Sex X Time Interactions in Lp(a) and LDL-C Response to Evolocumab
Abstract
:1. Introduction
2. Methods
2.1. Study Design and Participants
2.2. Assessments
2.2.1. Clinical Data and Physical Assessments
2.2.2. Laboratory Analysis
2.3. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Raschi, E.; Casula, M.; Cicero, A.F.G.; Corsini, A.; Borghi, C.; Catapano, A. Beyond statins: New pharmacological targets to decrease LDL-cholesterol and cardiovascular events. Pharmacol. Ther. 2023, 250, 108507. [Google Scholar] [CrossRef] [PubMed]
- Farmakis, I.; Doundoulakis, I.; Pagiantza, A.; Zafeiropoulos, S.; Antza, C.; Karvounis, H.; Giannakoulas, G. Lipoprotein(a) Reduction with Proprotein Convertase Subtilisin/Kexin Type 9 Inhibitors: A Systematic Review and Meta-analysis. J. Cardiovasc. Pharmacol. 2021, 77, 397–407. [Google Scholar] [CrossRef] [PubMed]
- Cicero, A.F.G.; Fogacci, F.; Zambon, A.; Toth, P.P.; Borghi, C. Efficacy and safety of inclisiran a newly approved FDA drug: A systematic review and pooled analysis of available clinical studies. Am. Heart J. 2022, 13, 100127. [Google Scholar] [CrossRef]
- Banerjee, Y.; Pantea Stoian, A.; Cicero, A.F.G.; Fogacci, F.; Nikolic, D.; Sachinidis, A.; Rizvi, A.A.; Janez, A.; Rizzo, M. Inclisiran: A small interfering RNA strategy targeting PCSK9 to treat hypercholesterolemia. Expert Opin. Drug Saf. 2022, 21, 9–20. [Google Scholar] [CrossRef] [PubMed]
- Kronenberg, F. Lipoprotein(a) and cardiovascular disease: Make use of the knowledge we have. Atherosclerosis 2022, 363, 75–77. [Google Scholar] [CrossRef] [PubMed]
- Fogacci, F.; Cicero, A.F.; D’Addato, S.; D’Agostini, L.; Rosticci, M.; Giovannini, M.; Bertagnin, E.; Borghi, C.; Brisighella Heart Study Group. Serum lipoprotein(a) level as long-term predictor of cardiovascular mortality in a large sample of subjects in primary cardiovascular prevention: Data from the Brisighella Heart Study. Eur. J. Intern. Med. 2017, 37, 49–55. [Google Scholar] [CrossRef] [PubMed]
- Pasławska, A.; Tomasik, P.J. Lipoprotein(a)-60 Years Later-What Do We Know? Cells 2023, 12, 2472. [Google Scholar] [CrossRef]
- Galema-Boers, A.M.H.; Mulder, J.W.C.M.; Steward, K.; Roeters van Lennep, J.E. Sex differences in efficacy and safety of PCSK9 mono-clonal antibodies: A real-world registry. Atherosclerosis 2023, 384, 117108. [Google Scholar] [CrossRef]
- Paquette, M.; Faubert, S.; Saint-Pierre, N.; Baass, A.; Bernard, S. Sex differences in LDL-C response to PCSK9 inhibitors: A real world experience. J. Clin. Lipidol. 2023, 17, 142–149. [Google Scholar] [CrossRef]
- Jia, F.; Fei, S.F.; Tong, D.B.; Xue, C.; Li, J.J. Sex difference in circulating PCSK9 and its clinical implications. Front. Pharmacol. 2022, 13, 953845. [Google Scholar] [CrossRef]
- Lakoski, S.G.; Lagace, T.A.; Cohen, J.C.; Horton, J.D.; Hobbs, H.H. Genetic and metabolic determinants of plasma PCSK9 levels. J. Clin. Endocrinol. Metab. 2009, 94, 2537–2543. [Google Scholar] [CrossRef] [PubMed]
- Warden, B.A.; Miles, J.R.; Oleaga, C.; Ganda, O.P.; Duell, P.B.; Purnell, J.Q.; Shapiro, M.D.; Fazio, S. Unusual responses to PCSK9 inhibitors in a clinical cohort utilizing a structured follow-up protocol. Am. J. Prev. Cardiol. 2020, 1, 100012. [Google Scholar] [CrossRef] [PubMed]
- Edmiston, J.B.; Brooks, N.; Tavori, H.; Minnier, J.; Duell, B.; Purnell, J.Q.; Kaufman, T.; Wojcik, C.; Voros, S.; Fazio, S.; et al. Discordant response of low-density lipoprotein cholesterol and lipoprotein(a) levels to monoclonal antibodies targeting proprotein convertase subtilisin/kexin type 9. J. Clin. Lipidol. 2017, 11, 667–673. [Google Scholar] [CrossRef] [PubMed]
- Shapiro, M.D.; Minnier, J.; Tavori, H.; Kassahun, H.; Flower, A.; Somaratne, R.; Fazio, S. Relationship Between Low-Density Lipoprotein Cholesterol and Lipoprotein(a) Lowering in Response to PCSK9 Inhibition with Evolocumab. J. Am. Heart Assoc. 2019, 8, e010932. [Google Scholar] [CrossRef]
- Catapano, A.L.; Graham, I.; De Backer, G.; Wiklund, O.; Chapman, M.J.; Drexel, H.; Hoes, A.W.; Jennings, C.S.; Landmesser, U.; Pedersen, T.R.; et al. 2016 ESC/EAS Guidelines for the Management of Dyslipidaemias. Rev. Esp. Cardiol. (Engl. Ed.) 2017, 70, 115. [Google Scholar] [CrossRef]
- AIFA (Italian Medicines Agency). Classificazione del Medicinale per uso Umano «Repatha», ai Sensi Dell’art. 8, Comma 10, Della Legge 24 Dicembre 1993, n. 537. (Determina n. 172/2017). Available online: https://www.gazzettaufficiale.it/eli/id/2017/02/07/17A01047/s#:~:text=%C2%ABRepatha%C2%BB%20e’%20indicato%20nei,C%20target%20con%20la%20dose (accessed on 2 December 2022).
- Fogacci, F.; Giovannini, M.; Grandi, E.; Imbalzano, E.; Degli Esposti, D.; Borghi, C.; Cicero, A.F.G. Management of High-Risk Hypercholesterolemic Patients and PCSK9 Inhibitors Reimbursement Policies: Data from a Cohort of Italian Hypercholesterolemic Outpatients. J. Clin. Med. 2022, 11, 4701. [Google Scholar] [CrossRef]
- Cicero, A.F.G.; Fogacci, F.; Veronesi, M.; Strocchi, E.; Grandi, E.; Rizzoli, E.; Poli, A.; Marangoni, F.; Borghi, C. A randomized Placebo-Controlled Clinical Trial to Evaluate the Medium-Term Effects of Oat Fibers on Human Health: The Beta-Glucan Effects on Lipid Profile, Glycemia and inTestinal Health (BELT) Study. Nutrients 2020, 12, 686. [Google Scholar] [CrossRef]
- Friedewald, W.T.; Levy, R.I.; Fredrickson, D.S. Estimation of the concentration of low-density lipoprotein cholesterol in plasma, without use of the preparative ultracentrifuge. Clin. Chem. 1972, 18, 499–502. [Google Scholar] [CrossRef]
- Levey, A.S.; Stevens, L.A.; Schmid, C.H.; Zhang, Y.L.; Castro, A.F., 3rd; Feldman, H.I.; Kusek, J.W.; Eggers, P.; Van Lente, F.; Greene, T.; et al. A new equation to estimate glomerular fltration rate. Ann. Intern. Med. 2009, 150, 604–612. [Google Scholar] [CrossRef]
- Grundy, S.M.; Stone, N.J.; Bailey, A.L.; Beam, C.; Birtcher, K.K.; Blumenthal, R.S.; Braun, L.T.; de Ferranti, S.; Faiella-Tommasino, J.; Forman, D.E.; et al. 2018 AHA/ACC/AACVPR/AAPA/ABC/ACPM/ADA/AGS/APhA/ASPC/NLA/PCNA Guideline on the Management of Blood Cholesterol: Executive Summary: A Report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. Circulation 2019, 139, e1046–e1081. [Google Scholar] [CrossRef]
- Andrade, C.A.S.; Mahrouseh, N.; Gabrani, J.; Charalampous, P.; Cuschieri, S.; Grad, D.A.; Unim, B.; Mechili, E.A.; Chen-Xu, J.; Devleesschauwer, B.; et al. Inequalities in the burden of non-communicable diseases across European countries: A systematic analysis of the Global Burden of Disease 2019 study. Int. J. Equity Health 2023, 22, 140. [Google Scholar] [CrossRef] [PubMed]
- Roeters van Lennep, J.E.; Tokgözoğlu, L.S.; Badimon, L.; Dumanski, S.M.; Gulati, M.; Hess, C.N.; Holven, K.B.; Kavousi, M.; Kayıkçıoğlu, M.; Lutgens, E.; et al. Women, lipids, and atherosclerotic car-diovascular disease: A call to action from the European Atherosclerosis Society. Eur. Heart J. 2023, 44, 4157–4173. [Google Scholar] [CrossRef] [PubMed]
- Thakkar, A.; Agarwala, A.; Michos, E.D. Secondary Prevention of Cardiovascular Disease in Women: Closing the Gap. Eur. Cardiol. 2021, 16, e41. [Google Scholar] [CrossRef] [PubMed]
- Ogungbe, O.; Grant, J.K.; Ayoola, A.S.; Bansah, E.; Miller, H.N.; Plante, T.B.; Sheikhattari, P.; Commodore-Mensah, Y.; Turkson-Ocran, R.N.; Juraschek, S.P.; et al. Strategies for Improving Enrollment of Diverse Populations with a Focus on Lipid-Lowering Clinical Trials. Curr. Cardiol. Rep. 2023, 25, 1189–1210. [Google Scholar] [CrossRef] [PubMed]
- Fogacci, F.; Borghi, C.; Cicero, A.F.G. The short-circuit evidence on lipid-lowering drugs use in pregnancy. Atherosclerosis 2023, 368, 12–13. [Google Scholar] [CrossRef] [PubMed]
- Khan, S.U.; Khan, M.Z.; Raghu Subramanian, C.; Riaz, H.; Khan, M.U.; Lone, A.N.; Khan, M.S.; Benson, E.M.; Alkhouli, M.; Blaha, M.J.; et al. Participation of Women and Older Participants in Randomized Clinical Trials of Lipid-Lowering Therapies: A Systematic Review. JAMA Netw. Open 2020, 3, e205202. [Google Scholar] [CrossRef]
- Michos, E.D.; Reddy, T.K.; Gulati, M.; Brewer, L.C.; Bond, R.M.; Velarde, G.P.; Bailey, A.L.; Echols, M.R.; Nasser, S.A.; Bays, H.E.; et al. Improving the enrollment of women and racially/ethnically diverse populations in cardiovascular clinical trials: An ASPC practice statement. Am. J. Prev. Cardiol. 2021, 8, 100250. [Google Scholar] [CrossRef]
- Lau, E.S.; Braunwald, E.; Morrow, D.A.; Giugliano, R.P.; Antman, E.M.; Gibson, C.M.; Scirica, B.M.; Bohula, E.A.; Wiviott, S.D.; Bhatt, D.L.; et al. Sex, Permanent Drug Discontinuation, and Study Retention in Clin-ical Trials: Insights from the TIMI trials. Circulation 2021, 143, 685–695. [Google Scholar] [CrossRef]
- Masson, W.; Barbagelata, L.; Lobo, M.; Lavalle-Cobo, A.; Corral, P.; Nogueira, J.P. Plasma Lipoprotein(a) Levels in Polycystic Ovary Syndrome: A Systematic Review and Meta-analysis. High Blood Press. Cardiovasc. Prev. 2023, 30, 305–317. [Google Scholar] [CrossRef]
- Anagnostis, P.; Galanis, P.; Chatzistergiou, V.; Stevenson, J.C.; Godsland, I.F.; Lambrinoudaki, I.; Theodorou, M.; Goulis, D.G. The effect of hormone replacement therapy and tibolone on lipoprotein (a) concentrations in postmenopausal women: A systematic review and meta-analysis. Maturitas 2017, 99, 27–36. [Google Scholar] [CrossRef]
- Fogacci, F.; Di Micoli, V.; Avagimyan, A.; Giovannini, M.; Imbalzano, E.; Cicero, A.F.G. Assessment of Apolipoprotein(a) Isoform Size Using Phenotypic and Genotypic Methods. Int. J. Mol. Sci. 2023, 24, 13886. [Google Scholar] [CrossRef]
- Amiri, M.; Raeisi-Dehkordi, H.; Verkaar, A.J.C.F.; Wu, Y.; van Westing, A.C.; Berk, K.A.; Bramer, W.M.; Aune, D.; Voortman, T. Circulating lipoprotein (a) and all-cause and cause-specific mortality: A systematic review and dose-response meta-analysis. Eur. J. Epidemiol. 2023, 38, 485–499. [Google Scholar] [CrossRef] [PubMed]
- Bhatia, H.S.; Becker, R.C.; Leibundgut, G.; Patel, M.; Lacaze, P.; Tonkin, A.; Narula, J.; Tsimikas, S. Lipoprotein(a), platelet function and cardiovascular disease. Nat. Rev. Cardiol. 2023; Epub ahead of print. [Google Scholar] [CrossRef]
- Watts, G.F.; Chan, D.C.; Somaratne, R.; Wasserman, S.M.; Scott, R.; Marcovina, S.M.; Barrett, P.H.R. Controlled study of the effect of proprotein convertase subtilisin—kexin type 9 inhibition with evolocumab on lipoprotein(a) particle kinetics. Eur. Heart J. 2018, 39, 2577–2585. [Google Scholar] [CrossRef] [PubMed]
- Raal, F.J.; Giugliano, R.P.; Sabatine, M.S.; Koren, M.J.; Blom, D.; Seidah, N.G.; Honarpour, N.; Lira, A.; Xue, A.; Chiruvolu, P.; et al. PCSK9 inhibition—mediated reduction in Lp(a) with evolocumab: An analysis of 10 clinical trials and the LDL receptor’s role. J. Lipid Res. 2016, 57, 1086–1096. [Google Scholar] [CrossRef] [PubMed]
- Morelli, M.B.; Wang, X.; Santulli, G. Functional role of gut microbiota and PCSK9 in the pathogenesis of diabetes mellitus and cardiovascular disease. Atherosclerosis 2019, 289, 176–178. [Google Scholar] [CrossRef]
- Sahebkar, A.; Di Giosia, P.; Stamerra, C.A.; Grassi, D.; Pedone, C.; Ferretti, G.; Bacchetti, T.; Ferri, C.; Giorgini, P. Effect of monoclonal antibodies to PCSK9 on high-sensitivity C-reactive protein levels: A meta-analysis of 16 randomized controlled treatment arms. Br. J. Clin. Pharmacol. 2016, 81, 1175–1190. [Google Scholar] [CrossRef]
- Ruscica, M.; Tokgözoğlu, L.; Corsini, A.; Sirtori, C.R. PCSK9 inhibition and inflammation: A narrative review. Atherosclerosis 2019, 288, 146–155. [Google Scholar] [CrossRef]
- Blanchard, V.; Chemello, K.; Hollstein, T.; Hong-Fong, C.C.; Schumann, F.; Grenkowitz, T.; Nativel, B.; Coassin, S.; Croyal, M.; Kassner, U.; et al. The size of apolipoprotein (a) is an independent determinant of the reduction in lipoprotein (a) induced by PCSK9 inhibitors. Cardiovasc. Res. 2022, 118, 2103–2111. [Google Scholar] [CrossRef]
Characteristics | All Patients (n = 176) | Men (n = 93) | Women (n = 83) | p-Values |
---|---|---|---|---|
Age (years) | 63.4 ± 10.1 | 63.4 ± 10.5 | 61.9 ± 10.3 | 0.012 |
History of ASCVD (n; %) | 105 (59.7) | 53 (57.0) | 52 (62.7) | 0.021 |
Type 2 Diabetes Mellitus (n; %) | 21 (11.9) | 12 (12.9) | 9 (10.8) | 0.409 |
Familial Hypercholesterolemia (n; %) | 64 (36.6) | 30 (32.3) | 34 (41.5) | 0.207 |
Hypertension (n; %) | 117 (66.5) | 58 (62.4) | 59 (71.1) | 0.308 |
Background lipid-lowering therapy | ||||
Statin (n; %) | 75 (42.6) | 36 (38.7) | 39 (47) | 0.188 |
High-intensity dosage (n; %) | 28 (38.4) | 14 (33.3) | 14 (45.2) | |
Moderate-intensity dosage (n; %) | 45 (61.6) | 28 (66.7) | 17 (54.8) | |
Low-intensity dosage (n; %) | 0 (0) | 0 (0) | 0 (0) | |
Ezetimibe (n; %) | 119 (67.6) | 54 (58.1) | 65 (78.3) | 0.012 |
BMI (kg/m2) | 27 ± 4 | 26.8 ± 4.4 | 27.4 ± 4.3 | 0.122 |
TC (mg/dL) | 214 (190–251) | 216 (190–261.5) | 205.5 (190–242.5) | 0.003 |
LDL-C (mg/dL) | 132.2 (111.2–166.8) | 131.6 (111.3–173.8) | 137 (111.2–161.8) | 0.050 |
HDL-C (mg/dL) | 53.8 ± 12.6 | 58.7 ± 11.9 | 48.9 ± 10 | <0.001 |
TG (mg/dL) | 132 (93.5–179) | 139 (87.5–191.5) | 119 (98.5–162.8) | 0.842 |
Lp(a) (mg/dL) | 39.2 (11.9–107) | 39.2 (9.7–110.7) | 36.3 (12–95.7) | 0.722 |
eGFR (mL/min) | 80 ± 18.7 | 82.6 ± 19.9 | 80.8 ± 20.6 | 0.030 |
AST (U/L) | 25 (21–30) | 25 (21.3–30) | 26 (20–30.5) | 0.001 |
ALT (U/L) | 24 (17–32.5) | 25 (18–31) | 24 (16.3–33.8) | <0.001 |
Gamma-GT (U/L) | 24.5 (17–35.3) | 25 (17–39) | 24 (16.5–33) | <0.001 |
CPK (U/L) | 140.5 (85.8–236.8) | 126 (84–206) | 156 (91.5–262.5) | <0.001 |
Source of Variation | df | Wald | p-Values |
---|---|---|---|
Lp(a) | |||
Sex | 1 | 2.839 | 0.092 |
Time | 5 | 10.965 | 0.052 |
Time x Sex | 5 | 2.869 | 0.720 |
LDL-C | |||
Sex | 1 | 16.843 | <0.001 |
Time | 5 | 855.501 | <0.001 |
Time x Sex | 5 | 14.005 | 0.016 |
Time Points | All Patients (n = 176) | Men (n = 93) | Women (n = 83) | p-Values † |
---|---|---|---|---|
Lp(a) | ||||
Baseline (T0) | 39.2 (11.9/107) a | 39.2 (9.7/110.7) ab | 36.3 (12/95.7) a | 0.722 |
6 Months (T1) | 30.1 (6.4/79.7) b | 39.6 (8.4/101.9) ab | 12.7 (5.2/64.9) ab | 0.063 |
12 Months (T2) | 24.3 (8.1/72.9) b | 41.1 (10.5/79.1) a | 12 (6.6/68.6) b | 0.054 |
18 Months (T3) | 28.5 (8.6/74.3) b | 36 (10.8/91.7) b | 19 (5.9/65.4) ab | 0.091 |
24 Months (T4) | 22.9 (6.4/83.7) b | 29 (6.9/97.5) b | 11.5 (5.9/64.8) b | 0.134 |
30 Months (T5) | 27.6 (8.1/87.3) b | 31.5 (9.2/103.2) b | 11.6 (6.5/85.4) b | 0.176 |
p-value ‡ | <0.001 | <0.001 | 0.002 | |
AUC | 1290.60 (316.50/3146.70) | 2255.55 (489.15/3721.43) | 1237.80 (1057.80/1932.60) | 0.125 |
Delta % | ||||
T1-T0 | −33.62 (−43.56/−14.71) | −29.15 (−43.08/−16.34) | −36.60 (−45.34/−9.09) | 0.865 |
T2-T0 | −35.64 (−52.28/−13.71) | −35.78 (−52.36/−16.78) | −35.51 (−52.10/−8.68) | 0.722 |
T3-T0 | −29.22 (−45.04/−10.31) | −30.56 (−42.03/−15.17) | −25.13 (−46.53/0.89) | 0.605 |
T4-T0 | −36.36 (−61.08/−13.55) | −37.5 (−62.05/−14.41) | −31.27 (−52.69/−8.11) | 0.681 |
T5-T0 | −32.24 (−56.34/−17.89) | −32.47 (−54.73/−12.42) | −31.91 (−56.34/−18) | 0.988 |
Time Points | All Patients (n = 176) | Men (n = 93) | Women (n = 83) | p-Values † |
---|---|---|---|---|
Baseline (T0) | 132.2 (111.2/166.8) a | 127.2 (107/156.2) a | 139.8 (113.9/177.7) a | 0.049 |
6 Months (T1) | 45.4 (28.6/69.4) b | 38.6 (22.6/56.1) b | 50.6 (36.4/78.3) b | 0.002 |
12 Months (T2) | 44.8 (27.4/72) b | 37 (24.6/56) b | 54.1 (33.6/93.8) b | 0.001 |
18 Months (T3) | 42.7 (30.2/67.7) b | 39.8 (25.8/55.2) b | 57 (34.6/78.3) b | 0.001 |
24 Months (T4) | 47.6 (31.3/69.1) b | 38.4 (24.7/60.9) b | 53 (40/87) b | 0.002 |
30 Months (T5) | 44.3 (28.7/64.5) b | 37.6 (23.6/54) b | 52.4 (41.4/80) b | <0.001 |
p-value ‡ | <0.001 | <0.001 | <0.001 | |
AUC | 1543.20 (1113.60/2245.65) | 747.6 (228.9/1583.4) | 1915.8 (1324.2/2623.2) | 0.017 |
Delta % | ||||
T1-T0 | −67.8 (−76.43/−55.46) | −71.14 (−81.26/−60.54) | −62.65 (−71.44/−51.3) | 0.004 |
T2-T0 | −68.15 (−77.29/−50.75) | −71.46 (−79.41/−59.06) | −65.38 (−75.82/−37.93) | 0.007 |
T3-T0 | −66.6 (−75.25/−55.1) | −68.85 (−78.02/−61.84) | −60.99 (−73.35/−45.88) | 0.006 |
T4-T0 | −65.44 (−76.02/−49.91) | −69.32 (−79.37/−53.25) | −57.95 (−70.02/−49.1) | 0.010 |
T5-T0 | −65.77 (−75.5/−53.77) | −70.07 (−79.96/−58.23) | −60.46 (−72.18/−44.88) | 0.006 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fogacci, F.; Yerlitaş, S.İ.; Giovannini, M.; Zararsız, G.; Lido, P.; Borghi, C.; Cicero, A.F.G. Sex X Time Interactions in Lp(a) and LDL-C Response to Evolocumab. Biomedicines 2023, 11, 3271. https://doi.org/10.3390/biomedicines11123271
Fogacci F, Yerlitaş Sİ, Giovannini M, Zararsız G, Lido P, Borghi C, Cicero AFG. Sex X Time Interactions in Lp(a) and LDL-C Response to Evolocumab. Biomedicines. 2023; 11(12):3271. https://doi.org/10.3390/biomedicines11123271
Chicago/Turabian StyleFogacci, Federica, Serra İlayda Yerlitaş, Marina Giovannini, Gökmen Zararsız, Paolo Lido, Claudio Borghi, and Arrigo F. G. Cicero. 2023. "Sex X Time Interactions in Lp(a) and LDL-C Response to Evolocumab" Biomedicines 11, no. 12: 3271. https://doi.org/10.3390/biomedicines11123271