Safety and Efficacy of Wharton’s Jelly Connective Tissue Allograft for Rotator Cuff Tears: Findings from a Retrospective Observational Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Study Population
2.3. Allograft Application
2.4. Questionnaire Composition
2.5. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Agha, O.; Diaz, A.; Davies, M.; Kim, H.T.; Liu, X.; Feeley, B.T. Rotator cuff tear degeneration and the role of fibro-adipogenic progenitors. Ann. N. Y. Acad. Sci. 2021, 1490, 13–28. [Google Scholar] [CrossRef]
- Maruvada, S.; Madrazo-Ibarra, A.; Varacallo, M. Anatomy, Rotator Cuff. In StatPearls; StatPearls Publishing: St. Petersburg, FL, USA, 2022. [Google Scholar]
- Yang, S.; Kim, T.U.; Kim, D.H.; Chang, M.C. Understanding the physical examination of the shoulder: A narrative review. Ann. Palliat. Med. 2021, 10, 2293–2303. [Google Scholar] [CrossRef]
- Herrmann, S.J.; Izadpanah, K.; Südkamp, N.P.; Strohm, P.C. Tears of the Rotator Cuff. Causes-Diagnosis-Treatment. Acta Chir. Orthop. Traumatol. Cechoslov. 2014, 81, 256–266. [Google Scholar] [CrossRef]
- Meng, C.; Jiang, B.; Liu, M.; Kang, F.; Kong, L.; Zhang, T.; Wang, C.; Wang, J.; Han, C.; Ren, Y. Repair of rotator cuff tears in patients aged 75 years and older: Does it make sense? A systematic review. Front. Public Health 2023, 10, 1060700. [Google Scholar] [CrossRef]
- Leong, H.T.; Fu, S.C.; He, X.; Oh, J.H.; Yamamoto, N.; Hang, S. Risk factors for rotator cuff tendinopathy: A systematic review and meta-analysis. J. Rehabil. Med. 2019, 51, 627–637. [Google Scholar] [CrossRef]
- Dang, A.; Davies, M. Rotator Cuff Disease: Treatment Options and Considerations. Sports Med. Arthrosc. Rev. 2018, 26, 129–133. [Google Scholar] [CrossRef] [PubMed]
- Everts, P.A.; Lana, J.F.; Onishi, K.; Buford, D.; Peng, J.; Mahmood, A.; Fonseca, L.F.; van Zundert, A.; Podesta, L. Angiogenesis and Tissue Repair Depend on Platelet Dosing and Bioformulation Strategies Following Orthobiological Platelet-Rich Plasma Procedures: A Narrative Review. Biomedicines 2023, 11, 1922. [Google Scholar] [CrossRef]
- Bansal, S.; Raja, B.S.; Niraula, B.B.; Regmi, A.; Choudhury, A.K.; Sharma, D.; Dhingra, M. Efficacy of hyaluronic acid in rotator cuff pathology compared to other available treatment modalities: A systematic review and meta-analysis. J. Orthop. Rep. 2023, 2, 100157. [Google Scholar] [CrossRef]
- Kuo, S.-J.; Su, Y.-H.; Hsu, S.-C.; Huang, P.-H.; Hsia, C.-C.; Liao, C.-Y.; Chen, S.-H.; Wu, R.-W.; Hsu, C.-C.; Lai, Y.-C.; et al. Effects of Adding Extracorporeal Shockwave Therapy (ESWT) to Platelet-Rich Plasma (PRP) among Patients with Rotator Cuff Partial Tear: A Prospective Randomized Comparative Study. J. Pers. Med. 2024, 14, 83. [Google Scholar] [CrossRef] [PubMed]
- Maman, E.; Harris, C.; White, L.; Tomlinson, G.; Shashank, M.; Boynton, E. Outcome of nonoperative treatment of symptomatic rotator cuff tears monitored by magnetic resonance imaging. J. Bone Jt. Surg. Am. 2009, 91, 1898–1906. [Google Scholar] [CrossRef] [PubMed]
- Özdemir, E.; Karaguven, D.; Turhan, E.; Huri, G. Biological augmentation strategies in rotator cuff repair. Med. Glas. Off. Publ. Med. Assoc. Zenica-Doboj Canton Bosnia Herzeg. 2021, 18, 186–191. [Google Scholar] [CrossRef]
- Harris, J.D.; Ravindra, A.; Jones, G.L.; Butler, R.B.; Bishop, J.Y. Setting patients’ expectations for range of motion after arthroscopic rotator cuff repair. Orthopedics 2013, 36, e172–e178. [Google Scholar] [CrossRef] [PubMed]
- Marigi, E.; Kennin, J.; Dholakia, R.; Visscher, S.L.; Borah, B.J.; Sanchez-Sotelo, J.; Sperling, J.W. Cost analysis and complication rate comparing open, mini-open, and all arthroscopic rotator cuff repair. JSES Rev. Rep. Tech. 2021, 1, 84–89. [Google Scholar] [CrossRef] [PubMed]
- Gupta, A.; El-Amin, S.F.; Levy, H.J.; Sze-Tu, R.; Ibim, S.E.; Maffulli, N. Umbilical cord-derived Wharton’s jelly for regenerative medicine applications. J. Orthop. Surg. Res. 2020, 15, 49. [Google Scholar] [CrossRef] [PubMed]
- Sobolewski, K.; Bańkowski, E.; Chyczewski, L.; Jaworski, S. Collagen and glycosaminoglycans of Wharton’s jelly. Biol. Neonate 1997, 71, 11–21. [Google Scholar] [CrossRef] [PubMed]
- Lai, A.; Shou, J.; Traina, S.A.; Barrett, T. The Durability and Efficacy of Cryopreserved Human Umbilical Cord Tissue Allograft for the Supplementation of Cartilage Defects Associated with the Sacroiliac Joint: A Case Series. Reports 2023, 6, 12. [Google Scholar] [CrossRef]
- Mead, O.G.; Mead, L.P. Intra-Articular Injection of Amniotic Membrane and Umbilical Cord Particulate for the Management of Moderate to Severe Knee Osteoarthritis. Orthop. Res. Rev. 2020, 12, 161–170. [Google Scholar] [CrossRef]
- Yuan, Z.; Cao, F.; Gao, C.; Yang, Z.; Guo, Q.; Wang, Y. Decellularized Human Umbilical Cord Wharton Jelly Scaffold Improves Tendon Regeneration in a Rabbit Rotator Cuff Tendon Defect Model. Am. J. Sports Med. 2022, 50, 371–383. [Google Scholar] [CrossRef]
- Kuhn, J.E.; Dunn, W.R.; Sanders, R.; An, Q.; Baumgarten, K.M.; Bishop, J.Y.; Brophy, R.H.; Carey, J.L.; Holloway, B.G.; Jones, G.L.; et al. Effectiveness of physical therapy in treating atraumatic full-thickness rotator cuff tears: A multicenter prospective cohort study. J. Shoulder Elb. Surg. 2013, 22, 1371–1379. [Google Scholar] [CrossRef]
- Petri, M.; Ettinger, M.; Brand, S.; Stuebig, T.; Krettek, C.; Omar, M. Non-Operative Management of Rotator Cuff Tears. Open Orthop. J. 2016, 10, 349–356. [Google Scholar] [CrossRef]
- Annaniemi, J.A.; Pere, J.; Giordano, S. Platelet-rich plasma versus corticosteroid injections for rotator cuff tendinopathy: A comparative study with up to 18-month follow-up. Clin. Shoulder Elb. 2022, 25, 28–35. [Google Scholar] [CrossRef] [PubMed]
- Trasolini, N.A.; Waterman, B.R. Editorial commentary: Rotator cuff repairs fail at an alarmingly high rate during long-term follow-up: Graft augmentation and biologics may improve future outcomes. Arthrosc. J. Arthrosc. Relat. Surg. 2022, 38, 2413–2416. [Google Scholar] [CrossRef] [PubMed]
- Young, B.L.; Bitzer, A.; Odum, S.; Hamid, N.; Shiffern, S.; Connor, P.M. Healthcare costs of failed rotator cuff repairs. JSES Rev. Rep. Tech. 2023, 3, 318–323. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.; Ryu, Y.; Kim, S.H. Surgical Options for Failed Rotator Cuff Repair, except Arthroplasty: Review of Current Methods. Clin. Shoulder Elb. 2020, 23, 48–58. [Google Scholar] [CrossRef] [PubMed]
- Hmamouchi, I.; Allali, F.; Tahiri, L.; Khazzani, H.; Mansouri, L.E.; Ali Ou Alla, S.; Abouqal, R.; Hajjaj-Hassouni, N. Clinically important improvement in the WOMAC and predictor factors for response to non-specific non-steroidal anti-inflammatory drugs in osteoarthritic patients: A prospective study. BMC Res. Notes 2012, 5, 58. [Google Scholar] [CrossRef] [PubMed]
- Kvam, A.K.; Wisløff, F.; Fayers, P.M. Minimal important differences and response shift in health-related quality of life; a longitudinal study in patients with multiple myeloma. Health Qual. Life Outcomes 2010, 8, 79. [Google Scholar] [CrossRef] [PubMed]
- Boffa, A.; Andriolo, L.; Franceschini, M.; Martino, A.D.; Asunis, E.; Grassi, A.; Zaffagnini, S.; Filardo, G. Minimal Clinically Important Difference and Patient Acceptable Symptom State in Patients With Knee Osteoarthritis Treated With PRP Injection. Orthop. J. Sports Med. 2021, 9, 23259671211026242. [Google Scholar] [CrossRef]
- Buckley, M.R.; Evans, E.B.; Matuszewski, P.E.; Chen, Y.L.; Satchel, L.N.; Elliott, D.M.; Soslowsky, L.J.; Dodge, G.R. Distributions of types I, II and III collagen by region in the human supraspinatus tendon. Connect. Tissue Res. 2013, 54, 374–379. [Google Scholar] [CrossRef]
- Hashimoto, T.; Nobuhara, K.; Hamada, T. Pathologic Evidence of Degeneration as a Primary Cause of Rotator Cuff Tear. Clin. Orthop. Relat. Res. 2003, 415, 111–120. [Google Scholar] [CrossRef]
Characteristic | N | n = 87 1 |
---|---|---|
Age in Years | 84 | Mean(SD):71 (10) Min: 36 Max: 89 |
Missing | 3 | |
BMI in kg/m2 | 56 | Mean(SD):27.7 (4.7) Min: 17.1 Max: 38.6 |
Missing | 31 | |
Gender | 87 | |
Female | 42 (48%) | |
Male | 45 (52%) | |
Missing | 0 |
Interval | N | NPRS 1 | N | WOMAC 1 | N | Pain 1 | N | Stiffness 1 | N | Functionality 1 | N | QOLS 1 |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Initial | 75 | 6.13 (2.10) | 87 | 39 (21) | 87 | 7.8 (4.9) | 87 | 4.67 (2.06) | 87 | 26 (15) | 80 | 77 (18) |
Day 30 | 73 | 3.99 (2.00) | 87 | 31 (21) | 87 | 6.3 (4.8) | 87 | 3.84 (2.14) | 87 | 21 (15) | 78 | 83 (15) |
Day 90 | 67 | 3.37 (2.20) | 87 | 25 (19) | 87 | 5.1 (4.6) | 87 | 3.06 (2.10) | 87 | 17 (13) | 79 | 86 (17) |
Scales | Interval | Difference | 95% CI | p Value |
---|---|---|---|---|
NPRS | Day 30–Initial | −2.147 | −2.96, −1.33 | 0.000 * |
Day 90–Initial | −2.76 | −3.59, −1.93 | 0.000 * | |
Day 90–Day 30 | −0.613 | −1.45, 0.23 | 0.199 | |
WOMAC | Day 30–Initial | −7.414 | −14.77, −0.05 | 0.048 |
Day 90–Initial | −13.506 | −20.87, −6.15 | 0.000 * | |
Day 90–Day 30 | −6.092 | −13.45, 1.27 | 0.127 | |
Pain | Day 30–Initial | −1.494 | −3.19, 0.2 | 0.097 |
Day 90–Initial | −2.724 | −4.42, −1.03 | 0.001 * | |
Day 90–Day 30 | −1.23 | −2.93, 0.47 | 0.205 | |
Stiffness | Day 30–Initial | −0.828 | −1.58, −0.08 | 0.027 * |
Day 90–Initial | −1.655 | −2.41, −0.9 | 0.00 * | |
Day 90–Day 30 | −0.828 | −1.58, −0.08 | 0.027 * | |
Functionality | Day 30–Initial | −5.092 | −10.31, 0.13 | 0.058 |
Day 90–Initial | −9.126 | −14.35, −3.91 | 0.000 * | |
Day 90–Day 30 | −4.034 | −9.26, 1.19 | 0.165 | |
QOLS | Day 30–Initial | 6.22 | −0.08, 12.51 | 0.054 |
Day 90–Initial | 8.9 | 2.62, 15.17 | 0.003 * | |
Day 90–Day 30 | 2.68 | −3.63, 8.99 | 0.577 |
Covariates | NPRS | WOMAC | Pain | Stiffness | Functionality | QOLS |
---|---|---|---|---|---|---|
Age | 0.723 | 0.195 | 0.124 | 0.374 | 0.217 | 0.276 |
Gender | 0.380 | 0.844 | 0.866 | 0.430 | 0.924 | 0.394 |
BMI | 0.942 | 0.549 | 0.731 | 0.880 | 0.467 | 0.849 |
Scales | N | Not Better, N = 13 1 | Slightly Better, N = 28 1 | Better, N = 14 1 | Much Better, N = 11 1 |
---|---|---|---|---|---|
WOMAC | 66 | −6 (8), −25, 4 | 10 (16), −14, 68 | 30 (20), 4, 68 | 30 (18), 5, 63 |
Pain | 66 | −1.8 (3.3), −8.0, 2.0 | 2.4 (3.7), −3.0, 16.0 | 6.2 (4.9), 0.0, 16.0 | 5.8 (4.2), −1.0, 11.0 |
Stiffness | 66 | −0.54 (1.33), −3.00, 1.00 | 1.21 (1.79), −2.00, 6.00 | 3.64 (2.10), 0.00, 7.00 | 3.45 (2.11), 0.00, 7.00 |
Functionality | 66 | −4 (6), −14, 2 | 6 (11), −12, 46 | 20 (14), 1, 45 | 20 (13), 3, 45 |
QOLS | 59 | 1 (7), −9, 14 | −3 (10), −22, 25 | −21 (24), −64, 12 | −20 (23), −67, 14 |
Name | WOMAC | Pain | Stiffness | Functionality | QOLS |
---|---|---|---|---|---|
AUC | 0.88 | 0.79 | 0.79 | 0.83 | 0.61 |
Sensitivity | 0.64 | 0.86 | 0.68 | 0.57 | 0.85 |
Specificity | 0.92 | 0.54 | 0.77 | 1.00 | 0.40 |
Youden’s Index | 0.57 | 0.40 | 0.45 | 0.57 | 0.25 |
Scales | MCIDAUC | MCp_total | % of Exceed MCIDAUC | % At-Least One Unit Improved |
---|---|---|---|---|
WOMAC | 10.00 | 13.51 | 51.7 | 72.4 |
Pain | 2.36 | 2.72 | 43.7 | 66.7 |
Stiffness | 1.21 | 1.66 | 41.4 | 65.5 |
Functionality | 6.43 | 9.13 | 50.6 | 73.6 |
QOLS | −2.81 | −9.12 | 48.3 | 57.1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lai, A.; Tamea, C.; Shou, J.; Okafor, A.; Sparks, J.; Dodd, R.; Woods, C.; Lambert, N.; Schulte, O.; Barrett, T. Safety and Efficacy of Wharton’s Jelly Connective Tissue Allograft for Rotator Cuff Tears: Findings from a Retrospective Observational Study. Biomedicines 2024, 12, 710. https://doi.org/10.3390/biomedicines12040710
Lai A, Tamea C, Shou J, Okafor A, Sparks J, Dodd R, Woods C, Lambert N, Schulte O, Barrett T. Safety and Efficacy of Wharton’s Jelly Connective Tissue Allograft for Rotator Cuff Tears: Findings from a Retrospective Observational Study. Biomedicines. 2024; 12(4):710. https://doi.org/10.3390/biomedicines12040710
Chicago/Turabian StyleLai, Albert, Conrad Tamea, John Shou, Anthony Okafor, Jay Sparks, Renee Dodd, Crislyn Woods, Naomi Lambert, Orion Schulte, and Tyler Barrett. 2024. "Safety and Efficacy of Wharton’s Jelly Connective Tissue Allograft for Rotator Cuff Tears: Findings from a Retrospective Observational Study" Biomedicines 12, no. 4: 710. https://doi.org/10.3390/biomedicines12040710