Long-Term Structural Changes in the Osteochondral Unit in Patients with Osteoarthritis Undergoing Corrective Osteotomy with Platelet-Rich Plasma or Stromal Vascular Fraction Post-Treatment
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patients
2.2. Surgical Techniques
2.3. Preparation of Platelet-Rich Plasma (PRP)
2.4. Preparation of Stromal Vascular Fraction (SVF)
2.5. Technique of Surgery and Sampling of Histological Material
2.6. Histological Assay
2.7. Morphometric Mesurements
2.8. Statistical Analysis
3. Results
3.1. Clinical Parameters in the Examined Subjects with OA before and after Surgery with PRP or SVF Post-Treatment
3.2. Comparison of the Histomorphometric Characteristics of the Examined Subgroups of Patients with OA Prior to Surgery
3.3. Morphological Description of Osteochondral Biopsies
3.3.1. Morphology of Osteochondral Specimens before HTO in the SVF and PRP Subgroups of Patients with KOA
3.3.2. Morphology of Osteochondral Specimens 18 Months after HTO with the SVF and PRP Subgroups of Patients with KOA
3.4. Comparison of the Histomorphometric Characteristics of the Examined Subgroups of Patients with OA Prior to Surgery and 18 Months after HTO Surgery with SVF or PRP Post-Treatment
3.4.1. Assessment of the Relative Bone Volume at the Tibial and Femoral Sites in Patients with KOA before and 18 Months after HTO Surgery with SVF or PRP Post-Treatment
3.4.2. Assessments of the Relative Height of the Subchondral Bone and the Articular Cartilage Thickness in the Tibial and Femoral Sites before and after HTO Surgery with SVF or PRP Post-Treatment
3.4.3. Assessment of the Tibial and Femoral Trabecular Bone Parameters before and after HTO in the SVF and PRP Subgroups of Patients with KOA
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Loeser, R.F.; Goldring, S.R.; Scanzello, C.R.; Goldring, M.B. Osteoarthritis: A disease of the joint as an organ. Arthritis Rheum. 2012, 64, 1697–1707. [Google Scholar] [CrossRef] [PubMed]
- Goldring, S.R.; Goldring, M.B. Changes in the osteochondral unit during osteoarthritis: Structure, function and cartilage-bone crosstalk. Nat. Rev. Rheumatol. 2016, 12, 632–644. [Google Scholar] [CrossRef] [PubMed]
- Buchwald, T.; Niciejewski, K.; Kozielski, M.; Szybowicz, M.; Siatkowski, M.; Krauss, H. Identifying compositional and structural changes in spongy and subchondral bone from the hip joints of patients with osteoarthritis using Raman spectroscopy. J. Biomed. Opt. 2012, 17, 017007. [Google Scholar] [CrossRef] [PubMed]
- Andriacchi, T.P.; Favre, J. The nature of in vivo mechanical signals that influence cartilage health and progression to knee osteoarthritis. Curr. Rheumatol. Rep. 2014, 16, 463. [Google Scholar] [CrossRef]
- Wu, W.; Billinghurst, R.C.; Pidoux, I.; Antoniou, J.; Zukor, D.; Tanzer, M.; Poole, A.R. Sites of collagenase cleavage and denaturation of type II collagen in aging and osteoarthritic articular cartilage and their relationship to the distribution of matrix metalloproteinase 1 and matrix metalloproteinase 13. Arthritis Rheum. 2002, 46, 2087–2094. [Google Scholar] [CrossRef] [PubMed]
- Zhou, S.; Thornhill, T.S.; Meng, F.; Xie, L.; Wright, J.; Glowacki, J. Influence of osteoarthritis grade on molecular signature of human cartilage. J. Orthop. Res. 2016, 34, 454–462. [Google Scholar] [CrossRef] [PubMed]
- Brown, T.D.; Vrahas, M.S. The apparent elastic modulus of the juxtarticular subchondral bone of the femoral head. J. Orthop. Res. 1984, 2, 32–38. [Google Scholar] [CrossRef] [PubMed]
- Burr, D.B.; Gallant, M.A. Bone remodelling in osteoarthritis. Nat. Rev. Rheumatol. 2012, 8, 665–673. [Google Scholar] [CrossRef] [PubMed]
- Shaktivesh, S.; Malekipour, F.; Lee, P.V.S. Shock absorbing ability in healthy and damaged cartilage-bone under high-rate compression. J. Mech. Behav. Biomed. Mater. 2019, 90, 388–394. [Google Scholar] [CrossRef] [PubMed]
- Harada, S.; Rodan, G.A. Control of osteoblast function and regulation of bone mass. Nature 2003, 423, 349–355. [Google Scholar] [CrossRef] [PubMed]
- Burr, D.B. Anatomy and physiology of the mineralized tissues: Role in the pathogenesis of osteoarthrosis. Osteoarthr. Cartil. 2004, 12 (Suppl. A), S20–S30. [Google Scholar] [CrossRef] [PubMed]
- Bellido, M.; Lugo, L.; Roman-Blas, J.A.; Castañeda, S.; Caeiro, J.R.; Dapia, S.; Calvo, E.; Largo, R.; Herrero-Beaumont, G. Subchondral bone microstructural damage by increased remodelling aggravates experimental osteoarthritis preceded by osteoporosis. Arthritis Res. Ther. 2010, 12, R152. [Google Scholar] [CrossRef] [PubMed]
- Neogi, T.; Nevitt, M.; Niu, J.; Sharma, L.; Roemer, F.; Guermazi, A.; Lewis, C.E.; Torner, J.; Javaid, K.; Felson, D. Subchondral bone attrition may be a reflection of compartment-specific mechanical load: The MOST Study. Ann. Rheum. Dis. 2010, 69, 841–844. [Google Scholar] [CrossRef] [PubMed]
- Goldring, M.B.; Goldring, S.R. Articular cartilage and subchondral bone in the pathogenesis of osteoarthritis. Ann. N. Y. Acad. Sci. 2010, 1192, 230–237. [Google Scholar] [CrossRef] [PubMed]
- Bobinac, D.; Spanjol, J.; Zoricic, S.; Maric, I. Changes in articular cartilage and subchondral bone histomorphometry in osteoarthritic knee joints in humans. Bone 2003, 32, 284–290. [Google Scholar] [CrossRef] [PubMed]
- Skvortsov, D.; Kaurkin, S.; Prizov, A.; Altukhova, A.; Troitskiy, A.; Lazko, F. Biomechanical Changes in Gait Patterns of Patients with Grade II Medial Gonarthritis. Diagnostics 2021, 11, 1242. [Google Scholar] [CrossRef] [PubMed]
- Princi, G.; Rossini, M.; Marzilli, F.; Niccolo, R.D.; Conteduca, F.; Ferretti, A. In vivo Histological Examination of the Graft Site 3 Years after Open-wedge High Tibial Osteotomy with Nanohydroxyapatite Augmentation. J. Orthop. Case Rep. 2021, 11, 53–57. [Google Scholar] [CrossRef]
- Biant, L.C.; McNicholas, M.J.; Sprowson, A.P.; Spalding, T. The surgical management of symptomatic articular cartilage defects of the knee: Consensus statements from United Kingdom knee surgeons. Knee 2015, 22, 446–449. [Google Scholar] [CrossRef] [PubMed]
- Skvortsov, D.; Kaurkin, S.; Prizov, A.; Altukhova, A.; Goncharov, E.; Nikitin, A. Gait analysis and knee joint kinematics before a and 6 month after of corrective valgus osteotomy at patients with medial knee arthritis. Int. Orthop. 2022, 46, 1573–1582. [Google Scholar] [CrossRef] [PubMed]
- Skvortsov, D.; Prizov, A.; Kaurkin, S.; Altukhova, A.; Zagorodniy, N.; Lazko, F.; Nikitin, A. Gait analysis and knee kinematics before, and 6 and 18 months after corrective valgus osteotomy. Knee 2023, 41, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Shen, L.; Yuan, T.; Chen, S.; Xie, X.; Zhang, C. The temporal effect of platelet-rich plasma on pain and physical function in the treatment of knee osteoarthritis: Systematic review and meta-analysis of randomized controlled trials. J. Orthop. Surg. Res. 2017, 12, 16. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Xu, W.; Wu, K.; Fu, W.; Yang, H.; Guo, J.J. Intra-articular pure platelet-rich plasma combined with open-wedge high tibial osteotomy improves clinical outcomes and minimal joint space width compared with high tibial osteotomy alone in knee osteoarthritis: A prospective study. Arthroscopy 2022, 38, 476–485. [Google Scholar] [CrossRef]
- Dong, C.; Zhao, C.; Wang, F. Clinical benefit of high tibial osteotomy combined with the intervention of platelet-rich plasma for severe knee osteoarthritis. J. Orthop. Surg. Res. 2022, 17, 405. [Google Scholar] [CrossRef] [PubMed]
- Dallari, D.; Savarino, L.; Stagni, C.; Cenni, E.; Cenacchi, A.; Fornasari, P.M.; Albisinni, U.; Rimondi, E.; Baldini, N.; Giunti, A. Enhanced tibial osteotomy healing with use of bone grafts supplemented with platelet gel or platelet gel and bone marrow stromal cells. J. Bone Jt. Surg. Am. 2007, 89, 2413–2420. [Google Scholar] [CrossRef] [PubMed]
- Koh, Y.-G.; Kwon, O.-R.; Kim, Y.-S.; Choi, Y.-J. Comparative outcomes of open-wedge high tibial osteotomy with platelet-rich plasma alone or in combination with mesenchymal stem cell treatment: A prospective study. Arthroscopy 2014, 30, 1453–1460. [Google Scholar] [CrossRef] [PubMed]
- Prizov, A.; Tchetina, E.; Eremin, I.; Zagorodniy, N.; Pulin, A.; Belyak, E.; Goncharov, E.; Kotenko, K.; Smyshlyaev, I.; Glukhova, S.; et al. Differences in Synovial Cytokine Profile Associated with Long-Term Clinical Outcomes in Patients with Knee Osteoarthritis Undergoing Corrective Osteotomy with Platelet-Rich Plasma or Stromal Vascular Fraction Post-Treatments. Int. J. Mol. Sci. 2022, 23, 12835. [Google Scholar] [CrossRef] [PubMed]
- Yang, W.-T.; Ke, C.-Y.; Yeh, K.-T.; Huang, S.-G.; Lin, Z.-Y.; Wu, W.-T.; Lee, R.-P. Stromal-vascular fraction and adipose-derived stem cell therapies improve cartilage regeneration in osteoarthritis-induced rats. Sci. Rep. 2022, 12, 2828. [Google Scholar] [CrossRef] [PubMed]
- Altman, R.; Asch, E.; Bloch, D. Development of criteria for the classification and reporting of osteoarthritis: Classification of osteoarthritis of the knee. Arthritis Rheum. 1986, 29, 1039–1052. [Google Scholar] [CrossRef] [PubMed]
- Outerbridge, R.E. The etiology of chondromalacia patellae. J. Bone Jt. Surg. Br. 1961, 43, 752–757. [Google Scholar] [CrossRef] [PubMed]
- Stoller, D.W.; Martin, C.; Crues, J.V., 3rd; Kaplan, L.; Mink, J.H. Meniscal tears: Pathologic correlation with MR imaging. Radiology 1987, 163, 731–735. [Google Scholar] [CrossRef]
- Magalon, J.; Chateau, A.L.; Bertrand, B.; Louis, M.L.; Silvestre, A.; Giraudo, L.; Veran, J.; Sabatier, F. DEPA classification: A proposal for standardising PRP use and a retrospective application of available devices. BMJ Open Sport Exerc. Med. 2016, 2, e000060. [Google Scholar] [CrossRef] [PubMed]
- Jo, C.H.; Lee, Y.G.; Shin, W.H.; Kim, H.; Chai, J.W.; Jeong, E.C.; Kim, J.E.; Shim, H.; Shin, J.S.; Shin, I.S.; et al. Intra-articular injection of mesenchymal stem cells for the treatment of osteoarthritis of the knee: A proof-of-concept clinical trial. Stem Cells 2014, 32, 1254–1266. [Google Scholar] [CrossRef] [PubMed]
- Bausset, O.; Giraudo, L.; Veran, J.; Magalon, J.; Coudreuse, J.-M.; Magalon, G.; Dubois, C.; Serratrice, N.; Dignat-George, F.; Sabatier, F. Formulation and Storage of Platelet-Rich Plasma Homemade Produce. BioRes. Open Access 2012, 1, 115–123. [Google Scholar] [CrossRef]
- Recker, R.R.; Kimmel, D.B.; Dempster, D.; Weinstein, R.S.; Wronski, T.J.; Burr, D.B. Issues in modern bone histomorphometry. Bone 2011, 49, 955–964. [Google Scholar] [CrossRef] [PubMed]
- Ding, M.; Overgaard, S. Degenerations in Global Morphometry of Cancellous Bone in Rheumatoid Arthritis, Osteoarthritis and Osteoporosis of Femoral Heads are Similar but More Severe than in Ageing Controls. Calcif. Tissue Int. 2022, 110, 57–64. [Google Scholar] [CrossRef] [PubMed]
- Kamibayashi, L.; Wyss, U.P.; Cooke, T.D.; Zee, B. Trabecular microstructure in the medial condyle of the proximal tibia of patients with knee osteoarthritis. Bone 1995, 17, 27–35. [Google Scholar] [CrossRef] [PubMed]
- Poole, A.R.; Kobayashi, M.; Yasuda, T.; Laverty, S.; Mwale, F.; Kojima, T.; Sakai, T.; Wahl, C.; El-Maadawy, S.; Webb, G.; et al. Type II collagen degradation and its regulation in articular cartilage in osteoarthritis. Ann. Rheum. Dis. 2002, 61 (Suppl. 2), ii78–ii81. [Google Scholar] [CrossRef] [PubMed]
- Odenbring, S.; Egund, N.; Lindstrand, A.; Lohmander, L.S.; Willén, H. Cartilage regeneration after proximal tibial osteotomy for medial gonarthrosis. An arthroscopic, roentgenographic, and histologic study. Clin. Orthop. Relat. Res. 1992, 277, 210–216. [Google Scholar] [CrossRef]
- Davies-Tuck, M.L.; Wluka, A.E.; Wang, Y.; English, D.R.; Giles, G.G.; Cicuttini, F. The natural history of bone marrow lesions in community-based adults with no clinical knee osteoarthritis. Ann. Rheum. Dis. 2009, 68, 904–908. [Google Scholar] [CrossRef] [PubMed]
- Jung, W.H.; Takeuchi, R.; Chun, C.W.; Lee, J.S.; Ha, J.H.; Kim, J.H.; Jeong, J.H. Second-look arthroscopic assessment of cartilage regeneration after medial opening-wedge high tibial osteotomy. Arthroscopy 2014, 30, 72–79. [Google Scholar] [CrossRef]
- Nakayama, H.; Kanto, R.; Onishi, S.; Kambara, S.; Ukon, R.; Amai, K.; Yoshiya, S.; Schröter, S.; Tachibana, T.; Iseki, T. Cartilage repair examined by second-look arthroscopy following double-level osteotomy performed for osteoarthritic knees with severe varus deformity. Knee 2021, 29, 411–417. [Google Scholar] [CrossRef] [PubMed]
- Eckstein, F.; Milz, S.; Anetzberger, H.; Putz, R. Thickness of the subchondral mineralised tissue zone (SMZ) in normal male and female and pathological human patellae. J. Anat. 1998, 192, 81–90. [Google Scholar] [CrossRef] [PubMed]
- Day, J.S.; Van Der Linden, J.C.; Bank, R.A.; Ding, M.; Hvid, I.; Sumner, D.R.; Weinans, H. Adaptation of subchondral bone in osteoarthritis. Biorheology 2004, 41, 359–368. [Google Scholar] [PubMed]
- Ko, F.C.; Dragomir, C.; Plumb, D.A.; Goldring, S.R.; Wright, T.M.; Goldring, M.B.; van der Meulen, M.C. In vivo cyclic compression causes cartilage degeneration and subchondral bone changes in mouse tibiae. Arthritis Rheum. 2013, 65, 1569–1578. [Google Scholar] [CrossRef] [PubMed]
- Goulet, R.W.; Goldstein, S.A.; Ciarelli, M.J.; Kuhn, J.L.; Brown, M.B.; Feldkamp, L.A. The relationship between the structural and orthogonal compressive properties of trabecular bone. J. Biomech. 1994, 27, 375–389. [Google Scholar] [CrossRef] [PubMed]
- Goldstein, S.A.; Wilson, D.L.; Sonstegard, D.A.; Matthews, L.S. The mechanical properties of human tibial trabecular bone as a function of metaphyseal location. J. Biomech. 1983, 16, 965–969. [Google Scholar] [CrossRef] [PubMed]
- Tchetina, E.V.; Antoniou, J.; Tanzer, M.; Zukor, D.J.; Poole, A.R. TGF_2 suppresses collagen cleavage in cultured human osteoarthritic cartilage, reduces expression of genes associated with chondrocyte hypertrophy and degradation, and increases prostaglandin E2 production. Am. J. Pathol. 2006, 168, 131–140. [Google Scholar] [CrossRef]
- Kawaguchi, H.; Jingushi, S.; Izumi, T.; Fukunaga, M.; Matsushita, T.; Nakamura, T.; Mizuno, K.; Nakamura, T.; Nakamura, K. Local application of recombinant human fibroblast growth factor-2 on bone repair: A dose-escalation prospective trial on patients with osteotomy. J. Orthop. Res. 2007, 25, 480–487. [Google Scholar] [CrossRef] [PubMed]
- Shah, P.; Keppler, L.; Rutkowski, J. A review of platelet derived growth factor playing pivotal role in bone regeneration. J. Oral Implantol. 2014, 40, 330–340. [Google Scholar] [CrossRef] [PubMed]
PRP Subgroup (n = 10) Me [IQR] | SVF Subgroup (n = 10) Me [IQR] | p (Mann–Whitney U Test) | |
---|---|---|---|
Age, years | 56.5 [52.5; 63.5] | 52.5 [45.0; 57.0] | 0.089 |
BMI, kg/m2 | 30.2 [26.5; 33.2] | 32.85 [25.25; 34.90] | 0.393 |
Disease duration, months | 21.0 [15.0; 78.0] | 60.0 [27.0; 69.0] | 0.424 |
Height, cm | 165.0 [159.0; 177.0] | 164.5 [163.0; 177.5] | 0.795 |
Weight, kg | 84.0 [76.0; 84.5] | 90.0 [73.0; 103.0] | 0.279 |
PRP Subgroup (n = 10) Me [IQR] | SVF Subgroup (n = 10) Me [IQR] | p (Mann–Whitney U Test) | |
---|---|---|---|
BV. % | |||
Tibia | 31.2 [21.3; 35.7] | 28.1 [24.4; 38.7] | p = 0.595 |
Femur | 23.7 [20.3; 29.6] | 21.8 [17.7; 29.4] | p = 0.305 |
Cr.V. % | |||
Tibia | 31.7 [26.6; 38.2] | 30 [28.6; 34.2] | p = 0.389 |
Femur | 16.7 [14.4; 23.6] | 20.1 [15.7; 28.7] | p = 0.116 |
Tr.V. % | |||
Tibia | 62.2 [60.1; 70.3] | 79.6 [68.2; 84.8] | p < 0.001 |
Femur | 78.6 [76.6; 82.5] | 70.4 [66.1; 74.6] | p < 0.001 |
Cr.Wi. mm | |||
Tibia | 1.4 [1; 1.6] | 0.47 [0.42; 0.68] | p < 0.001 |
Femur | 0.75 [0.54; 0.84] | 0.46 [0.33; 0.52] | p < 0.001 |
Ch.Wi mm | |||
Tibia | 0.4 [0.4; 0.5] | 0.66 [0.52; 0.83] | p < 0.001 |
Femur | 1.14 [0.95; 1.64] | 0.8 [0.61; 0.86] | p = 0.004 |
Tr.Th. μm | |||
Tibia | 0.1 [0.07; 0.14] | 0.12 [0.1; 0.15] | p = 0.249 |
Femur | 0.14 [0.11; 0.16] | 0.12 [0.1; 0.15] | p = 0.161 |
Tr.Sp. μm | |||
Tibia | 0.9 [0.8; 1.02] | 0.88 [0.64; 0.96] | p = 0.217 |
Femur | 1.06 [0.98; 1.2] | 1.01 [0.97; 1.1] | p = 0.161 |
Tr.N. n/mm3 | |||
Tibia | 0.65 [0.35; 0.72] | 0.81 [0.55; 0.97] | p = 0.020 |
Femur | 0.9 [0.83; 1.19] | 1.06 [1.02; 1.09] | p = 0.202 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Prizov, A.; Tchetina, E.; Volkov, A.; Eremin, I.; Zagorodniy, N.; Lazko, F.; Pulin, A.; Belyak, E.; Kotenko, K.; Eshmotova, G.; et al. Long-Term Structural Changes in the Osteochondral Unit in Patients with Osteoarthritis Undergoing Corrective Osteotomy with Platelet-Rich Plasma or Stromal Vascular Fraction Post-Treatment. Biomedicines 2024, 12, 1044. https://doi.org/10.3390/biomedicines12051044
Prizov A, Tchetina E, Volkov A, Eremin I, Zagorodniy N, Lazko F, Pulin A, Belyak E, Kotenko K, Eshmotova G, et al. Long-Term Structural Changes in the Osteochondral Unit in Patients with Osteoarthritis Undergoing Corrective Osteotomy with Platelet-Rich Plasma or Stromal Vascular Fraction Post-Treatment. Biomedicines. 2024; 12(5):1044. https://doi.org/10.3390/biomedicines12051044
Chicago/Turabian StylePrizov, Aleksey, Elena Tchetina, Aleksey Volkov, Ilya Eremin, Nikolay Zagorodniy, Fedor Lazko, Andrey Pulin, Evgeniy Belyak, Konstantin Kotenko, Gulnora Eshmotova, and et al. 2024. "Long-Term Structural Changes in the Osteochondral Unit in Patients with Osteoarthritis Undergoing Corrective Osteotomy with Platelet-Rich Plasma or Stromal Vascular Fraction Post-Treatment" Biomedicines 12, no. 5: 1044. https://doi.org/10.3390/biomedicines12051044