 b ) ( d 2 b ) ) = I B 2 N ( b ) I B 1 k N ( d 1 d 2 ) I B 2 N ( b ) [ I B 1 N ( d 1 ) I B 1 N ( d 2 ) ] = [ I B 2 N ( b ) I B 1 N ( d 1 ) ] [ I B 2 N ( b ) I B 1 N ( d 2 ) ] = I ( B 1 B 2 ) N ( d 1 b ) I ( B 1 B 2 ) N ( d 2 b )
F ( B 1 k B 2 k ) P ( ( d 1 b ) ( d 2 b ) ) = F B 2 P ( b ) F B 1 k P ( d 1 d 2 ) F B 2 P ( b ) [ F B 1 P ( d 1 ) F B 1 P ( d 2 ) ] = [ F B 2 P ( b ) F B 1 P ( d 1 ) ] [ F B 2 P ( b ) F B 1 P ( d 2 ) ] = F ( B 1 B 2 ) P ( d 1 b ) F ( B 1 B 2 ) P ( d 2 b )
F ( B 1 k B 2 k ) N ( ( d 1 b ) ( d 2 b ) ) = F B 2 N ( b ) F B 1 k N ( d 1 d 2 ) F B 2 N ( b ) [ F B 1 N ( d 1 ) F B 1 N ( d 2 ) ] = [ F B 2 N ( b ) F B 1 N ( d 1 ) ] [ F B 2 N ( b ) F B 1 N ( d 2 ) ] = F ( B 1 B 2 ) N ( d 1 b ) F ( B 1 B 2 ) N ( d 2 b )
for d 1 b , d 2 b V 1 V 2 .
Case 3.
For ( b 1 b 2 ) V 1 k , ( d 1 d 2 ) V 2 k such that d 1 d 2 ,
T ( B 1 k B 2 k ) P ( ( b 1 d 1 ) ( b 2 d 2 ) ) = T B 1 k P ( b 1 b 2 ) T B 2 P ( d 1 ) T B 2 P ( d 2 ) [ T B 1 P ( b 1 ) T B 1 P ( b 2 ] [ T B 2 P ( d 1 ) T B 2 P ( d 2 ) ] = [ T B 1 P ( b 1 ) T B 2 P ( d 1 ) ] [ T B 1 P ( b 2 ) T B 2 P ( d 2 ) ] = T ( B 1 B 2 ) P ( b 1 d 1 ) T ( B 1 B 2 ) P ( b 2 d 2 )
T ( B 1 k B 2 k ) N ( ( b 1 d 1 ) ( b 2 d 2 ) ) = T B 1 k N ( b 1 b 2 ) T B 2 N ( d 1 ) T B 2 N ( d 2 ) [ T B 1 N ( b 1 ) T B 1 N ( b 2 ] [ T B 2 N ( d 1 ) T B 2 N ( d 2 ) ] = [ T B 1 N ( b 1 ) T B 2 N ( d 1 ) ] [ T B 1 N ( b 2 ) T B 2 N ( d 2 ) ] = T ( B 1 B 2 ) N ( b 1 d 1 ) T ( B 1 B 2 ) N ( b 2 d 2 )
I ( B 1 k B 2 k ) P ( ( b 1 d 1 ) ( b 2 d 2 ) ) = I B 1 k P ( b 1 b 2 ) I B 2 P ( d 1 ) I B 2 P ( d 2 ) [ I B 1 P ( b 1 ) I B 1 P ( b 2 ] [ I B 2 P ( d 1 ) I B 2 P ( d 2 ) ] = [ I B 1 P ( b 1 ) I B 2 P ( d 1 ) ] [ I B 1 P ( b 2 ) I B 2 P ( d 2 ) ] = I ( B 1 B 2 ) P ( b 1 d 1 ) I ( B 1 B 2 ) P ( b 2 d 2 )
I ( B 1 k B 2 k ) N ( ( b 1 d 1 ) ( b 2 d 2 ) ) = I B 1 k N ( b 1 b 2 ) I B 2 N ( d 1 ) I B 2 N ( d 2 ) [ I B 1 N ( b 1 ) I B 1 N ( b 2 ] [ I B 2 N ( d 1 ) I B 2 N ( d 2 ) ] = [ I B 1 N ( b 1 ) I B 2 N ( d 1 ) ] [ I B 1 N ( b 2 ) I B 2 N ( d 2 ) ] = I ( B 1 B 2 ) N ( b 1 d 1 ) I ( B 1 B 2 ) N ( b 2 d 2 )
F ( B 1 k B 2 k ) P ( ( b 1 d 1 ) ( b 2 d 2 ) ) = F B 1 k P ( b 1 b 2 ) F B 2 P ( d 1 ) F B 2 P ( d 2 ) [ F B 1 P ( b 1 ) F B 1 P ( b 2 ] [ F B 2 P ( d 1 ) F B 2 P ( d 2 ) ] = [ F B 1 P ( b 1 ) F B 2 P ( d 1 ) ] [ F B 1 P ( b 2 ) F B 2 P ( d 2 ) ] = F ( B 1 B 2 ) P ( b 1 d 1 ) F ( B 1 B 2 ) P ( b 2 d 2 )
F ( B 1 k B 2 k ) N ( ( b 1 d 1 ) ( b 2 d 2 ) ) = F B 1 k N ( b 1 b 2 ) F B 2 N ( d 1 ) F B 2 N ( d 2 ) [ F B 1 N ( b 1 ) F B 1 N ( b 2 ] [ F B 2 N ( d 1 ) F B 2 N ( d 2 ) ] = [ F B 1 N ( b 1 ) F B 2 N ( d 1 ) ] [ F B 1 N ( b 2 ) F B 2 N ( d 2 ) ] = F ( B 1 B 2 ) N ( b 1 d 1 ) F ( B 1 B 2 ) N ( b 2 d 2 )
where b 1 d 1 , b 2 d 2 V 1 V 2 .
All cases are satisfied for all k { 1 , 2 , , m } .  ☐

3. Conclusions

The notion of bipolar fuzzy graphs is applicable in several domains of engineering, expert systems, pattern recognition, signal processing, neural networks, medical diagnosis and decision-making. BSVNGSs show more flexibility, compatibility and precision for a system than single-valued neutrosophic graph structures. In this research paper, we introduced certain concepts of BSVNGSs and elaborated on them with suitable examples. Further, we defined some operations on BSVNGSs and investigated some relevant properties of these operations. We intend to generalize our research of fuzzification to (1) concepts of BSVN soft graph structures, (2) concepts of BSVN rough fuzzy graph structures, (3) concepts of BSVN fuzzy soft graph structures, and (4) concepts of BSVN rough fuzzy soft graph structures.

Acknowledgments

The authors are thankful to referees for their valuable comments and suggestion.

Author Contributions

Muhammad Akram, Muzzamal Sitara and Florentin Smarandache conceived and designed the experiments; Muhammad Akram performed the experiments; Muhammad Akram and Muzzamal Sitara analyzed the data; Florentin Smarandache contributed reagents/materials/analysis tools; Muzzamal Sitara wrote the paper.

Conflicts of Interest

The authors declare no conflict of interest regarding the publication of this research paper.

References

  1. Zadeh, L.A. Fuzzy sets. Inf. Control 1965, 8, 338–353. [Google Scholar] [CrossRef]
  2. Atanassov, K. Intuitionistic fuzzy sets. Fuzzy Sets Syst. 1986, 20, 87–96. [Google Scholar] [CrossRef]
  3. Zhang, W.-R. Bipolar fuzzy sets and relations: A computational framework for cognitive modeling and multiagent decision analysis. In Proceedings of the Industrial Fuzzy Control and Intelligent Systems Conference, and the NASA Joint Technology Workshop on Neural Networks and Fuzzy Logic Fuzzy Information Processing Society Biannual Conference, San Antonio, TX, USA, 18–21 December 1994; pp. 305–309. [Google Scholar]
  4. Smarandache, F. Neutrosophy Neutrosophic Probability, Set, and Logic; Amer Res Press: Rehoboth, MA, USA, 1998. [Google Scholar]
  5. Wang, H.; Smarandache, F.; Zhang, Y.Q.; Sunderraman, R. Single valued neutrosophic sets. Multispace Multistruct. 2010, 4, 410–413. [Google Scholar]
  6. Deli, I.; Ali, M.; Smarandache, F. Bipolar neutrosophic sets and their application based on multi-criteria decision making problems. In Proceedings of the International Conference IEEE Advanced Mechatronic Systems (ICAMechS), Beijing, China, 22–24 August 2015; pp. 249–254. [Google Scholar]
  7. Zadeh, L.A. Similarity relations and fuzzy orderings. Inf. Sci. 1971, 3, 177–200. [Google Scholar] [CrossRef]
  8. Kauffman, A. Introduction to the Theory of Fuzzy Subsets; Academic Press: Cambridge, MA, USA, 1973; Volume 1. [Google Scholar]
  9. Rosenfeld, A. Fuzzy graphs. In Fuzzy Sets and Their Applications; Zadeh, L.A., Fu, K.S., Eds.; Academic Press: New York, NY, USA, 1975; pp. 77–95. [Google Scholar]
  10. Bhattacharya, P. Some remarks on fuzzy graphs. Pattern Recognit. Lett. 1987, 6, 297–302. [Google Scholar] [CrossRef]
  11. Akram, M. Bipolar fuzzy graphs. Inf. Sci. 2011, 181, 5548–5564. [Google Scholar] [CrossRef]
  12. Dinesh, T.; Ramakrishnan, T.V. On generalised fuzzy graph structures. Appl. Math. Sci. 2011, 5, 173–180. [Google Scholar]
  13. Akram, M.; Akmal, R. Application of bipolar fuzzy sets in graph structures. Appl. Comput. Intell. Soft Comput. 2016, 2016. [Google Scholar] [CrossRef]
  14. Akram, M.; Akmal, R. Certain operations on bipolar fuzzy graph structures. Appl. Appl. Math. 2016, 11, 463–488. [Google Scholar]
  15. Akram, M.; Shahzadi, S. Representation of graphs using intuitionistic neutrosophic soft sets. J. Math. Anal. 2016, 7, 31–53. [Google Scholar]
  16. Akram, M.; Shahzadi, G. Operations on single-valued neutrosophic graphs. J. Uncertain Syst. 2017, 11, 176–196. [Google Scholar]
  17. Broumi, S.; Smarandache, F.; Talea, M.; Bakali, A. An introduction to bipolar single valued neutrosophic graph theory. Appl. Mech. Mater. 2016, 841, 184–191. [Google Scholar] [CrossRef]
  18. Dhavaseelan, R.; Vikramaprasad, R.; Krishnaraj, V. Certain types of neutrosophic graphs. Int. J. Math. Sci. Appl. 2015, 5, 333–339. [Google Scholar]
  19. Dinesh, T. A study on graph structures Incidence Algebras and Their Fuzzy Analogues. Ph.D. Thesis, Kannur University, Kannur, India, 2011. [Google Scholar]
  20. Ye, J. Single-valued neutrosophic minimum spanning tree and its clustering method. J. Intell. Syst. 2014, 23, 311–324. [Google Scholar] [CrossRef]
  21. Ye, J. Improved correlation coefficients of single-valued neutrosophic sets and interval neutrosophic sets for multiple attribute decision making. J. Intell. Fuzzy Syst. 2014, 27, 2453–2462. [Google Scholar]
  22. Ye, J. A multicriteria decision-making method using aggregation operators for simplified neutrosophic sets. J. Intell. Fuzzy Syst. 2014, 26, 2459–2466. [Google Scholar]
  23. Akram, M.; Sarwar, M. Novel multiple criteria decision making methods based on bipolar neutrosophic sets and bipolar neutrosophic graphs. Ital. J. Pure Appl. Math. 2017, 38, 368–389. [Google Scholar]
  24. Majumdar, P.; Samanta, S.K. On similarity and entropy of neutrosophic sets. J. Intell. Fuzzy Syst. 2014, 26, 1245–1252. [Google Scholar]
  25. Mordeson, J.N.; Chang-Shyh, P. Operations on fuzzy graphs. Inf. Sci. 1994, 79, 159–170. [Google Scholar] [CrossRef]
  26. Mordeson, J.N.; Nair, P.S. Fuzzy Graphs and Fuzzy Hypergraphs; Physica Verlag: Heidelberg, Germany, 1998; Second Edition 2001. [Google Scholar]
  27. Parvathi, R.; Karunambigai, M.G.; Atanassov, K.T. Operations on intuitionistic fuzzy graphs. In Proceedings of the IEEE International Conference on Fuzzy Systems, Jeju Island, Korea, 20–24 August 2009; pp. 1396–1401. [Google Scholar]
  28. Peng, J.J.; Wang, J.Q.; Zhang, H.Y.; Chen, X.H. An outranking approach for multi-criteria decision-making problems with simplified neutrosophic sets. Appl. Soft Comput. 2014, 25, 336–346. [Google Scholar] [CrossRef]
  29. Sampathkumar, E. Generalized graph structures. Bull. Kerala Math. Assoc. 2006, 3, 65–123. [Google Scholar]
  30. Akram, M.; Sitara, M. Bipolar neutrosophic graph structures. J. Indones. Math. Soc. 2017, 23, 55–76. [Google Scholar] [CrossRef]
Figure 1. A BSVN graph structure.
Figure 1. A BSVN graph structure.
Mathematics 05 00060 g001
Figure 2. A BSVN B 1 -cycle.
Figure 2. A BSVN B 1 -cycle.
Mathematics 05 00060 g002
Figure 3. A BSVN fuzzy B 2 -cycle.
Figure 3. A BSVN fuzzy B 2 -cycle.
Mathematics 05 00060 g003
Figure 4. A BSVN B 2 -path.
Figure 4. A BSVN B 2 -path.
Mathematics 05 00060 g004
Figure 5. A bipolar single-valued neutrosophic graph structure (BSVNGS) G ˇ b n = ( B , B 1 , B 2 , B 3 ) .
Figure 5. A bipolar single-valued neutrosophic graph structure (BSVNGS) G ˇ b n = ( B , B 1 , B 2 , B 3 ) .
Mathematics 05 00060 g005
Figure 6. A BSVNGS G ˇ b n = ( B , B 1 , B 2 ) .
Figure 6. A BSVNGS G ˇ b n = ( B , B 1 , B 2 ) .
Mathematics 05 00060 g006
Figure 7. A BSVNGS G ˇ b s = ( B , B 1 , B 2 ) .
Figure 7. A BSVNGS G ˇ b s = ( B , B 1 , B 2 ) .
Mathematics 05 00060 g007
Figure 8. A BSVN B 2 -tree.
Figure 8. A BSVN B 2 -tree.
Mathematics 05 00060 g008
Figure 9. A BSVN fuzzy B 1 -tree.
Figure 9. A BSVN fuzzy B 1 -tree.
Mathematics 05 00060 g009
Figure 10. Two BSVNGSs G ˇ b 1 and G ˇ b 2 .
Figure 10. Two BSVNGSs G ˇ b 1 and G ˇ b 2 .
Mathematics 05 00060 g010
Figure 11. G ˇ b 1 × G ˇ b 2 .
Figure 11. G ˇ b 1 × G ˇ b 2 .
Mathematics 05 00060 g011
Figure 12. G ˇ b 1 × G ˇ b 2 .
Figure 12. G ˇ b 1 × G ˇ b 2 .
Mathematics 05 00060 g012
Figure 13. G ˇ b 1 × G ˇ b 2 .
Figure 13. G ˇ b 1 × G ˇ b 2 .
Mathematics 05 00060 g013
Figure 14. G ˇ b 1 G ˇ b 2 .
Figure 14. G ˇ b 1 G ˇ b 2 .
Mathematics 05 00060 g014
Figure 15. G ˇ b 1 G ˇ b 2 .
Figure 15. G ˇ b 1 G ˇ b 2 .
Mathematics 05 00060 g015
Table 1. Bipolar single-valued neutrosophic (BSVN) set B on vertex set V.
Table 1. Bipolar single-valued neutrosophic (BSVN) set B on vertex set V.
B b 1 b 2 b 3 b 4 b 5 b 6 b 7 b 8
T P 0.50.40.40.50.30.40.50.3
I P 0.40.30.40.40.20.40.50.4
F P 0.60.50.40.60.40.70.40.5
T N −0.5−0.4−0.4−0.5−0.3−0.4−0.5−0.3
I N −0.4−0.3−0.4−0.4−0.2−0.4−0.5−0.4
F N −0.6−0.5−0.4−0.6−0.4−0.7−0.4−0.5
Table 2. BSVN sets B 1 , B 2 and B 3 .
Table 2. BSVN sets B 1 , B 2 and B 3 .
B 1 b 1 b 2 b 2 b 7 b 4 b 8 b 6 b 8 b 5 b 6 b 3 b 4 B 2 b 1 b 5 b 5 b 7 b 3 b 6 b 7 b 8 B 3 b 1 b 3 b 2 b 4
T P 0.40.40.30.30.30.4 T P 0.30.30.40.3 T P 0.40.4
I P 0.30.30.40.40.20.4 I P 0.20.20.40.4 I P 0.40.3
F P 0.60.50.60.70.70.6 F P 0.60.40.70.5 F P 0.60.6
T N −0.4−0.4−0.3−0.3−0.3−0.4 T N −0.3−0.3−0.4−0.3 T N −0.4−0.4
I N −0.3−0.3−0.4−0.4−0.2−0.4 I N −0.2−0.2−0.4−0.4 I N −0.4−0.3
F N −0.6−0.5−0.6−0.7−0.7−0.6 F N −0.6−0.4−0.7−0.5 F N −0.6−0.6

Share and Cite

MDPI and ACS Style

Akram, M.; Sitara, M.; Smarandache, F. Graph Structures in Bipolar Neutrosophic Environment. Mathematics 2017, 5, 60. https://doi.org/10.3390/math5040060

AMA Style

Akram M, Sitara M, Smarandache F. Graph Structures in Bipolar Neutrosophic Environment. Mathematics. 2017; 5(4):60. https://doi.org/10.3390/math5040060

Chicago/Turabian Style

Akram, Muhammad, Muzzamal Sitara, and Florentin Smarandache. 2017. "Graph Structures in Bipolar Neutrosophic Environment" Mathematics 5, no. 4: 60. https://doi.org/10.3390/math5040060

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop