The Outcomes of Preterm Infants with Neonatal Respiratory Distress Syndrome Treated by Minimally Invasive Surfactant Therapy and Non-Invasive Ventilation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Ethics Statement and Study Overview
2.2. Non-Invasive Ventilators, Ventilator Accessories, and Surfactant Therapy
2.2.1. Non-Invasive Ventilators
- NCPAP: (1) Utilized an oxygen blender connected to an underwater continuous positive airway pressure (CPAP) (infant bubble CPAP nasal prongs set, GaleMed™, Taipei, Taiwan). (2) setting parameters: FiO2, PEEP, and mixed total flow.
- NIPPV: (1) The ventilators used in this study included E360 (Newport™ e360 ventilator, Medtronic, Minneapolis, MN, USA) and NPB840 (Puritan Bennett™ 840 ventilator, Medtronic, Minneapolis, MN, USA). For all enrolled subjects in this study, infants over 1 kg were provided with E360, while those weighing less than 1 kg received NPB840. (2) Ventilator mode: pressure-synchronized intermittent mandatory ventilation with pressure support (PSIMV + PS). (3) Setting parameters: peak inspiratory pressure (PIP)/pressure control ventilation (PCV) level, pressure support ventilation (PSV) level, rate, Ti, FiO2, and PEEP.
2.2.2. Ventilator Accessories
2.2.3. Surfactant
2.3. Minimally Invasive Surfactant Therapy
2.3.1. Indication
2.3.2. Procedure
2.4. Bronchopulmonary Dysplasia
2.5. Severity of RDS
2.6. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Escobar, V.; Soares, D.S.; Kreling, J.; Ferrari, L.S.L.; Felcar, J.M.; Camillo, C.A.M.; Probst, V.S. Influence of time under mechanical ventilation on bronchopulmonary dysplasia severity in extremely preterm infants: A pilot study. BMC Pediatr. 2020, 20, 241. [Google Scholar] [CrossRef] [PubMed]
- Kalikkot Thekkeveedu, R.; El-Saie, A.; Prakash, V.; Katakam, L.; Shivanna, B. Ventilation-Induced Lung Injury (VILI) in Neonates: Evidence-Based Concepts and Lung-Protective Strategies. J. Clin. Med. 2022, 11, 557. [Google Scholar] [CrossRef] [PubMed]
- Cunha, G.S.; Mezzacappa-Filho, F.; Ribeiro, J.D. Risk factors for bronchopulmonary dysplasia in very low birth weight newborns treated with mechanical ventilation in the first week of life. J. Trop. Pediatr. 2005, 51, 334–340. [Google Scholar] [CrossRef] [PubMed]
- Jobe, A.H.; Bancalari, E. Bronchopulmonary dysplasia. Am. J. Respir. Crit. Care Med. 2001, 163, 1723–1729. [Google Scholar] [CrossRef] [PubMed]
- Jobe, A.H. Mechanisms of Lung Injury and Bronchopulmonary Dysplasia. Am. J. Perinatol. 2016, 33, 1076–1078. [Google Scholar] [CrossRef] [PubMed]
- Eckert, G.U.; Fortes Filho, J.B.; Maia, M.; Procianoy, R.S. A predictive score for retinopathy of prematurity in very low birth weight preterm infants. Eye 2012, 26, 400–406. [Google Scholar] [CrossRef] [PubMed]
- Jensen, E.A.; DeMauro, S.B.; Kornhauser, M.; Aghai, Z.H.; Greenspan, J.S.; Dysart, K.C. Effects of Multiple Ventilation Courses and Duration of Mechanical Ventilation on Respiratory Outcomes in Extremely Low-Birth-Weight Infants. JAMA Pediatr. 2015, 169, 1011–1017. [Google Scholar] [CrossRef] [PubMed]
- Walsh, M.C.; Morris, B.H.; Wrage, L.A.; Vohr, B.R.; Poole, W.K.; Tyson, J.E.; Wright, L.L.; Ehrenkranz, R.A.; Stoll, B.J.; Fanaroff, A.A.; et al. Extremely low birthweight neonates with protracted ventilation: Mortality and 18-month neurodevelopmental outcomes. J. Pediatr. 2005, 146, 798–804. [Google Scholar] [CrossRef] [PubMed]
- Ramaswamy, V.V.; More, K.; Roehr, C.C.; Bandiya, P.; Nangia, S. Efficacy of noninvasive respiratory support modes for primary respiratory support in preterm neonates with respiratory distress syndrome: Systematic review and network meta-analysis. Pediatr. Pulmonol. 2020, 55, 2940–2963. [Google Scholar] [CrossRef]
- Shi, Y.; Muniraman, H.; Biniwale, M.; Ramanathan, R. A Review on Non-invasive Respiratory Support for Management of Respiratory Distress in Extremely Preterm Infants. Front. Pediatr. 2020, 8, 270. [Google Scholar] [CrossRef]
- Committee on Fetus and Newborn; Papile, L.-A.; Baley, J.E.; Benitz, W.; Cummings, J.; Eichenwald, E.; Kumar, P.; Tan, R.C.; Wang, K.S. Respiratory Support in Preterm Infants at Birth. Pediatrics 2014, 133, 171–174. [Google Scholar] [CrossRef]
- Sweet, D.G.; Carnielli, V.P.; Greisen, G.; Hallman, M.; Klebermass-Schrehof, K.; Ozek, E.; Te Pas, A.; Plavka, R.; Roehr, C.C.; Saugstad, O.D.; et al. European Consensus Guidelines on the Management of Respiratory Distress Syndrome: 2022 Update. Neonatology 2023, 120, 3–23. [Google Scholar] [CrossRef] [PubMed]
- Herting, E.; Hartel, C.; Gopel, W. Less invasive surfactant administration: Best practices and unanswered questions. Curr. Opin. Pediatr. 2020, 32, 228–234. [Google Scholar] [CrossRef] [PubMed]
- Pareek, P.; Deshpande, S.; Suryawanshi, P.; Sah, L.K.; Chetan, C.; Maheshwari, R.; More, K. Less Invasive Surfactant Administration (LISA) vs. Intubation Surfactant Extubation (InSurE) in Preterm Infants with Respiratory Distress Syndrome: A Pilot Randomized Controlled Trial. J. Trop. Pediatr. 2021, 67, fmab086. [Google Scholar] [CrossRef] [PubMed]
- Gupta, B.K.; Saha, A.K.; Mukherjee, S.; Saha, B. Minimally invasive surfactant therapy versus InSurE in preterm neonates of 28 to 34 weeks with respiratory distress syndrome on non-invasive positive pressure ventilation-a randomized controlled trial. Eur. J. Pediatr. 2020, 179, 1287–1293. [Google Scholar] [CrossRef] [PubMed]
- Mosayebi, Z.; Kadivar, M.; Taheri-Derakhsh, N.; Nariman, S.; Mahdi Marashi, S.; Farsi, Z. A Randomized Trial Comparing Surfactant Administration Using InSurE Technique and the Minimally Invasive Surfactant Therapy in Preterm Infants (28 to 34 Weeks of Gestation) with Respiratory Distress Syndrome. J. Compr. Pediatr. 2017, 8, e60724. [Google Scholar] [CrossRef]
- Moretti, C.; Gizzi, C. Synchronized Nasal Intermittent Positive Pressure Ventilation. Clin. Perinatol. 2021, 48, 745–759. [Google Scholar] [CrossRef] [PubMed]
- Ricci, F.; Casiraghi, C.; Storti, M.; D’Alo, F.; Catozzi, C.; Ciccimarra, R.; Ravanetti, F.; Cacchioli, A.; Villetti, G.; Civelli, M.; et al. Surfactant replacement therapy in combination with different non-invasive ventilation techniques in spontaneously-breathing, surfactant-depleted adult rabbits. PLoS ONE 2018, 13, e0200542. [Google Scholar] [CrossRef]
- Ramaswamy, V.V.; Bandyopadhyay, T.; Nanda, D.; Bandiya, P.; More, K.; Oommen, V.I.; Gupta, A. Efficacy of noninvasive respiratory support modes as postextubation respiratory support in preterm neonates: A systematic review and network meta-analysis. Pediatr. Pulmonol. 2020, 55, 2924–2939. [Google Scholar] [CrossRef]
- Ramaswamy, V.V.; Bandyopadhyay, T.; Abiramalatha, T.; Pullattayil, S.A.; Szczapa, T.; Wright, C.J.; Roehr, C.C. Clinical decision thresholds for surfactant administration in preterm infants: A systematic review and network meta-analysis. EClinicalMedicine 2023, 62, 102097. [Google Scholar] [CrossRef]
- Dargaville, P.A.; Aiyappan, A.; De Paoli, A.G.; Dalton, R.G.; Kuschel, C.A.; Kamlin, C.O.; Orsini, F.; Carlin, J.B.; Davis, P.G. Continuous positive airway pressure failure in preterm infants: Incidence, predictors and consequences. Neonatology 2013, 104, 8–14. [Google Scholar] [CrossRef] [PubMed]
- Gulczynska, E.; Szczapa, T.; Hozejowski, R.; Borszewska-Kornacka, M.K.; Rutkowska, M. Fraction of Inspired Oxygen as a Predictor of CPAP Failure in Preterm Infants with Respiratory Distress Syndrome: A Prospective Multicenter Study. Neonatology 2019, 116, 171–178. [Google Scholar] [CrossRef] [PubMed]
- Oncel, M.Y.; Arayici, S.; Uras, N.; Alyamac-Dizdar, E.; Sari, F.N.; Karahan, S.; Canpolat, F.E.; Oguz, S.S.; Dilmen, U. Nasal continuous positive airway pressure versus nasal intermittent positive-pressure ventilation within the minimally invasive surfactant therapy approach in preterm infants: A randomised controlled trial. Arch. Dis. Child. Fetal Neonatal Ed. 2016, 101, F323–F328. [Google Scholar] [CrossRef] [PubMed]
- Ramanathan, R.; Sekar, K.C.; Rasmussen, M.; Bhatia, J.; Soll, R.F. Nasal intermittent positive pressure ventilation after surfactant treatment for respiratory distress syndrome in preterm infants < 30 weeks’ gestation: A randomized, controlled trial. J. Perinatol. 2012, 32, 336–343. [Google Scholar] [CrossRef]
- Bahadue, F.L.; Soll, R. Early versus delayed selective surfactant treatment for neonatal respiratory distress syndrome. Cochrane Database Syst. Rev. 2012, 11, CD001456. [Google Scholar] [CrossRef]
NCPAP (N = 32) | NIPPV (N = 22) | p Value | |
---|---|---|---|
Preterm infants | |||
Gestation age (weeks) | 30.7 (4.01) | 28.3 (3.16) | 0.019 |
Birth weight (g) | 1713.6 (729.2) | 1206.6 (606.5) | 0.010 |
>1000 g | 25 (78.1) | 11 (50) | 0.031 |
<1000 g | 7 (21.9) | 11 (50) | |
Male/Female | 23/9 | 9/13 | 0.023 |
Singleton | 22 (68.6) | 13 (59.1) | 0.465 |
Antenatal steroids | 22 (68.8) | 16 (72.7) | 0.753 |
Antenatal antibiotics | 18 (56.3) | 16 (72.2) | 0.218 |
Caesarean section | 17 (53.1) | 8 (36.4) | 0.225 |
Agpar Score 1 min | 6.2 (1.5) | 4.8 (2.0) | 0.389 |
Agpar Score 5 min | 7.7 (1.0) | 7.1 (1.4) | 0.267 |
Dose of MIST | 1.25 (0.6) | 1.09 (0.29) | 0.215 |
1 dose | 27 (84.4) | 20 (90.9) | 0.687 |
>1 dose | 5 (15.6) | 2 (9.1) | |
Age at first MIST (h) | 9.14 (8.6) | 2.58 (2.76) | 0.001 |
Mothers | |||
Age | 32.0 (5.3) | 33.0 (4.9) | 0.511 |
Taiwanese | 31 (96.9) | 22 (100) | 1.0 |
Gravida | 2.50 (1.6) | 2.14 (1.98) | 0.882 |
Para | 1.81 (0.93) | 1.36 (0.72) | 0.102 |
Abortion | 0.69 (1.23) | 0.77 (1.47) | 0.547 |
Before MIST | p | After MIST | p | |||
---|---|---|---|---|---|---|
NCPAP (N = 32) | NIPPV (N = 22) | NCPAP (N = 32) | NIPPV (N = 22) | |||
PIP (cmH2O) | - | 14.1 (1.8) | - | 13.1 (4.4) * | 13.5 (2.8) | 0.75 |
PEEP (cmH2O) | 4.6 (0.6) | 4.3 (0.4) | 0.53 | 4.6 (0.6) | 4.4 (0.5) | 0.17 |
FiO2 (%) | 52.9 (17.3) | 55.2 (16.4) | 0.63 | 34.8 (7.5) | 34.5 (0.8) | 0.89 |
NCPAP (N = 24) | NIPPV (N = 7) | NCPAP (N = 32) | NIPPV (N = 22) | |||
Grade of RDS | 3.13 (0.53) | 2.7 (0.75) | 0.115 | 2.53 (0.56) | 2.50 (0.51) | 0.837 |
NCPAP (N = 32) | p | NIPPV (N = 22) | p | |||
---|---|---|---|---|---|---|
Before MIST | After MIST | Before MIST | After MIST | |||
PIP (cmH2O) | - | 10.5 (7.1) | - | 14.1 (1.8) * | 13.5 (2.8) | 0.07 |
PEEP (cmH2O) | 4.6 (0.6) | 4.6 (0.6) | 1.0 | 4.3 (0.4) | 4.4 (0.5) | 0.16 |
FiO2 (%) | 51.4 (15.3) | 34.8 (7.5) | 0.001 | 54.5 (116.5) | 34.5 (9.8) | 0.001 |
Blood Gas at Admission | p | Blood Gas at 24 h | p | |||
---|---|---|---|---|---|---|
NCPAP (N = 32) | NIPPV (N = 22) | NCPAP (N = 32) | NIPPV (N = 22) | |||
pH | 7.22 (0.05) | 7.23 (0.66) | 0.46 | 7.31 (0.07) | 7.36 (0.09) | 0.02 |
PvCO2 | 59.9 (13.8) | 56.1 (9.9) | 0.28 | 45.4 (8.6) | 41.1 (12.1) | 0.16 |
HCO3 | 27.5 (17.4) | 23.0 (2.8) | 0.24 | 22.0 (2.5) | 22.9 (6.7) | 0.49 |
B.E. | −3.2 (4.8) | −4.5 (3.0) | 0.27 | −3.7 (2.6) | −3.3 (2.6) | 0.55 |
NCPAP (N = 32) | p | NIPPV (N = 22) | p | |||
---|---|---|---|---|---|---|
Admission | 24 h | Admission | 24 h | |||
pH | 7.22 (0.05) | 7.31 (0.07) | 0.001 | 7.23 (0.06) | 7.36 (0.09) | 0.001 |
PvCO2 | 59.9 (0.07) | 45.4 (2.5) | 0.001 | 56.1 (9.9) | 41.4 (12.1) | 0.001 |
HCO3 | 27.5 (17.4) | 22.0 (2.5) | 0.09 | 23.0 (2.8) | 22.9 (6.7) | 0.47 |
B.E. | −3.2 (4.8) | −3.7 (2.6) | 0.60 | −4.5 (3.0) | −3.2 (2.6) | 0.04 |
NCPAP (N = 32) | NIPPV (N = 22) | p Value | |
---|---|---|---|
Comorbidity | |||
BPD | 12 (37.5) | 10 (45.4) | 0.427 |
Mild | 1 (8) | 1 (10) | 0.896 |
Moderate | 5 (42) | 5 (50) | |
Severe | 6 (50) | 4 (40) | |
ROP | 8 (25) | 12 (54.5) | 0.027 |
ROP (≥stage 3) | 1 | 5 | 0.036 |
PDA | 24 (75) | 17 (77.2) | 0.848 |
PAH | 2 (6.2) | 4 (18.1) | 0.211 |
Air leaks | 2 (6.2) | 4 (18.1) | 0.211 |
IVH | 6 (18.7) | 9 (40.9) | 0.074 |
IVH (≥grade 3) | 1 | 1 | 1.000 |
PVE | 20 (62.5) | 17 (77.2) | 0.251 |
PVL | 3 (9.3) | 5 (22.7) | 0.248 |
Hydrocephalus | 0 (0.0) | 2 (9.0) | 0.161 |
NEC | 1 (3.1) | 2 (9.0) | 0.560 |
NEC (≥stage 2) | 0 | 1 | 0.407 |
At 28 days | |||
FiO2 (%) | 23.8 (6.6) | 26.0 (10.5) | 0.360 |
with support | 14 (43.7) | 15 (68.1) | 0.061 |
At PMA 36 weeks | |||
FiO2 (%) | 22.7 (4.4) | 25.8 (15.5) | 0.300 |
with support | 17 (53.1) | 9 (40.9) | 0.397 |
Require higher respiratory support * | 19 (59.3) | 8 (36.3) | 0.166 |
Respiratory support days | 37.7 (39.2) | 69.4 (63.3) | 0.045 |
IPPV days | 5.2 (17.4) | 19.3 (39.3) | 0.126 |
NIV days | 27 (20.9) | 37.3 (25.4) | 0.108 |
Intubation within 72 h | 2 (6.2) | 2 (9.0) | - |
Intubation within 7 days | 0 | 0 | - |
Methylxanthines ** | 19 (52.8) | 17 (77.3) | 0.170 |
ICU days | 41.0 (33.6) | 74.3 (57.6) | 0.210 |
Hospital stays | 54.5 (40.2) | 86.0 (62.0) | 0.028 |
Age at discharge | 38.6 (4.1) | 40.6 (7.8) | 0.288 |
Death | 1 (3.1) | 5 (22.7) | 0.036 |
Variables (Reference) | β | S.E. | p Value | Odds Ratio | 95% C.I. for Exp (β) | |
---|---|---|---|---|---|---|
Lower | Upper | |||||
Air leak | 1.253 | 1.039 | 0.228 | 3.500 | 0.456 | 26.841 |
BPD | −0.526 | 0.797 | 0.509 | 0.591 | 0.124 | 2.818 |
Moderate to severe BPD | −0.441 | 0.737 | 0.549 | 0.643 | 0.152 | 2.727 |
Respiratory support at day 28 | −0.610 | 1.183 | 0.606 | 0.543 | 0.053 | 5.527 |
O2 supplement at day 28 | −5.741 | 4.300 | 0.182 | 0.003 | 0.000 | 14.695 |
Respiratory support at week 36 | −0.872 | 0.680 | 0.199 | 0.418 | 0.110 | 1.584 |
O2 supplement at week 36 | −0.452 | 0.823 | 0.583 | 0.636 | 0.127 | 3.192 |
Methylxanthines * | −5.096 | 7089 | 0.999 | 0.006 | 0.000 | - |
IVH | 0.424 | 0.700 | 0.544 | 1.529 | 0.388 | 6.024 |
IVH ≥ grade 3 | −4.273 | 4.326 | 0.323 | 0.014 | 0.000 | 67.054 |
PVE | 1.101 | 0.717 | 0.125 | 3.008 | 0.738 | 12.263 |
Cystic PVL | 1.292 | 0.980 | 0.187 | 3.640 | 0.534 | 24.831 |
Posthemorrhagic hydrocephalus | 17.362 | 5340.852 | 0.997 | 34,747,980.8 | −0.982 | 1.006 |
ROP | 1.102 | 0.886 | 0.213 | 3.010 | 0.531 | 17.082 |
ROP ≥ stage 3 | 2.405 | 1.369 | 0.079 | 11.083 | 0.757 | 162.280 |
NEC | 0.619 | 1.355 | 0.648 | 1.858 | 0.131 | 26.444 |
NEC ≥ stage 2 | 18.139 | 5499.397 | 0.997 | 75,423,990.2 | 0.000 | - |
PDA | −1.035 | 1.007 | 0.304 | 0.355 | 0.049 | 2.558 |
Early-onset sepsis | 0.638 | 0.719 | 0.375 | 1.892 | 0.462 | 7.751 |
Late-onset sepsis | −1.072 | 1.077 | 0.320 | 0.342 | 0.041 | 2.827 |
PAH | 0.468 | 0.996 | 0.638 | 1.597 | 0.227 | 11.255 |
Death | −3.897 | 2.087 | 0.062 | 0.020 | 0.000 | 1.214 |
Higher respiratory support | −1.023 | 0.663 | 0.123 | 0.359 | 0.098 | 1.318 |
More than 30 days of ventilator | 0.193 | 0.821 | 0.814 | 1.213 | 0.243 | 6.063 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, T.-R.; Chen, H.-L.; Yang, S.-T.; Su, P.-C.; Chung, H.-W. The Outcomes of Preterm Infants with Neonatal Respiratory Distress Syndrome Treated by Minimally Invasive Surfactant Therapy and Non-Invasive Ventilation. Biomedicines 2024, 12, 838. https://doi.org/10.3390/biomedicines12040838
Huang T-R, Chen H-L, Yang S-T, Su P-C, Chung H-W. The Outcomes of Preterm Infants with Neonatal Respiratory Distress Syndrome Treated by Minimally Invasive Surfactant Therapy and Non-Invasive Ventilation. Biomedicines. 2024; 12(4):838. https://doi.org/10.3390/biomedicines12040838
Chicago/Turabian StyleHuang, Tzyy-Rong, Hsiu-Lin Chen, Shu-Ting Yang, Pin-Chun Su, and Hao-Wei Chung. 2024. "The Outcomes of Preterm Infants with Neonatal Respiratory Distress Syndrome Treated by Minimally Invasive Surfactant Therapy and Non-Invasive Ventilation" Biomedicines 12, no. 4: 838. https://doi.org/10.3390/biomedicines12040838