Trends in COVID-19 Health Disparities in North Carolina: Preparing the Field for Long-Haul Patients
Abstract
:1. Introduction
2. Materials and Methods
2.1. Setting and Population
2.2. Study Design
2.3. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- WHO. WHO Coronavirus (COVID-19) Dashboard With Vaccination Data. Available online: https://covid19.who.int/ (accessed on 31 August 2021).
- Logue, J.K.; Franko, N.M.; McCulloch, D.J.; McDonald, D.; Magedson, A.; Wolf, C.R.; Chu, H.Y. Sequelae in Adults at 6 Months After COVID-19 Infection. JAMA Netw. Open 2021, 4, e210830. [Google Scholar] [CrossRef] [PubMed]
- Datta, S.D.; Talwar, A.; Lee, J.T. A Proposed Framework and Timeline of the Spectrum of Disease Due to SARS-CoV-2 Infection: Illness Beyond Acute Infection and Public Health Implications. JAMA 2020, 324, 2251–2252. [Google Scholar] [CrossRef] [PubMed]
- National Institute for Health and Care Excellence. Overview|COVID-19 Rapid Guideline: Managing the Long-Term Effects of COVID-19; NICE Guideline; NICE: London, UK, 2020; pp. 1–35. [Google Scholar]
- Marshall, M. The Lasting Misery of Coronavirus Long-Haulers. Nature 2020, 585, 339–341. [Google Scholar] [CrossRef] [PubMed]
- Fernández-de-las-Peñas, C.; Palacios-Ceña, D.; Gómez-Mayordomo, V.; Cuadrado, M.L.; Florencio, L.L. Defining Post-COVID Symptoms (Post-Acute COVID, Long COVID, Persistent Post-COVID): An Integrative Classification. Int. J. Environ. Res. Public Health 2021, 18, 2621. [Google Scholar] [CrossRef] [PubMed]
- Garg, P.; Arora, U.; Kumar, A.; Wig, N. The “Post-COVID” Syndrome: How Deep Is the Damage? J. Med. Virol. 2021, 93, 673–674. [Google Scholar] [CrossRef] [PubMed]
- CDC. COVID-19 Racial and Ethnic Disparities. Available online: https://www.cdc.gov/coronavirus/2019-ncov/community/health-equity/racial-ethnic-disparities/index.html (accessed on 31 August 2021).
- Webb Hooper, M.; Nápoles, A.M.; Pérez-Stable, E.J. COVID-19 and Racial/Ethnic Disparities. JAMA J. Am. Med. Assoc. 2020, 323, 2466–2467. [Google Scholar] [CrossRef]
- NCDHHS. Cases|NC COVID-19. Available online: https://covid19.ncdhhs.gov/dashboard/cases (accessed on 31 August 2021).
- NCDHHS. COVID-19 North Carolina Dashboard. Available online: https://covid19.ncdhhs.gov/dashboard (accessed on 31 August 2021).
- U.S. Census Bureau. 2019–2023 ACS 5-Year Data Profile. Available online: https://www.census.gov/acs/www/data/data-tables-and-tools/data-profiles/2019/ (accessed on 31 August 2021).
- Centers for Disease Control and Prevention; Agency for Toxic Substances and Disease Registry; Geospatial Research, Analysis, and Services Program. CDC/ATSDR Social Vulnerability Index 2018 Database North Carolina. Available online: https://www.atsdr.cdc.gov/placeandhealth/svi/data_documentation_download.html (accessed on 31 August 2021).
- Raifman, M.A.; Raifman, J.R. Disparities in the Population at Risk of Severe Illness from COVID-19 by Race/Ethnicity and Income. Am. J. Prev. Med. 2020, 59, 137–139. [Google Scholar] [CrossRef]
- Adamkiewicz, G.; Zota, A.R.; Patricia Fabian, M.; Chahine, T.; Julien, R.; Spengler, J.D.; Levy, J.I. Moving Environmental Justice Indoors: Understanding Structural Influences on Residential Exposure Patterns in Low-Income Communities. Am. J. Public Health 2011, 101 (Suppl. 1), 238–245. [Google Scholar] [CrossRef]
- Berger, Z.; Altiery De Jesus, V.; Assoumou, S.A.; Greenhalgh, T. Long COVID and Health Inequities: The Role of Primary Care. Milbank Q. 2021, 99, 519–541. [Google Scholar] [CrossRef] [PubMed]
- Crook, H.; Raza, S.; Nowell, J.; Young, M.; Edison, P. Long COVID-Mechanisms, Risk Factors, and Management. BMJ 2021, 374, n1648. [Google Scholar] [CrossRef] [PubMed]
- Brown, L.; Billings, V.; Pilkington, W.; Kumar, D. Facilitating COVID-19 Testing in Historically Marginalized Populations by Leveraging Community Partnerships. N. C. Med. J. 2021, 82, 301. [Google Scholar] [CrossRef] [PubMed]
- Izda, V.; Jeffries, M.A.; Sawalha, A.H. COVID-19: A Review of Therapeutic Strategies and Vaccine Candidates. Clin Immunol 2021, 222, 108634. [Google Scholar] [CrossRef]
- NCDHHS. Vaccinations|NC COVID-19. Available online: https://covid19.ncdhhs.gov/dashboard/vaccinations (accessed on 31 August 2021).
- Fowlkes, A.; Gaglani, M.; Groover, K.; Thiese, M.S.; Tyner, H.; Ellingson, K.; HEROES-RECOVER Cohorts. Effectiveness of COVID-19 Vaccines in Preventing SARS-CoV-2 Infection Among Frontline Workers Before and During B.1.617.2 (Delta) Variant Predominance—Eight U.S. Locations, December 2020-August 2021. MMWR. Morb. Mortal. Wkly. Rep. 2021, 70, 1167–1169. [Google Scholar] [CrossRef] [PubMed]
- Antonelli, M.; Penfold, R.S.; Merino, J.; Sudre, C.H.; Molteni, E.; Berry, S.; Canas, L.S.; Graham, M.S.; Klaser, K.; Modat, M.; et al. Risk Factors and Disease Profile of Post-Vaccination SARS-CoV-2 Infection in UK Users of the COVID Symptom Study App: A Prospective, Community-Based, Nested, Case-Control Study. Lancet Infect. Dis. 2021, in press. [Google Scholar] [CrossRef]
- Bergwerk, M.; Gonen, T.; Lustig, Y.; Amit, S.; Lipsitch, M.; Cohen, C.; Mandelboim, M.; Gal Levin, E.; Rubin, C.; Indenbaum, V.; et al. COVID-19 Breakthrough Infections in Vaccinated Health Care Workers. N. Engl. J. Med. 2021, 385, 1474–1484. [Google Scholar] [CrossRef]
- Machingaidze, S.; Wiysonge, C.S. Understanding COVID-19 Vaccine Hesitancy. Nat. Med. 2021, 27, 1338–1339. [Google Scholar] [CrossRef]
- Hodgson, S.H.; Mansatta, K.; Mallett, G.; Harris, V.; Emary, K.R.W.; Pollard, A.J. What Defines an Efficacious COVID-19 Vaccine? A Review of the Challenges Assessing the Clinical Efficacy of Vaccines against SARS-CoV-2. Lancet Infect. Dis. 2021, 21, e26–e35. [Google Scholar] [CrossRef]
- Betsch, C.; Schmid, P.; Heinemeier, D.; Korn, L.; Holtmann, C.; Böhm, R. Beyond Confidence: Development of a Measure Assessing the 5C Psychological Antecedents of Vaccination. PLoS ONE 2018, 13, e0208601. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hildreth, J.E.K.; Alcendor, D.J. Targeting COVID-19 Vaccine Hesitancy in Minority Populations in the US: Implications for Herd Immunity. Vaccines 2021, 9, 489. [Google Scholar] [CrossRef] [PubMed]
- Strully, K.W.; Harrison, T.M.; Pardo, T.A.; Carleo-Evangelist, J. Strategies to Address COVID-19 Vaccine Hesitancy and Mitigate Health Disparities in Minority Populations. Front. Public Health 2021, 9. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, L.H.; Joshi, A.D.; Drew, D.A.; Merino, J.; Ma, W.; Lo, C.-H.; Kwon, S.; Wang, K.; Graham, M.S.; Polidori, L.; et al. Racial and Ethnic Differences in COVID-19 Vaccine Hesitancy and Uptake. medRxiv Prepr. Serv. Health Sci. 2021, 1–49. [Google Scholar] [CrossRef]
- Doherty, I.A.; Pilkington, W.; Brown, L.; Billings, V.; Hoffler, U.; Paulin, L.; Kimbro, K.S.; Baker, B.; Zhang, T.; Locklear, T.; et al. COVID-19 Vaccine Hesitancy in Underserved Communities of North Carolina. medRxiv Prepr. Serv. Health Sci. 2021, 1–30. [Google Scholar] [CrossRef] [PubMed]
- Galvani, A.P.; Parpia, A.S.; Pandey, A.; Zimmer, C.; Kahn, J.G.; Fitzpatrick, M.C. The Imperative for Universal Healthcare to Curtail the COVID-19 Outbreak in the USA. EClinicalMedicine 2020, 23, 1–2. [Google Scholar] [CrossRef] [PubMed]
- The Catastrophic Cost of Uninsurance: COVID-19 Cases and Deaths Closely Tied to America’s Health Coverage Gaps—Families Usa. Available online: https://familiesusa.org/resources/the-catastrophic-cost-of-uninsurance-covid-19-cases-and-deaths-closely-tied-to-americas-health-coverage-gaps/ (accessed on 17 November 2021).
- United States Census Bureau. Health Insurance Coverage in the United States; United States Census Bureau: Washington, DC, USA, 2020. [Google Scholar]
- Gerry, J.M.; Weiser, T.G.; Spain, D.A.; Staudenmayer, K.L. Uninsured Status May Be More Predictive of Outcomes among the Severely Injured than Minority Race. Injury 2016, 47, 197–202. [Google Scholar] [CrossRef] [PubMed] [Green Version]
North Carolina Counties (n = 100) | Mean | SD | |
---|---|---|---|
Total Population (per county) | 102,648.8 | 166,430.8 | |
Population per square mile (per county) | 201.0 | 287.3 | |
Median | IQR | ||
Total Population | 55,496.5 | 97,196 | |
Sociodemographic characteristics (%) | Mean | SD | |
Age | Under 18 | 20.8 | 2.8 |
18–64 | 59.7 | 3.3 | |
65 and over | 19.5 | 4.7 | |
Race/Ethnicity | Black | 20.3 | 16.3 |
Asian | 1.2 | 1.4 | |
White | 72.2 | 17.7 | |
Other | 2.2 | 1.6 | |
Hispanic or Latino | 7.3 | 4.1 | |
Socioeconomic status | |||
Median household income (US Dollars) | 51,167.35 | 9116.60 | |
% in poverty | 15.9 | 4.6 |
Cases per 100,000 | Deaths per 100,000 | Vaccination per 100,000 | |
---|---|---|---|
Percent of population in poverty | 0.005 | 0.189 | −0.027 |
Median household income | −0.209 * | −0.386 ** | 0.323 ** |
Vaccination per 100,000 | −0.233 * | −0.386 ** |
Cases per 1000 Population | Vaccines per 1000 Population | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Age | Self-Identified Race | Ethnicity | Age | Self-Identified Race | Ethnicity | |||||||||||
County Characteristics | Under 18 yo | 18–64 yo | 65 yo or More | Asian | Black | White | Other | Hispanic or Latino | Under 18 yo | 18–64 yo | 65 yo or More | Asian | Black | White | Other | Hispanic or Latino |
Population in poverty (%) | 0.044 | −0.021 | 0.063 | −0.079 | 0.013 | −0.141 | 0.211 * | 0.030 | −0.088 | −0.072 | −0.039 | −0.097 | 0.003 | −0.032 | 0.021 | 0.006 |
Median household income | −0.058 | −0.167 | −0.278 ** | 0.180 | 0.073 | −0.164 | −0.137 | −0.012 | 0.409 ** | 0.324 ** | 0.386 ** | 0.248 * | 0.200 * | 0.321 ** | 0.109 | 0.198 * |
Population density (pop/sq mile) | 0.162 | 0.460 ** | 0.246 * | 0.641 ** | 0.580 ** | 0.235 * | −0.156 | 0.432 ** | 0.685 ** | 0.412 ** | 0.473 ** | 0.697 ** | 0.449 ** | 0.249 * | −0.340 ** | 0.427 ** |
SVI a | 0.198 * | 0.422 ** | 0.505 ** | −0.012 | 0.161 | 0.270 ** | 0.073 | 0.127 | −0.435 ** | −0.338 ** | −0.258 ** | −0.135 | −0.133 | −0.377 ** | −0.211 * | −0.280 ** |
SVI theme 1Socioeconomic status | 0.173 | 0.291 ** | 0.458 ** | −0.245 * | −0.072 | 0.235 * | 0.168 | 0.006 | −0.621 ** | −0.496 ** | −0.459 ** | −0.395 ** | −0.301 ** | −0.498 ** | −0.095 | −0.393 ** |
SVI theme 2Household composition and disability | 0.113 | 0.263 ** | 0.473 ** | −0.152 | 0.018 | 0.190 | 0.155 | 0.038 | −0.538 ** | −0.473 ** | −0.358 ** | −0.302 ** | −0.143 | −0.508 ** | −0.127 | −0.331 ** |
SVI theme 3Minority status and language | 0.148 | 0.471 ** | 0.234 * | 0.469 ** | 0.572 ** | 0.166 | −0.013 | 0.275 ** | 0.157 | 0.217 * | 0.171 | 0.492 ** | 0.223 * | 0.020 | −0.266 ** | 0.051 |
SVI theme 4Housing type and transportation | 0.172 | 0.330 ** | 0.327 * | 0.100 | 0.212 * | 0.179 | −0.043 | 0.159 | −0.129 | −0.082 | −0.020 | 0.044 | 0.027 | −0.081 | −0.223 * | −0.016 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Muratori Holanda, T.; Alberico, C.; Rios-Colon, L.; Arthur, E.; Kumar, D. Trends in COVID-19 Health Disparities in North Carolina: Preparing the Field for Long-Haul Patients. Healthcare 2021, 9, 1704. https://doi.org/10.3390/healthcare9121704
Muratori Holanda T, Alberico C, Rios-Colon L, Arthur E, Kumar D. Trends in COVID-19 Health Disparities in North Carolina: Preparing the Field for Long-Haul Patients. Healthcare. 2021; 9(12):1704. https://doi.org/10.3390/healthcare9121704
Chicago/Turabian StyleMuratori Holanda, Thais, Claudia Alberico, Leslimar Rios-Colon, Elena Arthur, and Deepak Kumar. 2021. "Trends in COVID-19 Health Disparities in North Carolina: Preparing the Field for Long-Haul Patients" Healthcare 9, no. 12: 1704. https://doi.org/10.3390/healthcare9121704