PRISMA Systematic Literature Review, including with Meta-Analysis vs. Chatbot/GPT (AI) regarding Current Scientific Data on the Main Effects of the Calf Blood Deproteinized Hemoderivative Medicine (Actovegin) in Ischemic Stroke
Abstract
:1. Introduction
2. Methods
3. Chatbot (AI) Interrogation Regarding Actovegin® in Ischemic Stroke
4. Results Seen as Progress in the Last Three Years Resulting from PRISMA-Type Systematic Review
5. Meta-Analysis
6. Discussion
7. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Mu, Q.; Xue, Y.; Lu, Y.; Zhang, Y.; Cheng, Q.; Wan, J.; Liu, P.; Liu, J.; Qu, Y.; Huang, C.; et al. Advances in the therapy of cerebral ischemia-reperfusion injury with natural product-based nanoparticles. Nano TransMed 2022, 1, e9130009. [Google Scholar] [CrossRef]
- Firan, F.C.; Romila, A.; Onose, G. Current Synthesis and Systematic Review of Main Effects of Calf Blood Deproteinized Medicine (Actovegin®) in Ischemic Stroke. Int. J. Mol. Sci. 2020, 21, 3181. [Google Scholar] [CrossRef] [PubMed]
- Onose, G.; Anghelescu, A.; Blendea, D.; Ciobanu, V.; Daia, C.; Firan, F.C.; Oprea, M.; Spinu, A.; Popescu, C.; Ionescu, A.; et al. Cellular and Molecular Targets for Non-Invasive, Non-Pharmacological Therapeutic/Rehabilitative Interventions in Acute Ischemic Stroke. Int. J. Mol. Sci. 2022, 23, 907. [Google Scholar] [CrossRef] [PubMed]
- Huang, H.; Young, W.; Ziad, A.; Hooshang, S.; Alok, S.; Dafin, M.; Shiqing, F.; Lin, C. Beijing Declaration of International Association of Neurorestoratology. J. Neurorestoratol. 2015, 3, 121–122. [Google Scholar] [CrossRef] [Green Version]
- Kleindorfer, D.O.; Towfighi, A.; Chaturvedi, S.; Cockroft, K.M.; Gutierrez, J.; Lombardi-Hill, D.; Kamel, H.; Kernan, W.N.; Kittner, S.J.; Leira, E.C.; et al. 2021 Guideline for the Prevention of Stroke in Patients with Stroke and Transient Ischemic Attack: A Guideline From the American Heart Association/American Stroke Association. Stroke 2021, 52, e364–e467. [Google Scholar] [CrossRef]
- Rawanduzy, C.A.; Earl, E.; Mayer, G.; Lucke-Wold, B. Pediatric Stroke: A Review of Common Etiologies and Management Strategies. Biomedicines 2023, 11, 2. [Google Scholar] [CrossRef]
- Elmlinger, M.W.; Kriebel, M.; Ziegler, D. Neuroprotective and Anti-Oxidative Effects of the Hemodialysate Actovegin on Primary Rat Neurons in Vitro. NeuroMol. Med. 2011, 13, 266–274. [Google Scholar] [CrossRef] [Green Version]
- Guekht, A.; Skoog, I.; Edmundson, S.; Zakharov, V.; Korczyn, A.D. ARTEMIDA Trial (A Randomized Trial of Efficacy, 12 Months International Double-Blind Actovegin): A Randomized Controlled Trial to Assess the Efficacy of Actovegin in Poststroke Cognitive Impairment. Stroke 2017, 48, 1262–1270. [Google Scholar] [CrossRef]
- Reichl, F.-X.; Högg, C.; Liu, F.; Schwarz, M.; Teupser, D.; Hickel, R.; Bloch, W.; Schweikl, H.; Thomas, P.; Summer, B. Actovegin® reduces PMA-induced inflammation on human cells. Eur. J. Appl. Physiol. 2020, 120, 1671–1680. [Google Scholar] [CrossRef]
- Li, W.; Guo, A.; Sun, M.; Wang, J.; Wang, Q. Neuroprotective Effects of Deproteinized Calf Serum in Ischemic Stroke. Front. Neurol. 2021, 12, 636494. [Google Scholar] [CrossRef]
- Khanzadeh, S.; Lucke-Wold, B.; Eshghyar, F.; Rezaei, K.; Clark, A. The Neutrophil to Lymphocyte Ratio in Poststroke Infection: A Systematic Review and Meta-Analysis. Dis. Markers 2022, 2022, 1983455. [Google Scholar] [CrossRef] [PubMed]
- Machicao, F.; Muresanu, D.F.; Hundsberger, H.; Pflüger, M.; Guekht, A. Pleiotropic neuroprotective and metabolic effects of Actovegin’s mode of action. J. Neurol. Sci. 2012, 322, 222–227. [Google Scholar] [CrossRef] [PubMed]
- Salvagno, M.; ChatGPT; Taccone, F.S.; Gerli, A.G. Can artificial intelligence help for scientific writing? Crit. Care 2023, 27, 75. [Google Scholar] [CrossRef]
- Følstad, A.; Araujo, T.; Law, E.L.-C.; Brandtzaeg, P.B.; Papadopoulos, S.; Reis, L.; Baez, M.; Laban, G.; McAllister, P.; Ischen, C.; et al. Future directions for chatbot research: An interdisciplinary research agenda. Computing 2021, 103, 2915–2942. [Google Scholar] [CrossRef]
- Page, M.J.; Moher, D.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. PRISMA 2020 explanation and elaboration: Updated guidance and exemplars for reporting systematic reviews. BMJ 2021, 372, n160. [Google Scholar] [CrossRef] [PubMed]
- Rosenberger, D.C.; Blechschmidt, V.; Timmerman, H.; Wolff, A.; Treede, R.-D. Challenges of neuropathic pain: Focus on diabetic neuropathy. J. Neural Transm. 2020, 127, 589–624. [Google Scholar] [CrossRef] [Green Version]
- Wardlaw, J.M.; Debette, S.; Jokinen, H.; De Leeuw, F.-E.; Pantoni, L.; Chabriat, H.; Staals, J.; Doubal, F.; Rudilosso, S.; Eppinger, S.; et al. ESO Guideline on covert cerebral small vessel disease. Eur. Stroke J. 2021, 6, CXI–CLXII. [Google Scholar] [CrossRef]
- Zhu, H.; Jian, Z.; Zhong, Y.; Ye, Y.; Zhang, Y.; Hu, X.; Pu, B.; Gu, L.; Xion, X. Janus Kinase Inhibition Ameliorates Ischemic Stroke Injury and Neuroinflammation Through Reducing NLRP3 Inflammasome Activation via JAK2/STAT3 Pathway Inhibition. Front. Immunol. 2021, 12, 714943. [Google Scholar] [CrossRef]
- Ling, L.; Alattar, A.; Tan, Z.; Shah, F.A.; Ali, T.; Alshaman, R.; Koh, P.O.; Li, S. A Potent Antioxidant Endogenous Neurohormone Melatonin, Rescued MCAO by Attenuating Oxidative Stress-Associated Neuroinflammation. Front. Pharmacol. 2020, 11, 1220. [Google Scholar] [CrossRef]
- Quinn, T.J.; Richard, E.; Teuschl, Y.; Gattringer, T.; Hafdi, M.; O’brien, J.T.; Merriman, N.; Gillebert, C.; Huyglier, H.; Verdelho, A.; et al. European Stroke Organisation and European Academy of Neurology joint guidelines on post-stroke cognitive impairment. Eur. Stroke J. 2021, 6, 42192. [Google Scholar] [CrossRef]
- Zhang, R.; Zhao, T.; Zheng, B.; Zhang, Y.; Li, X.; Zhang, F.; Cen, J.; Duan, S. Curcumin Derivative Cur20 Attenuated Cerebral Ischemic Injury by Antioxidant Effect and HIF-1α/VEGF/TFEB-Activated Angiogenesis. Front. Pharmacol. 2021, 12, 648107. [Google Scholar] [CrossRef] [PubMed]
- Fadeev, K.A.; Smirnov, A.S.; Zhigalova, O.P.; Bazhina, P.S.; Tumialis, A.V.; Golokhvast, K.S. Too Real to Be Virtual: Autonomic and EEG Responses to Extreme Stress Scenarios in Virtual Reality. Behav. Neurol. 2020, 2020, 5758038. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Du, Y.; Ruan, J.; Zhang, L.; Fu, F. Jieyu Anshen Granule, a Chinese Herbal Formulation, Exerts Effects on Poststroke Depression in Rats. Evid.-Based Complement. Altern. Med. 2020, 2020, 7469068. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Silina, E.V.; Manturova, N.E.; Litvitskiy, P.F.; Stupin, V.A. Comparative Analysis of the Effectiveness of Some Biological Injected Wound Healing Stimulators and Criteria for Its Evaluation. Drug Des. Dev. Ther. 2020, 14, 4869–4883. [Google Scholar] [CrossRef]
- Stoica, S.I.; Bleotu, C.; Ciobanu, V.; Ionescu, A.M.; Albadi, I.; Onose, G.; Munteanu, C. Considerations about Hypoxic Changes in Neuraxis Tissue Injuries and Recovery. Biomedicines 2022, 10, 481. [Google Scholar] [CrossRef]
- Kurkin, D.V.; Bakulin, D.A.; Morkovin, E.I.; Kalatanova, A.V.; Makarenko, I.E.; Dorotenko, A.R.; Kovalev, N.S.; Dubrovina, M.A.; Verkholyak, D.V.; Abrosimova, E.E.; et al. Neuroprotective action of Cortexin, Cerebrolysin and Actovegin in acute or chronic brain ischemia in rats. PLoS ONE 2021, 16, e0254493. [Google Scholar] [CrossRef]
- la Fleur, P.; Baizhaxynova, A.; Reynen, E.; Kaunelis, D.; Galiyeva, D. Actovegin in the management of patients after ischemic stroke: A systematic review. PLoS ONE 2022, 17, e0270497. [Google Scholar] [CrossRef]
- Özdemir, M.; Birinci, B.; Haberal, B.; Atılgan, A.O.; Demirkale, I. In vivo study of the role of hyaluronic acid, N-acetyl cysteine, and deproteinized calf serum on injury-induced cartilage degeneration. Jt. Dis. Relat. Surg. 2023, 34, 158–165. [Google Scholar] [CrossRef]
- Berthon, P.; Nairn, A.; Money, A. Through the Paradigm Funnel: A Conceptual Tool for Literature Analysis. Mark. Educ. Rev. 2003, 13, 55–66. [Google Scholar] [CrossRef] [Green Version]
- van der Willik, E.M.; van Zwet, E.W.; Hoekstra, T.; van Ittersum, F.J.; Hemmelder, M.H.; Zoccali, C.; Jager, K.J.; Dekker, F.W.; Meuleman, Y. Funnel plots of patient-reported outcomes to evaluate health-care quality: Basic principles, pitfalls and considerations. Nephrology 2021, 26, 95–104. [Google Scholar] [CrossRef]
- Finch, P.M. The evidence funnel: Highlighting the importance of research literacy in the delivery of evidence informed complementary health care. J. Bodyw. Mov. Ther. 2007, 11, 78–81. [Google Scholar] [CrossRef]
- Batchu, S.; Diaz, M.J.; Ladehoff, L.; Root, K.; Lucke-Wold, B. Utilizing the Ethereum blockchain for retrieving and archiving augmented reality surgical navigation data. Explor. Drug Sci. 2023, 1, 55–63. [Google Scholar] [CrossRef]
- Porche, K.; Maciel, C.B.; Lucke-Wold, B.; Robicsek, S.A.; Chalouhi, N.; Brennan, M.; Busl, K.M. Preoperative prediction of postoperative urinary retention in lumbar surgery: A comparison of regression to multilayer neural network. J. Neurosurg. Spine 2022, 36, 32–41. [Google Scholar] [CrossRef]
- James, A.P. Towards Strong AI with Analog Neural Chips. In Proceedings of the 2020 IEEE International Symposium on Circuits and Systems (ISCAS), Seville, Spain, 12–14 October 2020. [Google Scholar]
- Kuleshov, A.; Prokhorov, S. Domain Dependence of Definitions Required to Standardize and Compare Performance Characteristics of Weak AI Systems. In Proceedings of the 2019 Artificial Intelligence Applications and Innovations Conference—IC-AIAI 2019, Crete, Greece, 17–20 June 2019; pp. 62–65. [Google Scholar]
- Hassani, H.; Silva, E.S. The Role of ChatGPT in Data Science: How AI-Assisted Conversational Interfaces Are Revolutionizing the Field. Big Data Cogn. Comput. 2023, 7, 62. [Google Scholar] [CrossRef]
- Vasiliu, O. Analysis of neuroprotective medication in patients with neurocognitive disorders: The efficacy and tolerability of highly purified animal tissues extracts. Rom. J. Mil. Med. 2022, 125, 533–541. [Google Scholar] [CrossRef]
- Lee, P.Y.F. The Role of Actovegin in Muscle Injuries. Doctoral Dissertation, Cardiff University, Cardiff, UK, 2012. [Google Scholar]
- Suchkov, I.A.; Mzhavanadze, N.D.; Bogachev, V.Y.; Bokuchava, M.; Kuznetsov, M.R.; Lukyanov, Y.V.; Kelimbetov, R.; Pang, H.; Araslanov, S.A. Efficacy and safety of Actovegin in the treatment of intermittent claudication: Results of an international, multicenter, placebo-controlled, randomized, phase IIIb clinical trial (APOLLO). Int. Angiol. 2022, 41, 405–412. [Google Scholar] [CrossRef] [PubMed]
- Skoog, I.; Korczyn, A.D.; Guekht, A. Neuroprotection in vascular dementia: A future path. J. Neurol. Sci. 2012, 322, 232–236. [Google Scholar] [CrossRef] [PubMed]
- Haupt, C.E.; Law, H.; Marks, M. AI-Generated Medical Advice—GPT and Beyond. JAMA 2023, 329, 1349–1350. [Google Scholar] [CrossRef]
- Lister, K.; Coughlan, T.; Iniesto, F.; Freear, N.; Devine, P. Accessible Conversational User Interfaces Considerations for Design. In Proceedings of the 17th International Web for All Conference—Web4All 2020, Taipei, Taiwan, 20–21 April 2020. [Google Scholar]
- Okonkwo, C.W.; Ade-Ibijola, A. Chatbots applications in education: A systematic review. Comput. Educ. Artif. Intell. 2021, 2, 100033. [Google Scholar] [CrossRef]
Keywords | Elsevier | PubMed | PMC | PEDro | Total |
---|---|---|---|---|---|
“stroke” + “Actovegin” | 0 | 3 | 27 | 0 | 30 |
“stroke” + “calf blood deproteinized hemoderivative” | 0 | 0 | 0 | 0 | 0 |
“stroke” + “calf blood deproteinized hemodialysate” | 0 | 0 | 0 | 0 | 0 |
“Actovegin” + “pleiotropic” | 0 | 0 | 7 | 0 | 7 |
“calf blood deproteinized hemoderivative” + “pleiotropic” | 0 | 0 | 0 | 0 | 0 |
“calf blood deproteinized hemodialysate” + “pleiotropic” | 0 | 0 | 0 | 0 | 0 |
Total | 0 | 3 | 34 | 0 | 37 |
Reference | Keywords | Publication_Year | Isi_Citation_Count | References_Count | PEDRO_Score |
---|---|---|---|---|---|
[16] | “stroke” + “Actovegin” | 2020 | 66 | 413 | 10 |
[17] | “stroke” + “Actovegin” | 2021 | 30 | 165 | 10 |
[18] | “stroke” + “Actovegin” | 2021 | 30 | 46 | 10 |
[19] | “stroke” + “Actovegin” | 2020 | 17 | 69 | 9 |
[20] | “stroke” + “Actovegin” | 2021 | 12 | 22 | 6 |
[21] | “stroke” + “Actovegin” | 2021 | 10 | 34 | 5 |
[22] | “stroke” + “Actovegin” | 2020 | 10 | 42 | 5 |
[2] | “stroke” + “Actovegin” | 2020 | 8 | 75 | 4 |
[23] | “stroke” + “Actovegin” | 2020 | 7 | 48 | 4 |
[24] | “stroke” + “Actovegin” | 2020 | 3 | 36 | 2 |
[25] | “stroke” + “Actovegin” | 2022 | 3 | 146 | 2 |
[10] | “stroke” + “Actovegin” | 2021 | 2 | 38 | 1 |
[9] | “stroke” + “Actovegin” | 2020 | 2 | 75 | 1 |
[26] | “stroke” + “Actovegin” | 2021 | 2 | 37 | 1 |
[27] | “stroke” + “Actovegin” | 2022 | 0 | 31 | 0 |
[28] | “stroke” + “Actovegin” | 2022 | 0 | 26 | 0 |
Ref. | Study Name/ID | Publication Year | Population | Actovegin Treatment | Placebo | Outcome |
---|---|---|---|---|---|---|
[8] | ARTEMIDA Unique identifier: NCT01582854. | 2017 | 503 | 248 | 255 | Actovegin had a beneficial effect on cognitive outcomes in patients with post-stroke cognitive impairment. The safety experience was consistent with the known safety and tolerability profile of the drug. These results warrant confirmation in additional robustly designed studies. |
[39] | (APOLLO) NCT03469349 | 2020 | 366 | 184 | 182 | The results of this 12-week course of Actovegin demonstrated its superiority over a placebo in the increase in ICD and ACD at weeks 2, 12, and 24 from the start of treatment. Actovegin has an acceptable safety and tolerability profile. |
[20] | European Stroke Organisation and European Academy of Neurology joint guidelines on post-stroke cognitive impairment | 2021 | Includes data only from ARTEMIDA | A beneficial effect of Actovegin compared to a placebo was reported, but the effect size described may be less than the minimal clinically significant difference. | ||
[27] | Actovegin in the management of patients after ischemic stroke: A systematic review | 2022 | Includes data only from ARTEMIDA and other heterogeneous data | The benefits of Actovegin are uncertain, and there is a potential risk of harm in patients with stroke. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Anghelescu, A.; Firan, F.C.; Onose, G.; Munteanu, C.; Trandafir, A.-I.; Ciobanu, I.; Gheorghița, Ș.; Ciobanu, V. PRISMA Systematic Literature Review, including with Meta-Analysis vs. Chatbot/GPT (AI) regarding Current Scientific Data on the Main Effects of the Calf Blood Deproteinized Hemoderivative Medicine (Actovegin) in Ischemic Stroke. Biomedicines 2023, 11, 1623. https://doi.org/10.3390/biomedicines11061623
Anghelescu A, Firan FC, Onose G, Munteanu C, Trandafir A-I, Ciobanu I, Gheorghița Ș, Ciobanu V. PRISMA Systematic Literature Review, including with Meta-Analysis vs. Chatbot/GPT (AI) regarding Current Scientific Data on the Main Effects of the Calf Blood Deproteinized Hemoderivative Medicine (Actovegin) in Ischemic Stroke. Biomedicines. 2023; 11(6):1623. https://doi.org/10.3390/biomedicines11061623
Chicago/Turabian StyleAnghelescu, Aurelian, Florentina Carmen Firan, Gelu Onose, Constantin Munteanu, Andreea-Iulia Trandafir, Ilinca Ciobanu, Ștefan Gheorghița, and Vlad Ciobanu. 2023. "PRISMA Systematic Literature Review, including with Meta-Analysis vs. Chatbot/GPT (AI) regarding Current Scientific Data on the Main Effects of the Calf Blood Deproteinized Hemoderivative Medicine (Actovegin) in Ischemic Stroke" Biomedicines 11, no. 6: 1623. https://doi.org/10.3390/biomedicines11061623