Genetic Ablation of Pyruvate Dehydrogenase Kinase Isoform 4 Gene Enhances Recovery from Hyperoxic Lung Injury: Insights into Antioxidant and Inflammatory Mechanisms
Abstract
:1. Introduction
2. Materials and Methods
2.1. Animals
2.2. Neonatal Hyperoxic Exposure and Recovery
2.3. Lung Tissue Collection
2.4. Lung Histology and Morphometry
2.5. RNA Extraction and Quantitative RT-PCR Analysis
2.6. Measurement of Cytokine Levels in Lung Tissue
2.7. Statistical Analysis
3. Results
3.1. At 4 Days of Age, Neonatal Hyperoxia Compromised Alveolar Development in Both Wild-Type (WT) and PDK4−/− Mice, Suggesting a Deleterious Impact on Lung Maturation Regardless of PDK4 Status
3.2. The Compromised Alveolar Development Noted in PDK4−/− Mice at 4 Days of Age Exhibited Substantial Recovery by the Age of 14 Days, Suggesting the Presence of a Potential Compensatory Mechanism or Inherent Resilience in Lung Maturation over Time
3.3. Neonatal Hyperoxia Induced Elevated Lung mRNA Expression of PDK4 in WT Mice Compared to Those Exposed to Normoxia, Indicating the Potential Role of Hyperoxia in Upregulating PDK4 Expression in the Lung Tissue of WT Mice
3.4. The Lungs Exposed to Hyperoxia Exhibited Significant Disparities in IL-6 and MCP-1 Protein and mRNA Expression Levels Compared to Those Exposed to Normoxia
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Voynow, J.A. “New” bronchopulmonary dysplasia and chronic lung disease. Paediatr. Respir. Rev. 2017, 24, 17–18. [Google Scholar] [CrossRef] [PubMed]
- Day, C.L.; Ryan, R.M. Bronchopulmonary dysplasia: New becomes old again! Pediatr. Res. 2017, 81, 210–213. [Google Scholar] [CrossRef] [PubMed]
- Bowker-Kinley, M.M.; Davis, W.I.; Wu, P.; Harris, R.A.; Popov, K.M. Evidence for existence of tissue-specific regulation of the mammalian pyruvate dehydrogenase complex. Biochem. J. 1998, 329 Pt 1, 191–196. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.; Zhao, Y.; Park, Y.K.; Lee, J.Y.; Gao, L.; Zhao, J.; Wang, L. Loss of PDK4 switches the hepatic NF-kappaB/TNF pathway from pro-survival to pro-apoptosis. Hepatology 2018, 68, 1111–1124. [Google Scholar] [CrossRef] [PubMed]
- Jeon, J.H.; Thoudam, T.; Choi, E.J.; Kim, M.J.; Harris, R.A.; Lee, I.K. Loss of metabolic flexibility as a result of overexpression of pyruvate dehydrogenase kinases in muscle, liver and the immune system: Therapeutic targets in metabolic diseases. J. Diabetes Investig. 2021, 12, 21–31. [Google Scholar] [CrossRef]
- McFate, T.; Mohyeldin, A.; Lu, H.; Thakar, J.; Henriques, J.; Halim, N.D.; Wu, H.; Schell, M.J.; Tsang, T.M.; Teahan, O.; et al. Pyruvate dehydrogenase complex activity controls metabolic and malignant phenotype in cancer cells. J. Biol. Chem. 2008, 283, 22700–22708. [Google Scholar] [CrossRef] [PubMed]
- Wei, P.; Lin, D.; Luo, C.; Zhang, M.; Deng, B.; Cui, K.; Chen, Z. High glucose promotes benign prostatic hyperplasia by downregulating PDK4 expression. Sci. Rep. 2023, 13, 17910. [Google Scholar] [CrossRef] [PubMed]
- Forteza, M.J.; Berg, M.; Edsfeldt, A.; Sun, J.; Baumgartner, R.; Kareinen, I.; Casagrande, F.B.; Hedin, U.; Zhang, S.; Vuckovic, I.; et al. Pyruvate dehydrogenase kinase regulates vascular inflammation in atherosclerosis and increases cardiovascular risk. Cardiovasc. Res. 2023, 119, 1524–1536. [Google Scholar] [CrossRef] [PubMed]
- Zhao, G.; Jeoung, N.H.; Burgess, S.C.; Rosaaen-Stowe, K.A.; Inagaki, T.; Latif, S.; Shelton, J.M.; McAnally, J.; Bassel-Duby, R.; Harris, R.A.; et al. Overexpression of pyruvate dehydrogenase kinase 4 in heart perturbs metabolism and exacerbates calcineurin-induced cardiomyopathy. Am. J. Physiol. Heart Circ. Physiol. 2008, 294, H936–H943. [Google Scholar] [CrossRef] [PubMed]
- Mori, J.; Alrob, O.A.; Wagg, C.S.; Harris, R.A.; Lopaschuk, G.D.; Oudit, G.Y. ANG II causes insulin resistance and induces cardiac metabolic switch and inefficiency: A critical role of PDK4. Am. J. Physiol. Heart Circ. Physiol. 2013, 304, H1103–H1113. [Google Scholar] [CrossRef] [PubMed]
- Shen, M.; Zheng, C.; Chen, L.; Li, M.; Huang, X.; He, M.; Liu, C.; Lin, H.; Liao, W.; Bin, J.; et al. LCZ696 (sacubitril/valsartan) inhibits pulmonary hypertension induced right ventricular remodeling by targeting pyruvate dehydrogenase kinase 4. Biomed. Pharmacother. 2023, 162, 114569. [Google Scholar] [CrossRef] [PubMed]
- Zhu, L.; Shi, D.; Cao, J.; Song, L. LncRNA CASC2 Alleviates Sepsis-induced Acute Lung Injury by Regulating the miR-152-3p/PDK4 Axis. Immunol. Invest. 2022, 51, 1257–1271. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.R.; Guo, X.Y.; Liu, X.Y.; Song, X. Down-regulation of lncRNA CASC9 aggravates sepsis-induced acute lung injury by regulating miR-195-5p/PDK4 axis. Inflamm. Res. 2020, 69, 559–568. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Q.J.; Wang, J.; Li, Y.; Bai, Z.J.; Guo, X.B.; Pan, T. PRKCA Promotes Mitophagy through the miR-15a-5p/PDK4 Axis to Relieve Sepsis-Induced Acute Lung Injury. Infect. Immun. 2023, 91, e0046522. [Google Scholar] [CrossRef] [PubMed]
- Kimura, R.E.; Thulin, G.E.; Wender, D.; Warshaw, J.B. Decreased oxidative metabolism in neonatal rat lung exposed to hyperoxia. J. Appl. Physiol. Respir. Environ. Exerc. Physiol. 1983, 55, 1501–1505. [Google Scholar] [CrossRef] [PubMed]
- Tanaka, K.; Watanabe, T.; Ozawa, J.; Ito, M.; Nagano, N.; Arai, Y.; Miyake, F.; Matsumura, S.; Kobayashi, S.; Itakura, R.; et al. Difference in pyruvic acid metabolism between neonatal and adult mouse lungs exposed to hyperoxia. PLoS ONE 2020, 15, e0238604. [Google Scholar] [CrossRef] [PubMed]
- Hsia, C.C.; Hyde, D.M.; Ochs, M.; Weibel, E.R. An official research policy statement of the American Thoracic Society/European Respiratory Society: Standards for quantitative assessment of lung structure. Am. J. Respir. Crit. Care Med. 2010, 181, 394–418. [Google Scholar] [CrossRef]
- Yang, G.; Hinson, M.D.; Bordner, J.E.; Lin, Q.S.; Fernando, A.P.; La, P.; Wright, C.J.; Dennery, P.A. Silencing hyperoxia-induced C/EBPalpha in neonatal mice improves lung architecture via enhanced proliferation of alveolar epithelial cells. Am. J. Physiol. Lung Cell Mol. Physiol. 2011, 301, L187–L196. [Google Scholar] [CrossRef] [PubMed]
- Bhandari, V. Developmental differences in the role of interleukins in hyperoxic lung injury in animal models. Front. Biosci. 2002, 7, d1624–d1633. [Google Scholar] [CrossRef] [PubMed]
- Zoulikha, M.; Xiao, Q.; Boafo, G.F.; Sallam, M.A.; Chen, Z.; He, W. Pulmonary delivery of siRNA against acute lung injury/acute respiratory distress syndrome. Acta Pharm. Sin. B 2022, 12, 600–620. [Google Scholar] [CrossRef] [PubMed]
- Fukuhara, K.; Nakashima, T.; Abe, M.; Masuda, T.; Hamada, H.; Iwamoto, H.; Fujitaka, K.; Kohno, N.; Hattori, N. Suplatast tosilate protects the lung against hyperoxic lung injury by scavenging hydroxyl radicals. Free Radic. Biol. Med. 2017, 106, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Higo, H.; Ohashi, K.; Tomida, S.; Okawa, S.; Yamamoto, H.; Sugimoto, S.; Senoo, S.; Makimoto, G.; Ninomiya, K.; Nakasuka, T.; et al. Identification of targetable kinases in idiopathic pulmonary fibrosis. Respir. Res. 2022, 23, 20. [Google Scholar] [CrossRef] [PubMed]
- He, W.; Su, X.; Chen, L.; Liu, C.; Lu, W.; Wang, T.; Wang, J. Potential biomarkers and therapeutic targets of idiopathic pulmonary arterial hypertension. Physiol. Rep. 2022, 10, e15101. [Google Scholar] [CrossRef] [PubMed]
- Sun, T.; Yu, H.; Li, D.; Zhang, H.; Fu, J. Emerging role of metabolic reprogramming in hyperoxia-associated neonatal diseases. Redox Biol. 2023, 66, 102865. [Google Scholar] [CrossRef] [PubMed]
- Obst, S.; Herz, J.; Alejandre Alcazar, M.A.; Endesfelder, S.; Mobius, M.A.; Rudiger, M.; Felderhoff-Muser, U.; Bendix, I. Perinatal Hyperoxia and Developmental Consequences on the Lung-Brain Axis. Oxid. Med. Cell Longev. 2022, 2022, 5784146. [Google Scholar] [CrossRef] [PubMed]
- Tanimoto, T.; Hattori, N.; Senoo, T.; Furonaka, M.; Ishikawa, N.; Fujitaka, K.; Haruta, Y.; Yokoyama, A.; Igarashi, K.; Kohno, N. Genetic ablation of the Bach1 gene reduces hyperoxic lung injury in mice: Role of IL-6. Free Radic. Biol. Med. 2009, 46, 1119–1126. [Google Scholar] [CrossRef] [PubMed]
- Ward, N.S.; Waxman, A.B.; Homer, R.J.; Mantell, L.L.; Einarsson, O.; Du, Y.; Elias, J.A. Interleukin-6-induced protection in hyperoxic acute lung injury. Am. J. Respir. Cell Mol. Biol. 2000, 22, 535–542. [Google Scholar] [CrossRef]
- Hirani, D.; Alvira, C.M.; Danopoulos, S.; Milla, C.; Donato, M.; Tian, L.; Mohr, J.; Dinger, K.; Vohlen, C.; Selle, J.; et al. Macrophage-derived IL-6 trans-signalling as a novel target in the pathogenesis of bronchopulmonary dysplasia. Eur. Respir. J. 2022, 59, 2002248. [Google Scholar] [CrossRef] [PubMed]
- Choo-Wing, R.; Nedrelow, J.H.; Homer, R.J.; Elias, J.A.; Bhandari, V. Developmental differences in the responses of IL-6 and IL-13 transgenic mice exposed to hyperoxia. Am. J. Physiol. Lung Cell Mol. Physiol. 2007, 293, L142–L150. [Google Scholar] [CrossRef] [PubMed]
- Chetty, A.; Cao, G.J.; Manzo, N.; Nielsen, H.C.; Waxman, A. The role of IL-6 and IL-11 in hyperoxic injury in developing lung. Pediatr. Pulmonol. 2008, 43, 297–304. [Google Scholar] [CrossRef] [PubMed]
- Yang, M.X.; Wu, Z.Z.; Liao, X.Y.; Zhang, B.L.; Chen, X.; Wu, Y.; Lin, J.D. Remifentanil reduces multiple organ and energy metabolism disturbances in a rat sepsis model. J. Physiol. Pharmacol. 2022, 73, 81–87. [Google Scholar]
- Okuma, T.; Terasaki, Y.; Sakashita, N.; Kaikita, K.; Kobayashi, H.; Hayasaki, T.; Kuziel, W.A.; Baba, H.; Takeya, M. MCP-1/CCR2 signalling pathway regulates hyperoxia-induced acute lung injury via nitric oxide production. Int. J. Exp. Pathol. 2006, 87, 475–483. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Bao, Z.; Lei, X.; Wang, X.; Zhao, S.; Du, F.; Liu, X.; Dong, W. Omeprazole activates aryl hydrocarbon receptor to reduce hyperoxia-induced oxidative stress in the peripheral blood mononuclear cells from premature infants. J. Matern. Fetal Neonatal Med. 2023, 36, 2272577. [Google Scholar] [CrossRef] [PubMed]
- Windhorst, A.C.; Heydarian, M.; Schwarz, M.; Oak, P.; Forster, K.; Frankenberger, M.; Gonzalez Rodriguez, E.; Zhang, X.; Ehrhardt, H.; Hubener, C.; et al. Monocyte signature as a predictor of chronic lung disease in the preterm infant. Front. Immunol. 2023, 14, 1112608. [Google Scholar] [CrossRef] [PubMed]
- Terado, T.; Kim, C.J.; Ushio, A.; Minami, K.; Tambe, Y.; Kageyama, S.; Kawauchi, A.; Tsunoda, T.; Shirasawa, S.; Tanaka, H.; et al. Cryptotanshinone suppresses tumorigenesis by inhibiting lipogenesis and promoting reactive oxygen species production in KRAS-activated pancreatic cancer cells. Int. J. Oncol. 2022, 61, 108. [Google Scholar] [CrossRef]
- Zhu, G.; Li, D.; Wang, X.; Guo, Q.; Zhao, Y.; Hou, W.; Li, J.; Zheng, Q. Drug monomers from Salvia miltiorrhiza Bge. promoting tight junction protein expression for therapeutic effects on lung cancer. Sci. Rep. 2023, 13, 22928. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Wan, W.; Zhang, J.; Lu, J.; Liu, P. Efficient pulmonary fibrosis therapy via regulating macrophage polarization using respirable cryptotanshinone-loaded liposomal microparticles. J. Control Release 2023, 366, 1–17. [Google Scholar] [CrossRef] [PubMed]
- Hosokawa, M.; Mikawa, R.; Hagiwara, A.; Okuno, Y.; Awaya, T.; Yamamoto, Y.; Takahashi, S.; Yamaki, H.; Osawa, M.; Setoguchi, Y.; et al. Cryptotanshinone is a candidate therapeutic agent for interstitial lung disease associated with a BRICHOS-domain mutation of SFTPC. iScience 2023, 26, 107731. [Google Scholar] [CrossRef] [PubMed]
- Huang, J.; Zhang, J.; Sun, C.; Yang, R.; Sheng, M.; Hu, J.; Kai, G.; Han, B. Adjuvant role of Salvia miltiorrhiza bunge in cancer chemotherapy: A review of its bioactive components, health-promotion effect and mechanisms. J. Ethnopharmacol. 2024, 318, 117022. [Google Scholar] [CrossRef] [PubMed]
- El-Saie, A.; Varghese, N.P.; Webb, M.K.; Villafranco, N.; Gandhi, B.; Guaman, M.C.; Shivanna, B. Bronchopulmonary dysplasia—Associated pulmonary hypertension: An updated review. Semin. Perinatol. 2023, 47, 151817. [Google Scholar] [CrossRef]
- Durlak, W.; Thebaud, B. The vascular phenotype of BPD: New basic science insights-new precision medicine approaches. Pediatr. Res. 2022. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Watanabe, K.; Kato, A.; Adachi, H.; Noguchi, A.; Arai, H.; Ito, M.; Namba, F.; Takahashi, T. Genetic Ablation of Pyruvate Dehydrogenase Kinase Isoform 4 Gene Enhances Recovery from Hyperoxic Lung Injury: Insights into Antioxidant and Inflammatory Mechanisms. Biomedicines 2024, 12, 746. https://doi.org/10.3390/biomedicines12040746
Watanabe K, Kato A, Adachi H, Noguchi A, Arai H, Ito M, Namba F, Takahashi T. Genetic Ablation of Pyruvate Dehydrogenase Kinase Isoform 4 Gene Enhances Recovery from Hyperoxic Lung Injury: Insights into Antioxidant and Inflammatory Mechanisms. Biomedicines. 2024; 12(4):746. https://doi.org/10.3390/biomedicines12040746
Chicago/Turabian StyleWatanabe, Keisuke, Akie Kato, Hiroyuki Adachi, Atsuko Noguchi, Hirokazu Arai, Masato Ito, Fumihiko Namba, and Tsutomu Takahashi. 2024. "Genetic Ablation of Pyruvate Dehydrogenase Kinase Isoform 4 Gene Enhances Recovery from Hyperoxic Lung Injury: Insights into Antioxidant and Inflammatory Mechanisms" Biomedicines 12, no. 4: 746. https://doi.org/10.3390/biomedicines12040746