Polymer-Based Chemical Sensors
1. Introduction
2. The Special Issue
Acknowledgments
Conflicts of Interest
References
- Cichosz, S.; Masek, M.; Zaborski, M. Polymer-based sensors: A review. Polym. Test. 2018, 67, 342–348. [Google Scholar] [CrossRef]
- García, J.M.; García, F.C.; Serna, F.; de la Peña, J.L. Fluorogenic and chromogenic polymer chemosensors. Polym. Rev. 2011, 51, 341–390. [Google Scholar] [CrossRef]
- García, J.M.; Pablos, J.L.; García, F.C.; Serna, F. Sensory polymers for detecting explosives and chemical warfare agents. In Industrial Applications for Intelligent Polymers and Coatings, 1st ed.; Hosseini, M., Makhlouf, A.S., Eds.; Springer International Publishing: Cham, Switzerland, 2016; pp. 553–576. ISBN 978-3-319-26893-4. [Google Scholar]
- Jeong, B.; Gutowska, A. Lessons from nature: Stimuli-responsive polymers and their biomedical applications. Trends Biotechnol. 2002, 20, 305–311. [Google Scholar] [CrossRef]
- Bajpai, A.K.; Sandeep, K.S.; Bhanu, S.; Kankane, S. Responsive polymers in controlled drug delivery. Prog. Polym. Sci. 2008, 33, 1088–1118. [Google Scholar] [CrossRef]
- Balint, R.; Cassidy, N.; Cartmell, S. Conductive polymers: Towards a smart biomaterial for tissue engineering. Acta Biomater. 2014, 10, 2341–2353. [Google Scholar] [CrossRef] [PubMed]
- Hu, J.; Liu, S. Responsive polymers for detection and sensing applications: current status and future developments. Macromolecules 2010, 43, 8315–8330. [Google Scholar] [CrossRef]
- Uzun, L.; Turner, A.P. Molecularly-imprinted polymer sensors: Realizing their potential. Biosens. Bioelectron. 2016, 76, 131–144. [Google Scholar] [CrossRef] [PubMed]
- Jordan, J.; Jacob, K.L.; Tannenbaum, R.; Sharaf, M.A.; Jasiuk, I. Experimental trends in polymer nanocomposites—A review. Mater. Sci. Eng. A 2005, 393, 1–11. [Google Scholar] [CrossRef]
- Saunders, K.J. Acrylic polymers. In Organic Polymer Chemistry, 2nd ed.; Springer: Dodrecht, Germany, 1988; pp. 125–148. ISBN 978-94-009-1195-6. [Google Scholar]
- MacDiarmid, A.G.; Mammone, R.J.; Kaner, R.B.; Porter, S.J. The concept of ‘doping’ of conducting polymers: The role of reduction potentials. Philos. Trans. R. Soc. A 1985, 314, 3–15. [Google Scholar] [CrossRef]
- Okamoto, Y. Chiral polymers. Prog. Polym. Sci. 2000, 25, 159–162. [Google Scholar] [CrossRef]
- Vallejos, S.; Estévez, P.; Ibeas, S.; Muñoz, A.; García, F.C.; Serna, F.; García, J.M. A selective and highly sensitive fluorescent probe of Hg2+ in organic and aqueous media: The role of a polymer network in extending the sensing phenomena to water environments. Sens. Actuators B Chem. 2011, 157, 686–690. [Google Scholar] [CrossRef]
- Kwan, P.H.; MacLachlan, M.J.; Swager, T.M. Rotaxaned conjugated sensory polymers. J. Am. Chem. Soc. 2004, 126, 8638–8639. [Google Scholar] [CrossRef] [PubMed]
- Pablos, J.L.; Trigo-López, M.; Serna, F.; García, F.C.; García, J.M. Solid polymer substrates and smart fibres for the selective visual detection of TNT both in vapor and in aqueous media. RSC Adv. 2014, 4, 25562–25568. [Google Scholar] [CrossRef]
- Wang, E.; Sun, D.; Li, H.; Sun, X.; Liu, J.; Ren, Z.; Yan, S. High efficiency organosilicon-containing polymer sensors for the detection of trinitrotoluene and dinitrotoluene. J. Mater. Chem. C 2016, 4, 6756–6760. [Google Scholar] [CrossRef]
- Eo, S.H.; Song, S.; Yoon, B.; Kim, J.M. A microfluidic conjugated-polymer sensor chip. Adv. Mater. 2008, 20, 1690–1694. [Google Scholar] [CrossRef]
- Barone, P.W.; Yoon, H.; Ortiz-García, R.; Zhang, J.; Ahan, J.H.; Kim, J.H.; Strano, M.S. Modulation of single-walled carbon nanotube photoluminescence by hydrogel swelling. ACS Nano 2009, 3, 3869–3877. [Google Scholar] [CrossRef] [PubMed]
- Petrov, V.; Avilova, M. Theoretical investigations of the interaction of gaseous pollutants molecules with the polyacrylonitrile surface. Chemosensors 2018, 6, 39. [Google Scholar] [CrossRef]
- Ali, A.R.; Tourky, A.S.; Roushdy, A.A. Effect of dangling bonds on de-poling time for polymeric electric field optical sensors. Chemosensors 2018, 6, 3. [Google Scholar] [CrossRef]
- Ziegler, D.; Palmero, P.; Giorcelli, M.; Tagliaferro, A.; Tulliani, J-M. Biochars as innovative humidity sensing materials. Chemosensors 2017, 5, 35. [Google Scholar] [CrossRef]
- Sachan, A.; Castro, M.; Choudhary, V.; Feller, J.-F. vQRS based on hybrids of CNT with PMMA-POSS and PS-POSS Copolymers to reach the sub-PPM detection of ammonia and formaldehyde at room temperature despite moisture. Chemosensors 2017, 5, 22. [Google Scholar] [CrossRef]
- Reglero Ruiz, J.A.; Sanjuán, A.M.; Vallejos, S.; García, F.C.; García, J.M. Smart polymers in micro and nano sensory devices. Chemosensors 2018, 6, 12. [Google Scholar] [CrossRef]
- Si, B.; Song, E. Recent advances in the detection of neurotransmitters. Chemosensors 2018, 6, 1. [Google Scholar] [CrossRef]
- Cinti, S. Polymeric materials for printed-based electroanalytical (Bio)applications. Chemosensors 2017, 5, 31. [Google Scholar] [CrossRef]
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Reglero Ruiz, J.A.; Vallejos, S.; García, F.C.; García, J.M. Polymer-Based Chemical Sensors. Chemosensors 2018, 6, 42. https://doi.org/10.3390/chemosensors6030042
Reglero Ruiz JA, Vallejos S, García FC, García JM. Polymer-Based Chemical Sensors. Chemosensors. 2018; 6(3):42. https://doi.org/10.3390/chemosensors6030042
Chicago/Turabian StyleReglero Ruiz, José Antonio, Saúl Vallejos, Félix Clemente García, and José Miguel García. 2018. "Polymer-Based Chemical Sensors" Chemosensors 6, no. 3: 42. https://doi.org/10.3390/chemosensors6030042
APA StyleReglero Ruiz, J. A., Vallejos, S., García, F. C., & García, J. M. (2018). Polymer-Based Chemical Sensors. Chemosensors, 6(3), 42. https://doi.org/10.3390/chemosensors6030042