Next Article in Journal
Effects of Selected Metal Nanoparticles (Ag, ZnO, TiO2) on the Structure and Function of Reproductive Organs
Next Article in Special Issue
Prenatal Exposure to Mercury, Manganese, and Lead and Adverse Birth Outcomes in Suriname: A Population-Based Birth Cohort Study
Previous Article in Journal
Lung-Based, Exosome Inhibition Mediates Systemic Impacts Following Particulate Matter Exposure
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Review

Health Outcomes in Children Associated with Prenatal and Early-Life Exposures to Air Pollution: A Narrative Review

1
Department of Population and Public Health Sciences, Keck School of Medicine of the University of Southern California, Los Angeles, CA 90033, USA
2
Sonoma Technology Inc., 1450 N. McDowell Blvd., Suite 200, Petaluma, CA 94954, USA
3
Department of Research & Evaluation, Kaiser Permanente Southern California, Pasadena, CA 91107, USA
*
Author to whom correspondence should be addressed.
Toxics 2022, 10(8), 458; https://doi.org/10.3390/toxics10080458
Submission received: 17 June 2022 / Revised: 25 July 2022 / Accepted: 3 August 2022 / Published: 8 August 2022

Abstract

:
(1) Background: The developmental origins of health and disease (DOHaD) hypothesis links adverse fetal exposures with developmental mal-adaptations and morbidity later in life. Short- and long-term exposures to air pollutants are known contributors to health outcomes; however, the potential for developmental health effects of air pollution exposures during gestation or early-childhood have yet to be reviewed and synthesized from a DOHaD lens. The objective of this study is to summarize the literature on cardiovascular and metabolic, respiratory, allergic, and neuropsychological health outcomes, from prenatal development through early childhood, associated with early-life exposures to outdoor air pollutants, including traffic-related and wildfire-generated air pollutants. (2) Methods: We conducted a search using PubMed and the references of articles previously known to the authors. We selected papers that investigated health outcomes during fetal or childhood development in association with early-life ambient or source-specific air pollution exposure. (3) Results: The current literature reports that prenatal and early-childhood exposures to ambient and traffic-related air pollutants are associated with a range of adverse outcomes in early life, including cardiovascular and metabolic, respiratory and allergic, and neurodevelopmental outcomes. Very few studies have investigated associations between wildfire-related air pollution exposure and health outcomes during prenatal, postnatal, or childhood development. (4) Conclusion: Evidence from January 2000 to January 2022 supports a role for prenatal and early-childhood air pollution exposures adversely affecting health outcomes during development. Future studies are needed to identify both detrimental air pollutants from the exposure mixture and critical exposure time periods, investigate emerging exposure sources such as wildfire, and develop feasible interventional tools.

1. Introduction

Air pollution is an established risk factor for morbidity and mortality that affects the general population [1,2]. The developmental origins of health and disease (DOHaD) hypothesis states that adverse fetal, infant, and childhood growth patterns are causally linked to disease development in adulthood [3,4]. Prenatal or early-childhood environmental exposures predispose the fetus or child to such mal-adaptations in growth and increase the risk of disease in adulthood, in accordance with the DOHaD hypothesis [5,6]. Two recent reviews on ambient and traffic-related air pollution have linked air pollution exposures in neonates and children with increased cardiovascular morbidity [7] and asthma development [8]. Additionally, prenatal exposure to particulate matter (PM) has been associated with higher odds of respiratory and all-cause infant mortality [9]. However, the literature on early-life air pollution exposures has not been reviewed comprehensively with respect to a broad spectrum of fetal and child health outcomes. Additionally, most reviews have focused on outdoor, ambient air pollution without specific source apportionment [7,8]. No reviews have been conducted on emerging sources of air pollution, such as traffic-related air pollution from vehicle emissions or wildfire-generated air pollution. This review aims to summarize a spectrum of health outcomes during prenatal, postnatal, and childhood development until age 10 that have been reported in recent studies, since January 2000, to be associated with early-life exposures to ambient air pollutants as well as traffic- and wildfire-generated air pollution. Given our interest in the DOHaD hypothesis, we specifically examine early-life health outcomes that are linked with lasting effects throughout development, and we categorize these into cardiovascular and metabolic, respiratory and allergic, and neurodevelopmental and psychological outcomes. Finally, we outline the biological mechanisms through which early-life exposures can impair development and health, and we summarize the links between adult-onset morbidities and adverse health outcomes during development.

2. Materials and Methods

We conducted a search on PubMed using the query ((air pollution) OR (air pollutant) OR (traffic) OR (wildfire)) AND ((prenatal) OR (early-life) OR (childhood)) AND ((cardiometabolic) OR (cardiovascular) OR (birth weight) OR (respiratory) OR (lung function) OR (allergic) OR (neuropsychological) OR (neurodevelopment)) to identify scientific papers related to early-life air pollution exposure and adverse health outcomes. The search included epidemiological studies published between January 2000 and January 2022, in order to include studies that examine more contemporary air pollution exposures. This search criteria resulted in 2333 journal articles with abstracts available. After discarding duplicates and reading through titles and abstracts, we selected original research studies published in English that focus on health outcomes associated with air pollution exposure during prenatal or early-childhood (0–10 years) development. The inclusion criteria for health effects were cardiovascular and metabolic, respiratory and/or allergic, and neuropsychological outcomes. Only original human studies are included in the review. We excluded studies that investigated air pollution associations beyond the stated prenatal or childhood periods, and we also excluded studies on environmental exposures not related to ambient, traffic-related, or wildfire-generated air pollution, such as heat, noise, tobacco smoke, or environmental chemicals. In addition, we examined the references of relevant papers previously known to the authors and included any relevant studies that were not found in the PubMed search. This final inclusion and exclusion criteria yielded 164 papers.

3. Results

Of the 164 papers included in the review, 81 examined cardiovascular or metabolic outcomes, 57 examined respiratory or allergic outcomes, and 26 examined neuropsychological outcomes associated with prenatal or early-life air pollutant exposures.

3.1. Cardiovascular and Metabolic Outcomes

Our search yielded 81 studies on cardiovascular and metabolic outcomes, and the results support that prenatal and postnatal air pollution exposures are both associated with an increased risk of adverse outcomes. Prenatal exposure to ambient air pollution, including particular matter with an aerodynamic diameter less than 2.5 or 10 μm (PM2.5 and PM10, respectively), sulfur dioxide (SO2), nitrogen dioxide (NO2), or ozone (O3), has been consistently associated with reduced or low birth weight across various populations and geographic locations [10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40]. Studies that have estimated traffic-related air pollution (TRAP) or roadway proximity using geographic information system or land use regression models similarly report an association between prenatal TRAP exposure and low birth weight [12,38,41,42,43]. Prenatal exposures to ambient PM2.5, PM10, SO2, and O3 have also been associated with an elevated risk of macrosomia [44]. Although the results differ in the direction of birth weight deviation, low and high birth weight similarly reflect abnormal metabolism or nutritional transfer to the fetus, and they are both risk factors for developing cardiometabolic disorders [45,46,47,48]. Some studies have examined specific constituents of particulate matter and found that birth weight is inversely correlated with prenatal exposures to constituents, including zinc, sulfur, elemental carbon, silicon, titanium, and aluminum. [12,13,49,50] Basu et al. reported that the strongest associations were found with constituents that are common markers of traffic pollution, industrial pollution, oil combustion, and alloy production [12]. In addition to birth weight, some studies have reported that ultrasound measures of fetal growth during gestation are negatively associated with prenatal exposures to particular matter with an aerodynamic diameter less than 1 µm (PM1), PM2.5, PM10, SO2, NO2, or O3 [22,51,52,53,54,55]. Exposures to traffic-related and ambient air pollutants, such as PM2.5, PM10, O3, and NOx, have been consistently associated with increased odds of preterm birth [16,18,25,34,56,57,58]. However, one study did not find significant associations between NO2 exposure during pregnancy and preterm birth or low birth weight [59]. Early-life wildfire smoke exposure has also been associated with preterm birth and birth weight. Evidence from three studies demonstrates that pregnant women with addresses in wildfire-affected areas during gestation were at a greater risk of preterm birth or low newborn birth weight [60,61,62], while one study found a higher average birth weight in exposed male infants [63].
The results are limited on critical exposure time windows because many studies averaged air pollution exposure across an entire pregnancy or only examined exposure at one time point. Of the studies that did analyze trimester-specific associations, most found that exposures during the second [11,15,19,21,25,36,40,58,60,61] or third [11,14,16,17,31,32,33,34,36,37,39,49,58,61] trimesters had statistically significant associations with birth weight or preterm birth. A few studies report susceptibility during the first trimester to carbon dioxide (CO2), NO2, or O3 exposures, particularly within the first month of pregnancy [16,21,28,52]. One study that associated prenatal PM10 exposure with term low birth weight attributed the association to conception month and first trimester exposures [27]. One study on wildfire-related PM2.5 exposure found that full gestation and second trimester exposures were associated with preterm birth, while first trimester exposure was associated with decreased birth weight [60].
The literature also supports a link between prenatal air pollution exposure and abnormal weight and growth trajectory after birth. Prenatal and early postnatal exposures to ambient PM2.5, PM10, NO2, O3, SO2, and carbon monoxide (CO) have been associated with deviant growth trajectories, represented by anthropometric measures, in infancy and childhood [40,64,65,66,67,68,69,70,71]. Obesity-related parameters (higher BMI Z-score, levels of adipokines, and higher risk of obesity development) in newborns and children have been positively associated with prenatal highway proximity, TRAP exposure, or ambient PM, NO2, O3, and polycyclic aromatic hydrocarbons (PAH) exposures [67,71,72,73,74,75,76], as well as childhood exposures to TRAP and ambient PM2.5 and NO2 [77,78]. However, one study did not find an association between ambient air pollution or nearby traffic load during the first four years of life and childhood obesity, waist circumference, or cholesterol at ages four or eight [79].
Epidemiological studies also support a link between air pollution levels and the childhood risk of metabolic disorder, including diabetes and hypertension. Several studies reported that PM2.5 exposure during pregnancy was associated with systolic hypertension in newborns [80], and microvascular changes [81,82] and elevated blood pressure in children [83,84,85]. Prenatal TRAP, PM2.5, PM10, and NO2 exposures have been associated with a significant increase in cord blood insulin, adiponectin, and leptin levels, [74,75,86] with second trimester exposures having the largest effect [86]. Similarly, proximity to a major road and higher traffic-related PM10 and NO2 levels at the birth address, estimated by land use regression models, have been positively associated with childhood insulin resistance [87]. Prenatal PM2.5 exposure [88] and childhood TRAP exposure [89] have been positively associated with childhood development of risk factors for metabolic syndrome, such as increased hemoglobin A1c and systolic blood pressure. A study on diabetic and healthy children that were randomly selected from a pediatric database at Loma Linda University found that childhood O3 exposure prior to diagnosis was significantly higher in children with type 1 diabetes than in healthy controls, and pre-diagnosis PM10 exposure was significantly higher in children with diabetes diagnosed before age five, when compared with healthy controls [90]. In summary, prenatal and childhood exposures to ambient and traffic-related air pollution have been consistently associated with preterm birth, deviant birth weight, childhood obesity, and insulin resistance, all of which have long-term impacts on cardiometabolic health in adults (Table 1). We did not find any studies investigating early-life wildfire exposures in association with cardiometabolic outcomes in infants and children.

3.2. Respiratory and Allergic Outcomes

Our search resulted in 57 studies on respiratory outcomes, and the results support a link between prenatal and early-childhood air pollution exposures and respiratory morbidity. Prenatal air pollution exposure has been associated with decreased lung function during infancy and childhood [91]. Higher PM10 exposure during pregnancy—especially during the second [92] or third [93] trimester—was associated with worsened infant lung function, represented by increased minute ventilation, higher respiratory rate, and tidal breathing flow; in addition, preterm infants showed greater susceptibility to PM10-associated lung inflammation [92]. A different study reported an inverse association between CO exposure during pregnancy and infant lung function [94]. A number of studies have examined the relationship between prenatal exposure to ambient air pollution and pulmonary outcomes in childhood: prenatal exposures to ambient PM2.5, PM10, NO2, NO3, and benzene have been associated with worsened childhood lung function parameters, including forced expiratory volume, forced expiratory flow, airway reactance, and peak expiratory flow [95,96,97,98,99,100,101,102,103,104,105]. There is also evidence that proximity to major roads, childhood PM2.5 and black carbon exposures [106], and childhood NO2 exposure [101] is associated with worsened lung function in mid-childhood (median age 7).
The current literature presents strong evidence that prenatal air pollution exposure also increases the risk of respiratory and allergic disorders. The risk of newborn tachypnea, asphyxia, and respiratory distress has been associated with increased prenatal exposures to ambient PM, CO, NO, and O3 [107]. Epidemiological studies have demonstrated that prenatal exposures to ambient NO2, SO2, PM2.5, PM10, and ultrafine particles (with aerodynamic diameter < 0.1 μm) were associated with increased respiratory tract infections in infancy [108,109,110] and asthma, wheezing, and rhinitis in childhood [109,111,112,113,114,115,116,117,118,119,120]. One study that assessed respiratory health at 6 or 18 months found no association between prenatal land use regression-modeled NO2 exposure and the incidence of lower respiratory tract infections or wheeze [121]. However, a different study that similarly used NO2 exposure estimates to quantify traffic-related air pollution reported that TRAP exposure during the third-trimester of pregnancy or first year of life was significantly associated with allergic rhinitis, and the association was strongest for male children aged 3 or 4 years old [122].
The literature also presents a consistent relationship between childhood asthma or wheeze and early-childhood exposures to ambient air pollution [102,114,119,120,123,124,125,126,127,128,129,130,131] or traffic-related air pollution, estimated by a land use regression model or road proximity [132,133,134,135]. Postnatal exposures to ambient PM10, NO2, and O3 have been associated with eczema and allergic symptoms in children [126,129]. Furthermore, several studies demonstrated that the risk of respiratory infection, such as pneumonia, rhinitis, or bronchitis in infants and children, was associated with increased short-term exposure to ambient PM10, O3, NOx, and SO2 [130,136,137,138], and long-term exposure to TRAP and ambient PM2.5, PM10, NOx, and PAH [115,129,139,140,141,142,143,144,145,146]. Still, one study did not find an association between childhood asthma incidence in kindergarten-aged children and exposure to ambient air toxics at two years, using estimates from the 2002 National Air Toxics Assessment [147]. We found only one study that examined early-life respiratory outcomes in association with wildfire-generated air pollution. This study reports an increase in respiratory visits for children aged 0–5 in association with acute PM2.5 exposure during a wildfire event [148]. In summary, prenatal and early-childhood exposures to TRAP and ambient air-pollution have been consistently associated with worsened lung function and asthma, wheeze, and respiratory infections in infancy or childhood (Table 2). More research is needed on early-life respiratory and allergic outcomes in association with wildfire exposures.

3.3. Neuropsychological Outcomes

Our literature search yielded 26 studies on neuropsychological outcomes. While early-life air pollution exposure has been less studied in children with respect to neuropsychological health, the current data suggest there is an association with adverse neurodevelopment. Prenatal and neonatal exposures to both ambient and traffic-related air pollutants, including PM, NO2, SO2, and black carbon, have been associated with impaired cognitive, motor, behavioral, and language development during infancy and early childhood [149,150,151,152,153,154,155,156,157,158,159,160]. Prenatal exposures to ambient PM2.5, PM10, and PAH have been associated with lower IQ [161,162,163] and worsened attention and memory [162] in children aged 4–7 years old. Several studies found greater odds of autism spectrum disorders (ASD) in children with higher prenatal and perinatal exposures to ambient NO, NO2, PM2.5, PM10, O3 and near-roadway air pollution, or TRAP [164,165,166,167,168,169,170,171,172]. TRAP and ambient PM2.5 and O3 exposures in the first two years of life have also been associated with an increased ASD risk [165,169,170]. Childhood exposures to near-residence traffic density, as well as the traffic-related air pollutants NO2, black carbon or elemental carbon, and fine and ultrafine PM, have been positively associated with cognitive and behavioral deficits, hyperactivity, and changes in white matter volume among children [156,173,174]. In summary, ambient and traffic-related air pollution exposures during pregnancy and the first two years of life have been consistently associated with ASD and worsened neuropsychological parameters, including motor and cognitive development (Table 3). Fewer studies have examined the neuropsychological outcomes associated with childhood air-pollution exposures, and no studies have examined the neuropsychological outcomes in association with early-life wildfire exposure.

4. Discussion

Our review indicates that early-life exposures to ambient and traffic-related air pollutants are associated with an increased risk of unfavorable developmental outcomes; prenatal and early-childhood exposures to outdoor air pollutants, including PM2.5, PM10, NOx, and O3, have been consistently associated with adverse cardiovascular and metabolic, respiratory and allergic, and neurodevelopmental outcomes in early life.
Experimental studies elucidate that early-life air pollutant exposures can increase morbidity through inflammation, oxidative stress, and transcription regulation. During gestation, air pollutants such as PM2.5 and PM10, as well as maternal inflammatory cytokines induced by air pollutants, can cross the placenta and induce fetal inflammation and oxidative stress that can last through childhood [175,176,177,178,179]. Early postnatal exposure to air pollutants such as PM2.5 can also induce developmental dysfunction through the generation of reactive oxygen species (ROS) and inflammatory stress [180,181], as well as epigenetic alterations [182,183,184,185]. Recent studies have found abnormal immune profiles in newborns and children exposed to air pollution in utero [186,187,188] or during childhood [186,189].
There is substantial evidence in support of the DOHaD hypothesis linking adverse fetal and infant development to metabolic, cardiovascular, and respiratory morbidity in children and adults [45,190,191]. Both low and high birth weight are known risk factors for adult diseases including obesity, hypertension, heart disease, and adult-onset diabetes [47,48,192]. Abnormal fetal growth and rapid childhood growth trajectories have also been associated with adult cardiovascular, metabolic, and respiratory morbidity [193,194,195]. The literature also supports a link between impaired respiratory health during early development and adult respiratory morbidity such as chronic obstructive pulmonary disease (COPD) [195,196,197,198]. Similarly, there is evidence supporting the developmental origins of neurological deficits and mental health illnesses in adulthood [199,200,201,202,203]. Taken together, the literature in support of DOHaD and the literature we review on early-life air pollution exposures suggest that air pollution exposure during critical developmental periods is a risk factor for adverse health outcomes later in life.
The most widely studied outcomes in our search include birth weight in association with prenatal exposure, and asthma or wheeze in association with prenatal and postnatal exposures. However, much of the data combines respiratory and allergic outcomes, such as asthma, wheeze, or rhinitis. Future research should differentiate between allergic and non-allergic respiratory symptoms, and include non-respiratory immune disorders such as dermatitis. There is also a need for more air pollution research on a wider range of neuropsychological outcomes. Most studies examined ASD diagnosis or cognitive and motor deficits; therefore, studies on psychological outcomes such as anxiety-like and depressive behaviors in young children are warranted. Additionally, while some studies have included prenatal time windows of susceptibility, critical exposure periods from gestation to childhood have not yet been well-established. This may be due in part to difficulty collecting longitudinal data on air pollution exposure, as well as difficulty routinely collecting data on potential confounders that vary during postnatal and childhood development. Still, further research should be conducted to determine the sensitive exposure time windows during early-life development, in order to better inform the DOHaD approach and target the early prevention of adverse health outcomes.
The air pollutants we found to be most consistently studied are particulate matter (PM2.5 and PM10), NO2, and O3. Other air pollutants such as black carbon or elemental carbon, CO, SO2, and source-specific air pollutants have been less frequently examined and warrant focused studies in the future. Additionally, identifying detrimental air pollutants from the exposure mixture and identifying the detrimental chemical components within the pollutants, in the cases where there are specific drivers of toxicity, will help inform intervention targets.
Most early-life exposures studies have focused on ambient and traffic-related air pollution, whereas few studies have been conducted on wildfire exposures. The majority of research on early-life wildfire exposure examined the associations of prenatal wildfire exposure with preterm birth and birth weight [60,61,62,63], and only one study assessed the respiratory effects of wildfire smoke exposure during early childhood [148]. While this deficit may be due to the challenges inherent in exposure assessment for wildfire-related air pollution, many studies have been conducted on wildfire smoke exposure in adults; they are, therefore, feasible to investigate in a younger population. Wildfire smoke contributes to a significant increase in exposures to air pollutants; in addition, concerns over wildfires and wildfire-associated morbidity have increased in recent years, in part due to climate change impacts. Three review articles have established a consistent link between air pollution levels during wildfire events and acute respiratory morbidity in adults [204,205,206]. Proximity to wildfire has been strongly associated with increased respiratory symptoms, medication use, or hospital visits in adults [207,208,209,210,211]. Elevated levels of ambient PM2.5, PM10, or O3 during a wildfire have been associated with increased adult respiratory morbidity for outcomes such as asthma, wheezing, COPD, and respiratory infection [212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229]. Epidemiological studies have reported that increased smoke or ambient PM2.5 exposure during wildfire are linked to increased cardiovascular events, such as hypertension, angina, and cardiac arrest, particularly among elderly [213,217,220,230,231]. The literature on early-life air pollution exposure, which we review above, coupled with the data on wildfire smoke exposure throughout the lifetime, together motivate a need for future studies to explore the adverse health effects associated with prenatal and early-childhood exposures to wildfire-generated air pollutants. Although wildfire smoke contains various particulate and gaseous pollutants found in traffic-related or ambient air pollution, it is composed of a different chemical mixture [232,233]; moreover, recent studies suggest that PM from wildfire smoke may be more toxic than equal amounts of PM from other sources [214,234,235]. As such, future studies are needed to identify the detrimental compounds specific to wildfire smoke and investigate their mechanisms of pathophysiology.

5. Conclusions

In conclusion, the current literature supports an association between prenatal and early-childhood exposures to air pollutants (especially particulate matters, NO2, and O3), and adverse cardiovascular and metabolic, respiratory and allergic, and neurodevelopmental health outcomes during gestational and childhood development. These air pollution-associated health outcomes during early life can predispose individuals to morbidity in adulthood, in accordance with the DOHaD hypothesis. Critical exposure time windows during development should be further clarified, possibly through natural experimental or interventional studies. There is also a gap in the research identifying specific PM components that are detrimental and exploring their individual effects on development. In addition, while there is substantial data on early-life ambient and traffic-related air pollution exposures, further research is needed to examine the developmental health effects associated with wildfire-generated pollution exposures, given the recent increase in wildfire events and the concern over climate change. Identifying causal determinants of developmental health outcomes in early life, such as air pollution exposure, will help the early prevention of chronic diseases in the general population.

Author Contributions

Conceptualization, R.G. and Z.C.; methodology, R.G. and Z.C.; investigation, R.G.; resources, Z.C.; data curation, R.G.; writing—original draft preparation, R.G.; writing—review and editing, R.G., Z.C., J.L., E.G., N.P., F.D.G. and A.H.X.; supervision, Z.C.; project administration, Z.C.; funding acquisition, Z.C. All authors have read and agreed to the published version of the manuscript.

Funding

This work was supported by the National Institute of Environmental Health Sciences (NIEHS) NIEHS awards R00ES027870 and the Hastings Foundation.

Institutional Review Board Statement

Not applicable.

Informed Consent Statement

Not applicable.

Data Availability Statement

Not applicable.

Conflicts of Interest

The authors declare no conflict of interest. The funders had no role in the design of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript; or in the decision to publish the results.

References

  1. Schwartz, J.D.; Di, Q.; Requia, W.J.; Dominici, F.; Zanobetti, A. A Direct Estimate of the Impact of PM2.5, NO2, and O3 Exposure on Life Expectancy Using Propensity Scores. Epidemiology 2021, 32, 469–476. [Google Scholar] [CrossRef] [PubMed]
  2. Brook, R.D. Cardiovascular effects of air pollution. Clin. Sci. 2008, 115, 175–187. [Google Scholar] [CrossRef] [Green Version]
  3. Barker, D.J.P. The origins of the developmental origins theory. J. Intern. Med. 2007, 261, 412–417. [Google Scholar] [CrossRef] [PubMed]
  4. Osmond, C.; Barker, D.J. Fetal, infant, and childhood growth are predictors of coronary heart disease, diabetes, and hypertension in adult men and women. Environ. Health Perspect. 2000, 108, 545–553. [Google Scholar] [CrossRef]
  5. Swanson, J.M.; Entringer, S.; Buss, C.; Wadhwa, P.D. Developmental Origins of Health and Disease: Environmental Exposures. Semin. Reprod. Med. 2009, 27, 391–402. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  6. Wigle, D.T.; Arbuckle, T.E.; Turner, M.C.; Bérubé, A.; Yang, Q.; Liu, S.; Krewski, D. Epidemiologic Evidence of Relationships Between Reproductive and Child Health Outcomes and Environmental Chemical Contaminants. J. Toxicol. Environ. Health Part B 2008, 11, 373–517. [Google Scholar] [CrossRef]
  7. Kim, J.B.; Prunicki, M.; Haddad, F.; Dant, C.; Sampath, V.; Patel, R.; Smith, E.; Akdis, C.; Balmes, J.; Snyder, M.P.; et al. Cumulative Lifetime Burden of Cardiovascular Disease from Early Exposure to Air Pollution. J. Am. Heart Assoc. 2020, 9, e014944. [Google Scholar] [CrossRef]
  8. Deng, S.-Z.; Jalaludin, B.B.; Antó, J.M.; Hess, J.J.; Huang, C.-R. Climate change, air pollution, and allergic respiratory diseases: A call to action for health professionals. Chin. Med. J. 2020, 133, 1552–1560. [Google Scholar] [CrossRef]
  9. Son, J.-Y.; Bell, M.L.; Lee, J.-T. Survival Analysis of Long-Term Exposure to Different Sizes of Airborne Particulate Matter and Risk of Infant Mortality Using a Birth Cohort in Seoul, Korea. Environ. Health Perspect. 2011, 119, 725–730. [Google Scholar] [CrossRef] [Green Version]
  10. Pedersen, M.; Giorgis-Allemand, L.; Bernard, C.; Aguilera, I.; Andersen, A.-M.N.; Ballester, F.; Beelen, R.M.J.; Chatzi, L.; Cirach, M.; Danileviciute, A.; et al. Ambient air pollution and low birthweight: A European cohort study (ESCAPE). Lancet Respir. Med. 2013, 1, 695–704. [Google Scholar] [CrossRef]
  11. Li, S.; Peng, L.; Wu, X.; Xu, G.; Cheng, P.; Hao, J.; Huang, Z.; Xu, M.; Chen, S.; Zhang, C.; et al. Long-term impact of ambient air pollution on preterm birth in Xuzhou, China: A time series study. Environ. Sci. Pollut. Res. 2021, 28, 41039–41050. [Google Scholar] [CrossRef] [PubMed]
  12. Basu, R.; Harris, M.; Sie, L.; Malig, B.; Broadwin, R.; Green, R. Effects of fine particulate matter and its constituents on low birth weight among full-term infants in California. Environ. Res. 2014, 128, 42–51. [Google Scholar] [CrossRef] [PubMed]
  13. Ebisu, K.; Bell, M.L. Airborne PM2.5 Chemical Components and Low Birth Weight in the Northeastern and Mid-Atlantic Regions of the United States. Environ. Health Perspect. 2012, 120, 1746–1752. [Google Scholar] [CrossRef] [Green Version]
  14. Vinikoor-Imler, L.C.; Davis, J.A.; Meyer, R.E.; Messer, L.C.; Luben, T. Associations between prenatal exposure to air pollution, small for gestational age, and term low birthweight in a state-wide birth cohort. Environ. Res. 2014, 132, 132–139. [Google Scholar] [CrossRef] [Green Version]
  15. Estarlich, M.; Ballester, F.; Aguilera, I.; Fernández-Somoano, A.; Lertxundi, A.; Llop, S.; Freire, C.; Tardon, A.; Basterrechea, M.; Sunyer, J.; et al. Residential Exposure to Outdoor Air Pollution during Pregnancy and Anthropometric Measures at Birth in a Multicenter Cohort in Spain. Environ. Health Perspect. 2011, 119, 1333–1338. [Google Scholar] [CrossRef]
  16. Le, H.Q.; Batterman, S.A.; Wirth, J.J.; Wahl, R.L.; Hoggatt, K.J.; Sadeghnejad, A.; Hultin, M.L.; Depa, M. Air pollutant exposure and preterm and term small-for-gestational-age births in Detroit, Michigan: Long-term trends and associations. Environ. Int. 2012, 44, 7–17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  17. Bijnens, E.M.; Derom, C.; Gielen, M.; Winckelmans, E.; Fierens, F.; Vlietinck, R.; Zeegers, M.P.; Nawrot, T.S. Small for gestational age and exposure to particulate air pollution in the early-life environment of twins. Environ. Res. 2016, 148, 39–45. [Google Scholar] [CrossRef]
  18. Bergstra, A.D.; Brunekreef, B.; Burdorf, A. The influence of industry-related air pollution on birth outcomes in an industrialized area. Environ. Pollut. 2021, 269, 115741. [Google Scholar] [CrossRef]
  19. Salam, M.; Millstein, J.; Li, Y.-F.; Lurmann, F.W.; Margolis, H.G.; Gilliland, F.D. Birth Outcomes and Prenatal Exposure to Ozone, Carbon Monoxide, and Particulate Matter: Results from the Children’s Health Study. Environ. Health Perspect. 2005, 113, 1638–1644. [Google Scholar] [CrossRef]
  20. Rosa, M.J.; Pajak, A.; Just, A.C.; Sheffield, P.E.; Kloog, I.; Schwartz, J.; Coull, B.; Enlow, M.B.; Baccarelli, A.A.; Huddleston, K.; et al. Prenatal exposure to PM2.5 and birth weight: A pooled analysis from three North American longitudinal pregnancy cohort studies. Environ. Int. 2017, 107, 173–180. [Google Scholar] [CrossRef]
  21. Ballester, F.; Estarlich, M.; Iñiguez, C.; Llop, S.; Ramón, R.; Esplugues, A.; Lacasaña, M.; Rebagliato, M. Air pollution exposure during pregnancy and reduced birth size: A prospective birth cohort study in Valencia, Spain. Environ. Health 2010, 9, 6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  22. Lin, L.; Li, Q.; Yang, J.; Han, N.; Jin, C.; Xu, X.; Liu, Z.; Liu, J.; Luo, S.; Raat, H.; et al. The associations of particulate matters with fetal growth in utero and birth weight: A birth cohort study in Beijing, China. Sci. Total Environ. 2010, 709, 136246. [Google Scholar] [CrossRef] [PubMed]
  23. Shang, L.; Huang, L.; Yang, L.; Leng, L.; Qi, C.; Xie, G.; Wang, R.; Guo, L.; Yang, W.; Chung, M.C. Impact of air pollution exposure during various periods of pregnancy on term birth weight: A large-sample, retrospective population-based cohort study. Environ. Sci. Pollut. Res. 2021, 28, 3296–3306. [Google Scholar] [CrossRef] [PubMed]
  24. Romão, R.; Pereira, L.A.; Saldiva, P.H.; Pinheiro, P.M.; Braga, A.L.; Martins, L.C. The relationship between low birth weight and ex-posure to inhalable particulate matter. Cad. Saude Publica 2013, 29, 1101–1108. [Google Scholar] [CrossRef]
  25. Ha, S.; Hu, H.; Roussos-Ross, D.; Haidong, K.; Roth, J.; Xu, X. The effects of air pollution on adverse birth outcomes. Environ. Res. 2014, 134, 198–204. [Google Scholar] [CrossRef] [Green Version]
  26. Chen, L.; Yang, W.; Jennison, B.L.; Goodrich, A.; Omaye, S.T. Air pollution and birth weight in northern nevada, 1991–1999. Inhal. Toxicol. 2002, 14, 141–157. [Google Scholar] [CrossRef]
  27. Lu, C.; Zhang, W.; Zheng, X.; Sun, J.; Chen, L.; Deng, Q. Combined effects of ambient air pollution and home environmental factors on low birth weight. Chemosphere 2020, 240, 124836. [Google Scholar] [CrossRef]
  28. Geer, L.A.; Weedon, J.; Bell, M. Ambient air pollution and term birth weight in Texas from 1998 to 2004. J. Air Waste Manag. Assoc. 2012, 62, 1285–1295. [Google Scholar] [CrossRef] [Green Version]
  29. Wojtyla, C.; Zielinska, K.; Wojtyla-Buciora, P.; Panek, G. Prenatal Fine Particulate Matter (PM2.5) Exposure and Pregnancy Outcomes—Analysis of Term Pregnancies in Poland. Int. J. Environ. Res. Public Health 2020, 17, 5820. [Google Scholar] [CrossRef]
  30. Laine, J.E.; Bodinier, B.; Robinson, O.; Plusquin, M.; Scalbert, A.; Keski-Rahkonen, P.; Robinot, N.; Vermeulen, R.; Pizzi, C.; Asta, F.; et al. Prenatal Exposure to Multiple Air Pollutants, Mediating Molecular Mechanisms, and Shifts in Birthweight. Environ. Sci. Technol. 2020, 54, 14502–14513. [Google Scholar] [CrossRef]
  31. Morello-Frosch, R.; Jesdale, B.M.; Sadd, J.L.; Pastor, M. Ambient air pollution exposure and full-term birth weight in California. Environ. Health 2010, 9, 44. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  32. Darrow, L.A.; Klein, M.; Strickland, M.J.; Mulholland, J.A.; Tolbert, P.E. Ambient Air Pollution and Birth Weight in Full-Term Infants in Atlanta, 1994–2004. Environ. Health Perspect. 2011, 119, 731–737. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  33. Dos Reis, M.M.; Guimarães, M.T.; Braga, A.L.F.; Martins, L.C.; Pereira, L.A.A. Air pollution and low birth weight in an industrialized city in Southeastern Brazil, 2003–2006. Rev. Bras. Epidemiol. 2017, 20, 189–199. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  34. Yuan, L.; Zhang, Y.; Wang, W.; Chen, R.; Liu, Y.; Liu, C.; Kan, H.; Gao, Y.; Tian, Y. Critical windows for maternal fine particulate matter exposure and adverse birth outcomes: The Shanghai birth cohort study. Chemosphere 2020, 240, 124904. [Google Scholar] [CrossRef]
  35. Jedrychowski, W.A.; Majewska, R.; Spengler, J.D.; Camann, D.; Roen, E.L.; Perera, F.P. Prenatal exposure to fine particles and polycyclic aromatic hydrocarbons and birth outcomes: A two-pollutant approach. Int. Arch. Occup. Environ. Health 2017, 90, 255–264. [Google Scholar] [CrossRef] [Green Version]
  36. Johnson, M.; Shin, H.H.; Roberts, E.; Sun, L.; Fisher, M.; Hystad, P.; Van Donkelaar, A.; Martin, R.V.; Fraser, W.D.; Lavigne, E.; et al. Critical Time Windows for Air Pollution Exposure and Birth Weight in a Multicity Canadian Pregnancy Cohort. Epidemiology 2022, 33, 7–16. [Google Scholar] [CrossRef]
  37. Palma, A.; Petrunyk, I.; Vuri, D. Prenatal air pollution exposure and neonatal health. Health Econ. 2022, 31, 729–759. [Google Scholar] [CrossRef]
  38. MoghaddamHosseini, V.; Dowlatabadi, A.; Najafi, M.L.; Ghalenovi, M.; Pajohanfar, N.S.; Ghezi, S.; Mehrabadi, S.; Estiri, E.H.; Miri, M. Association of traffic-related air pollution with Newborn’s anthropometric indexes at birth. Environ. Res. 2022, 204, 112000. [Google Scholar] [CrossRef]
  39. Yitshak-Sade, M.; Kloog, I.; Schwartz, J.D.; Novack, V.; Erez, O.; Just, A.C. The effect of prenatal temperature and PM2.5 exposure on birthweight: Weekly windows of exposure throughout the pregnancy. Environ. Int. 2021, 155, 106588. [Google Scholar] [CrossRef]
  40. Cho, H.-J.; Lee, S.-H.; Lee, S.-Y.; Kim, H.-C.; Kim, H.-B.; Park, M.J.; Yoon, J.; Jung, S.; Yang, S.-I.; Lee, E.; et al. Mid-pregnancy PM2.5 exposure affects sex-specific growth trajectories via ARRDC3 methylation. Environ. Res. 2021, 200, 111640. [Google Scholar] [CrossRef]
  41. Padula, A.M.; Mortimer, K.; Hubbard, A.; Lurmann, F.; Jerrett, M.; Tager, I.B. Exposure to Traffic-related Air Pollution during Pregnancy and Term Low Birth Weight: Estimation of Causal Associations in a Semiparametric Model. Am. J. Epidemiol. 2012, 176, 815–824. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  42. Fleisch, A.F.; Rifas-Shiman, S.L.; Koutrakis, P.; Schwartz, J.D.; Kloog, I.; Melly, S.; Coull, B.A.; Zanobetti, A.; Gillman, M.W.; Gold, D.R.; et al. Prenatal Exposure to Traffic Pollution. Epidemiology 2015, 26, 43–50. [Google Scholar] [CrossRef] [PubMed]
  43. Rokoff, L.B.; Rifas-Shiman, S.L.; Coull, B.A.; Cárdenas, A.; Calafat, A.M.; Ye, X.; Gryparis, A.; Schwartz, J.; Sagiv, S.K.; Gold, D.R.; et al. Cumulative exposure to environmental pollutants during early pregnancy and reduced fetal growth: The Project Viva cohort. Environ. Health 2018, 17, 19. [Google Scholar] [CrossRef] [Green Version]
  44. Li, C.; Ju, L.; Yang, M.; Zhang, Q.; Sun, S.; Cao, J.; Ding, R. Prenatal air pollution exposure increases the risk of macrosomia: Evidence from a prospective cohort study in the coastal area of China. Environ. Sci. Pollut. Res. 2021, 29, 5144–5152. [Google Scholar] [CrossRef]
  45. Calkins, K.; Devaskar, S.U. Fetal Origins of Adult Disease. Curr. Probl. Pediatr. Adolesc. Health Care 2011, 41, 158–176. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  46. Henriksen, T. The macrosomic fetus: A challenge in current obstetrics. Acta Obstet. Gynecol. Scand. 2008, 87, 134–145. [Google Scholar] [CrossRef]
  47. Tian, J.-Y.; Cheng, Q.; Song, X.-M.; Li, G.; Jiang, G.-X.; Gu, Y.-Y.; Luo, M. Birth weight and risk of type 2 diabetes, abdominal obesity and hypertension among Chinese adults. Eur. J. Endocrinol. 2006, 155, 601–607. [Google Scholar] [CrossRef]
  48. Curhan, G.C.; Willett, W.C.; Rimm, E.B.; Spiegelman, D.; Ascherio, A.L.; Stampfer, M.J. Birth Weight and Adult Hypertension, Diabetes Mellitus, and Obesity in US Men. Circulation 1996, 94, 3246–3250. [Google Scholar] [CrossRef]
  49. Bell, M.L.; Belanger, K.; Ebisu, K.; Gent, J.F.; Lee, H.J.; Koutrakis, P.; Leaderer, B.P. Prenatal Exposure to Fine Particulate Matter and Birth Weight. Epidemiology 2010, 21, 884–891. [Google Scholar] [CrossRef] [Green Version]
  50. Bell, M.L.; Belanger, K.; Ebisu, K.; Gent, J.F.; Leaderer, B.P. Relationship between birth weight and exposure to airborne fine particulate potassium and titanium during gestation. Environ. Res. 2012, 117, 83–89. [Google Scholar] [CrossRef] [Green Version]
  51. van den Hooven, E.H.; Pierik, F.H.; de Kluizenaar, Y.; Willemsen, S.P.; Hofman, A.; van Ratingen, S.W.; Zandveld, P.Y.J.; Mackenbach, J.P.; Steegers, E.A.P.; Miedema, H.M.E.; et al. Air Pollution Exposure during Pregnancy, Ultrasound Measures of Fetal Growth, and Adverse Birth Outcomes: A Prospective Cohort Study. Environ. Health Perspect. 2012, 120, 150–156. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  52. Iñiguez, C.; Ballester, F.; Estarlich, M.; Esplugues, A.; Murcia, M.; Llop, S.; Plana, A.; Amorós, R.; Rebagliato, M. Prenatal exposure to traffic-related air pollution and fetal growth in a cohort of pregnant women. Occup. Environ. Med. 2012, 69, 736–744. [Google Scholar] [CrossRef]
  53. Clemens, T.; Turner, S.; Dibben, C. Maternal exposure to ambient air pollution and fetal growth in North-East Scotland: A population-based study using routine ultrasound scans. Environ. Int. 2017, 107, 216–226. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  54. Shao, X.; Cheng, H.; Zhou, J.; Zhang, J.; Zhu, Y.; Yang, C.; Di Narzo, A.; Yu, J.; Shen, Y.; Li, Y.; et al. Prenatal exposure to ambient air multi-pollutants significantly impairs intrauterine fetal development trajectory. Ecotoxicol. Environ. Saf. 2020, 201, 110726. [Google Scholar] [CrossRef] [PubMed]
  55. Lin, L.; Guo, Y.; Han, N.; Su, T.; Jin, C.; Chen, G.; Li, Q.; Zhou, S.; Tang, Z.; Liu, Z.; et al. Prenatal exposure to airborne particulate matter of 1 μm or less and fetal growth: A birth cohort study in Beijing, China. Environ. Res. 2021, 194, 110729. [Google Scholar] [CrossRef]
  56. Siddika, N.; Rantala, A.K.; Antikainen, H.; Balogun, H.; Amegah, A.K.; Ryti, N.R.; Kukkonen, J.; Sofiev, M.; Jaakkola, M.S.; Jaakkola, J.J. Synergistic effects of prenatal exposure to fine particulate matter (PM2.5) and ozone (O3) on the risk of preterm birth: A population-based cohort study. Environ. Res. 2019, 176, 108549. [Google Scholar] [CrossRef]
  57. Siddika, N.; Rantala, A.K.; Antikainen, H.; Balogun, H.; Amegah, A.K.; Ryti, N.R.I.; Kukkonen, J.; Sofiev, M.; Jaakkola, M.S.; Jaakkola, J.J.K. Short-term prenatal exposure to ambient air pollution and risk of preterm birth—A population-based cohort study in Finland. Environ. Res. 2020, 184, 109290. [Google Scholar] [CrossRef]
  58. Padula, A.M.; Mortimer, K.M.; Tager, I.B.; Hammond, S.K.; Lurmann, F.W.; Yang, W.; Stevenson, D.K.; Shaw, G.M. Traffic-related air pollution and risk of preterm birth in the San Joaquin Valley of California. Ann. Epidemiol. 2014, 24, 888–895.e4. [Google Scholar] [CrossRef] [Green Version]
  59. Gehring, U.; Van Eijsden, M.; A Dijkema, M.B.; Van Der Wal, M.F.; Fischer, P.; Brunekreef, B. Traffic-related air pollution and pregnancy outcomes in the Dutch ABCD birth cohort study. Occup. Environ. Med. 2011, 68, 36–43. [Google Scholar] [CrossRef]
  60. Abdo, M.; Ward, I.; O’Dell, K.; Ford, B.; Pierce, J.; Fischer, E.; Crooks, J. Impact of Wildfire Smoke on Adverse Pregnancy Outcomes in Colorado, 2007–2015. Int. J. Environ. Res. Public Health 2019, 16, 3720. [Google Scholar] [CrossRef] [Green Version]
  61. Holstius, D.M.; Reid, C.; Jesdale, W.; Morello-Frosch, R. Birth Weight following Pregnancy during the 2003 Southern California Wildfires. Environ. Health Perspect. 2012, 120, 1340–1345. [Google Scholar] [CrossRef]
  62. Prass, T.S.; Lopes, S.R.C.; Dórea, J.G.; Marques, R.C.; Brandão, K.G. Amazon Forest Fires between 2001 and 2006 and Birth Weight in Porto Velho. Bull. Environ. Contam. Toxicol. 2012, 89, 1–7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  63. O’Donnell, M.H.; Behie, A.M. Effects of wildfire disaster exposure on male birth weight in an Australian population. Evol. Med. Public Health 2015, 2015, 344–354. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  64. Tan, Y.; Liao, J.; Zhang, B.; Mei, H.; Peng, A.; Zhao, J.; Zhang, Y.; Yang, S.; He, M. Prenatal exposure to air pollutants and early childhood growth trajectories: A population-based prospective birth cohort study. Environ. Res. 2021, 194, 110627. [Google Scholar] [CrossRef] [PubMed]
  65. Patterson, W.B.; Glasson, J.; Naik, N.; Jones, R.B.; Berger, P.K.; Plows, J.F.; Minor, H.A.; Lurmann, F.; Goran, M.I.; Alderete, T.L. Prenatal exposure to ambient air pollutants and early infant growth and adiposity in the Southern California Mother’s Milk Study. Environ. Health 2021, 20, 67. [Google Scholar] [CrossRef]
  66. Sun, X.; Liu, C.; Liang, H.; Miao, M.; Wang, Z.; Ji, H.; van Donkelaar, A.; Martin, R.V.; Kan, H.; Yuan, W. Prenatal exposure to residential PM2.5 and its chemical constituents and weight in preschool children: A longitudinal study from Shanghai, China. Environ. Int. 2021, 154, 106580. [Google Scholar] [CrossRef]
  67. Starling, A.P.; Moore, B.; Thomas, D.S.; Peel, J.L.; Zhang, W.; Adgate, J.L.; Magzamen, S.; Martenies, S.E.; Allshouse, W.B.; Dabelea, D. Prenatal exposure to traffic and ambient air pollution and infant weight and adiposity: The Healthy Start study. Environ. Res. 2020, 182, 109130. [Google Scholar] [CrossRef]
  68. Fossati, S.; Valvi, D.; Martinez, D.; Cirach, M.; Estarlich, M.; Fernández-Somoano, A.; Guxens, M.; Iñiguez, C.; Irizar, A.; Lertxundi, A.; et al. Prenatal air pollution exposure and growth and cardio-metabolic risk in preschoolers. Environ. Int. 2020, 138, 105619. [Google Scholar] [CrossRef]
  69. Rosofsky, A.S.; Fabian, M.P.; de Cuba, S.E.; Sandel, M.; Coleman, S.; Levy, J.I.; Coull, B.A.; Hart, J.E.; Zanobetti, A. Prenatal Ambient Particulate Matter Exposure and Longitudinal Weight Growth Trajectories in Early Childhood. Int. J. Environ. Res. Public Health 2020, 17, 1444. [Google Scholar] [CrossRef] [Green Version]
  70. Boamah-Kaali, E.; Jack, D.W.; Ae-Ngibise, K.A.; Quinn, A.; Kaali, S.; Dubowski, K.; Oppong, F.B.; Wylie, B.J.; Mujtaba, M.N.; Gould, C.F.; et al. Prenatal and Postnatal Household Air Pollution Exposure and Infant Growth Trajectories: Evidence from a Rural Ghanaian Pregnancy Cohort. Environ. Health Perspect. 2021, 129, 117009. [Google Scholar] [CrossRef]
  71. Zhou, S.; Lin, L.; Bao, Z.; Meng, T.; Wang, S.; Chen, G.; Li, Q.; Liu, Z.; Bao, H.; Han, N.; et al. The association of prenatal exposure to particulate matter with infant growth: A birth cohort study in Beijing, China. Environ. Pollut. 2021, 277, 116792. [Google Scholar] [CrossRef] [PubMed]
  72. Rundle, A.G.; Gallagher, D.; Herbstman, J.B.; Goldsmith, J.; Holmes, D.; Hassoun, A.; Oberfield, S.; Miller, R.L.; Andrews, H.; Widen, E.M.; et al. Prenatal exposure to airborne polycyclic aromatic hydrocarbons and childhood growth trajectories from age 5–14 years. Environ. Res. 2019, 177, 108595. [Google Scholar] [CrossRef]
  73. Fleisch, A.F.; Luttmann-Gibson, H.; Perng, W.; Rifas-Shiman, S.L.; Coull, B.A.; Kloog, I.; Koutrakis, P.; Schwartz, J.D.; Zanobetti, A.; Mantzoros, C.S.; et al. Prenatal and early life exposure to traffic pollution and cardiometabolic health in childhood. Pediatr. Obes. 2017, 12, 48–57. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  74. Lavigne, E.; Ashley-Martin, J.; Dodds, L.; Arbuckle, T.E.; Hystad, P.; Johnson, M.; Crouse, D.; Ettinger, A.S.; Shapiro, G.D.; Fisher, M.; et al. Air Pollution Exposure during Pregnancy and Fetal Markers of Metabolic Function. Am. J. Epidemiol. 2016, 183, 842–851. [Google Scholar] [CrossRef] [PubMed]
  75. Alderete, T.L.; Song, A.Y.; Bastain, T.; Habre, R.; Toledo-Corral, C.M.; Salam, M.T.; Lurmann, F.; Gilliland, F.D.; Breton, C.V. Prenatal traffic-related air pollution exposures, cord blood adipokines and infant weight. Pediatr. Obes. 2018, 13, 348–356. [Google Scholar] [CrossRef]
  76. Bloemsma, L.D.; Dabelea, D.; Thomas, D.S.K.; Peel, J.L.; Adgate, J.L.; Allshouse, W.B.; Martenies, S.E.; Magzamen, S.; Starling, A.P. Prenatal exposure to ambient air pollution and traffic and indicators of adiposity in early childhood: The Healthy Start study. Int. J. Obes. 2021, 46, 491–501. [Google Scholar] [CrossRef]
  77. Vrijheid, M.; Fossati, S.; Maitre, L.; Márquez, S.; Roumeliotaki, T.; Agier, L.; Andrusaityte, S.; Cadiou, S.; Casas, M.; De Castro, M.; et al. Early-Life Environmental Exposures and Childhood Obesity: An Exposome-Wide Approach. Environ. Health Perspect. 2020, 128, 067009. [Google Scholar] [CrossRef]
  78. de Bont, J.; Casas, M.; Barrera-Gómez, J.; Cirach, M.; Rivas, I.; Valvi, D.; Álvarez, M.; Dadvand, P.; Sunyer, J.; Vrijheid, M. Ambient air pollution and overweight and obesity in school-aged children in Barcelona, Spain. Environ. Int. 2019, 125, 58–64. [Google Scholar] [CrossRef]
  79. Fioravanti, S.; Cesaroni, G.; Badaloni, C.; Michelozzi, P.; Forastiere, F.; Porta, D. Traffic-related air pollution and childhood obesity in an Italian birth cohort. Environ. Res. 2018, 160, 479–486. [Google Scholar] [CrossRef]
  80. van Rossem, L.; Rifas-Shiman, S.L.; Melly, S.J.; Kloog, I.; Luttmann-Gibson, H.; Zanobetti, A.; Coull, B.A.; Schwartz, J.D.; Mittleman, M.A.; Oken, E.; et al. Prenatal Air Pollution Exposure and Newborn Blood Pressure. Environ. Health Perspect. 2015, 123, 353–359. [Google Scholar] [CrossRef] [Green Version]
  81. Luyten, L.J.; Dockx, Y.; Provost, E.B.; Madhloum, N.; Sleurs, H.; Neven, K.Y.; Janssen, B.G.; Bové, H.; Debacq-Chainiaux, F.; Gerrits, N.; et al. Children’s microvascular traits and ambient air pollution exposure during pregnancy and early childhood: Prospective evidence to elucidate the developmental origin of particle-induced disease. BMC Med. 2020, 18, 128. [Google Scholar] [CrossRef] [PubMed]
  82. Witters, K.; Dockx, Y.; Roodt, J.O.; Lefebvre, W.; Vanpoucke, C.; Plusquin, M.; Vangronsveld, J.; Janssen, B.G.; Nawrot, T.S. Dynamics of skin microvascular blood flow in 4–6-year-old children in association with pre- and postnatal black carbon and particulate air pollution exposure. Environ. Int. 2021, 157, 106799. [Google Scholar] [CrossRef] [PubMed]
  83. Zhang, M.; Mueller, N.; Wang, H.; Hong, X.; Appel, L.J.; Wang, X. Maternal Exposure to Ambient Particulate Matter ≤2.5 µm During Pregnancy and the Risk for High Blood Pressure in Childhood. Hypertension 2018, 72, 194–201. [Google Scholar] [CrossRef] [PubMed]
  84. Ni, Y.; Szpiro, A.A.; Young, M.T.; Loftus, C.T.; Bush, N.R.; LeWinn, K.Z.; Sathyanarayana, S.; Enquobahrie, D.A.; Davis, R.L.; Kratz, M.; et al. Associations of Pre- and Postnatal Air Pollution Exposures with Child Blood Pressure and Modification by Maternal Nutrition: A Prospective Study in the CANDLE Cohort. Environ. Health Perspect. 2021, 129, 47004. [Google Scholar] [CrossRef] [PubMed]
  85. Rosa, M.J.; Hair, G.M.; Just, A.C.; Kloog, I.; Svensson, K.; Pizano-Zárate, M.L.; Pantic, I.; Schnaas, L.; Tamayo-Ortiz, M.; Baccarelli, A.A.; et al. Identifying critical windows of prenatal particulate matter (PM2.5) exposure and early childhood blood pressure. Environ. Res. 2019, 182, 109073. [Google Scholar] [CrossRef]
  86. Madhloum, N.; Janssen, B.G.; Martens, D.S.; Saenen, N.D.; Bijnens, E.; Gyselaers, W.; Penders, J.; Vanpoucke, C.; Lefebvre, W.; Plusquin, M.; et al. Cord plasma insulin and in utero exposure to ambient air pollution. Environ. Int. 2017, 105, 126–132. [Google Scholar] [CrossRef]
  87. Thiering, E.; Cyrys, J.; Kratzsch, J.; Meisinger, C.; Hoffmann, B.; Berdel, D.; von Berg, A.; Koletzko, S.; Bauer, C.-P.; Heinrich, J. Long-term exposure to traffic-related air pollution and insulin resistance in children: Results from the GINIplus and LISAplus birth cohorts. Diabetologia 2013, 56, 1696–1704. [Google Scholar] [CrossRef] [Green Version]
  88. Moody, E.C.; Cantoral, A.; Tamayo-Ortiz, M.; Pizano-Zárate, M.L.; Schnaas, L.; Kloog, I.; Oken, E.; Coull, B.; Baccarelli, A.; Téllez-Rojo, M.M.; et al. Association of Prenatal and Perinatal Exposures to Particulate Matter with Changes in Hemoglobin A1c Levels in Children Aged 4 to 6 Years. JAMA Netw. Open 2019, 2, e1917643. [Google Scholar] [CrossRef] [Green Version]
  89. Mann, J.K.; Lutzker, L.; Holm, S.M.; Margolis, H.G.; Neophytou, A.M.; Eisen, E.A.; Costello, S.; Tyner, T.; Holland, N.; Tindula, G.; et al. Traffic-related air pollution is associated with glucose dysregulation, blood pressure, and oxidative stress in children. Environ. Res. 2021, 195, 110870. [Google Scholar] [CrossRef]
  90. Hathout, E.H.; Beeson, W.L.; Nahab, F.; Rabadi, A.; Thomas, W.; Mace, J.W. Role of exposure to air pollutants in the development of type 1 diabetes before and after 5 yr of age. Pediatr. Diabetes 2002, 3, 184–188. [Google Scholar] [CrossRef]
  91. Korten, I.; Ramsey, K.; Latzin, P. Air pollution during pregnancy and lung development in the child. Paediatr. Respir. Rev. 2016, 21, 38–46. [Google Scholar] [CrossRef] [PubMed]
  92. Decrue, F.; Gorlanova, O.; Salem, Y.; Vienneau, D.; de Hoogh, K.; Gisler, A.; Usemann, J.; Korten, I.; Nahum, U.; Sinues, P.; et al. Increased Impact of Air Pollution on Lung Function in Preterm versus Term Infants: The BILD Study. Am. J. Respir. Crit. Care Med. 2022, 205, 99–107. [Google Scholar] [CrossRef] [PubMed]
  93. Latzin, P.; Röösli, M.; Huss, A.; Kuehni, C.E.; Frey, U. Air pollution during pregnancy and lung function in newborns: A birth cohort study. Eur. Respir. J. 2008, 33, 594–603. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  94. Lee, A.G.; Kaali, S.; Quinn, A.; Delimini, R.; Burkart, K.; Opoku-Mensah, J.; Wylie, B.J.; Yawson, A.K.; Kinney, P.L.; Ae-Ngibise, K.A.; et al. Prenatal Household Air Pollution Is Associated with Impaired Infant Lung Function with Sex-Specific Effects. Evidence from GRAPHS, a Cluster Randomized Cookstove Intervention Trial. Am. J. Respir. Crit. Care Med. 2019, 199, 738–746. [Google Scholar] [CrossRef] [PubMed]
  95. Jedrychowski, W.A.; Perera, F.P.; Maugeri, U.; Majewska, R.; Mroz, E.; Flak, E.; Camann, D.; Sowa, A.; Jacek, R. Long term effects of prenatal and postnatal airborne PAH exposures on ventilatory lung function of non-asthmatic preadolescent children. Prospective birth cohort study in Krakow. Sci. Total Environ. 2014, 502, 502–509. [Google Scholar] [CrossRef] [Green Version]
  96. Urman, R.; McConnell, R.; Islam, T.; Avol, E.L.; Lurmann, F.W.; Vora, H.; Linn, W.S.; Rappaport, E.B.; Gilliland, F.D.; Gauderman, W.J. Associations of children’s lung function with ambient air pollution: Joint effects of regional and near-roadway pollutants. Thorax 2013, 69, 540–547. [Google Scholar] [CrossRef] [Green Version]
  97. Gutiérrez-Delgado, R.I.; Barraza-Villarreal, A.; Escamilla-Núñez, M.C.; Hernández-Cadena, L.; Dsc, M.C.; Sly, P.; Romieu, I.; Cortez-Lugo, M. Prenatal exposure to VOCs and NOx and lung function in preschoolers. Pediatr. Pulmonol. 2020, 55, 2142–2149. [Google Scholar] [CrossRef]
  98. Bose, S.; Rosa, M.J.; Chiu, Y.-H.M.; Hsu, H.-H.L.; Di, Q.; Lee, A.; Kloog, I.; Wilson, A.; Schwartz, J.; Wright, R.O.; et al. Prenatal nitrate air pollution exposure and reduced child lung function: Timing and fetal sex effects. Environ. Res. 2018, 167, 591–597. [Google Scholar] [CrossRef]
  99. Dutta, A.; Alaka, M.; Ibigbami, T.; Adepoju, D.; Adekunle, S.; Olamijulo, J.; Adedokun, B.; Deji-Abiodun, O.; Chartier, R.; Ojengbede, O.; et al. Impact of prenatal and postnatal household air pollution exposure on lung function of 2-year old Nigerian children by oscillometry. Sci. Total Environ. 2020, 755, 143419. [Google Scholar] [CrossRef]
  100. Cai, Y.; Hansell, A.L.; Granell, R.; Blangiardo, M.; Zottoli, M.; Fecht, D.; Gulliver, J.; Henderson, A.J.; Elliott, P. Prenatal, Early-Life, and Childhood Exposure to Air Pollution and Lung Function: The ALSPAC Cohort. Am. J. Respir. Crit. Care Med. 2020, 202, 112–123. [Google Scholar] [CrossRef]
  101. Usemann, J.; Decrue, F.; Korten, I.; Proietti, E.; Gorlanova, O.; Vienneau, D.; Fuchs, O.; Latzin, P.; Röösli, M.; Frey, U. Exposure to moderate air pollution and associations with lung function at school-age: A birth cohort study. Environ. Int. 2019, 126, 682–689. [Google Scholar] [CrossRef] [PubMed]
  102. Branco, P.T.; Alvim-Ferraz, M.C.; Martins, F.G.; Ferraz, C.; Vaz, L.G.; Sousa, S.I. Impact of indoor air pollution in nursery and primary schools on childhood asthma. Sci. Total Environ. 2020, 745, 140982. [Google Scholar] [CrossRef] [PubMed]
  103. Morales, E.; Garcia-Esteban, R.; De La Cruz, O.A.; Basterrechea, M.; Lertxundi, A.; De Dicastillo, M.D.M.L.; Zabaleta, C.; Sunyer, J. Intrauterine and early postnatal exposure to outdoor air pollution and lung function at preschool age. Thorax 2014, 70, 64–73. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  104. Jedrychowski, W.A.; Perera, F.P.; Maugeri, U.; Mroz, E.; Klimaszewska-Rembiasz, M.; Flak, E.; Edwards, S.; Spengler, J.D. Effect of prenatal exposure to fine particulate matter on ventilatory lung function of preschool children of non-smoking mothers. Paediatr. Périnat. Epidemiol. 2010, 24, 492–501. [Google Scholar] [CrossRef] [Green Version]
  105. Mortimer, K.; Neugebauer, R.; Lurmann, F.; Alcorn, S.; Balmes, J.; Tager, I. Air Pollution and Pulmonary Function in Asthmatic Children. Epidemiology 2008, 19, 550–557. [Google Scholar] [CrossRef]
  106. Rice, M.B.; Rifas-Shiman, S.L.; Litonjua, A.A.; Oken, E.; Gillman, M.W.; Kloog, I.; Luttmann-Gibson, H.; Zanobetti, A.; Coull, B.A.; Schwartz, J.; et al. Lifetime Exposure to Ambient Pollution and Lung Function in Children. Am. J. Respir. Crit. Care Med. 2016, 193, 881–888. [Google Scholar] [CrossRef] [Green Version]
  107. Seeni, I.; Ha, S.; Nobles, C.; Liu, D.; Sherman, S.; Mendola, P. Air pollution exposure during pregnancy: Maternal asthma and neonatal respiratory outcomes. Ann. Epidemiol. 2018, 28, 612–618.e4. [Google Scholar] [CrossRef]
  108. Aguilera, I.; Pedersen, M.; Garcia-Esteban, R.; Ballester, F.; Basterrechea, M.; Esplugues, A.; Somoano, A.F.; Lertxundi, A.; Tardon, A.; Sunyer, J. Early-Life Exposure to Outdoor Air Pollution and Respiratory Health, Ear Infections, and Eczema in Infants from the INMA Study. Environ. Health Perspect. 2013, 121, 387–392. [Google Scholar] [CrossRef] [Green Version]
  109. Liu, W.; Huang, C.; Hu, Y.; Fu, Q.; Zou, Z.; Sun, C.; Shen, L.; Wang, X.; Cai, J.; Pan, J.; et al. Associations of gestational and early life exposures to ambient air pollution with childhood respiratory diseases in Shanghai, China: A retrospective cohort study. Environ. Int. 2016, 92, 284–293. [Google Scholar] [CrossRef]
  110. Goshen, S.; Novack, L.; Erez, O.; Yitshak-Sade, M.; Kloog, I.; Shtein, A.; Shany, E. The effect of exposure to particulate matter during pregnancy on lower respiratory tract infection hospitalizations during first year of life. Environ. Health 2020, 19, 90. [Google Scholar] [CrossRef]
  111. Jedrychowski, W.A.; Perera, F.P.; Maugeri, U.; Mrozek-Budzyn, D.; Mroz, E.; Klimaszewska-Rembiasz, M.; Flak, E.; Edwards, S.; Spengler, J.; Jacek, R.; et al. Intrauterine exposure to polycyclic aromatic hydrocarbons, fine particulate matter and early wheeze. Prospective birth cohort study in 4-year olds. Pediatr. Allergy Immunol. 2010, 21, e723–e732. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  112. Bharadwaj, P.; Zivin, J.G.; Mullins, J.T.; Neidell, M. Early-Life Exposure to the Great Smog of 1952 and the Development of Asthma. Am. J. Respir. Crit. Care Med. 2016, 194, 1475–1482. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  113. Hehua, Z.; Qing, C.; Shanyan, G.; Qijun, W.; Yuhong, Z. The impact of prenatal exposure to air pollution on childhood wheezing and asthma: A systematic review. Environ. Res. 2017, 159, 519–530. [Google Scholar] [CrossRef] [PubMed]
  114. Norbäck, D.; Lu, C.; Zhang, Y.; Li, B.; Zhao, Z.; Huang, C.; Zhang, X.; Qian, H.; Sun, Y.; Sundell, J.; et al. Onset and remission of childhood wheeze and rhinitis across China—Associations with early life indoor and outdoor air pollution. Environ. Int. 2018, 123, 61–69. [Google Scholar] [CrossRef]
  115. Lin, Y.-T.; Shih, H.; Jung, C.-R.; Wang, C.-M.; Chang, Y.-C.; Hsieh, C.-Y.; Hwang, B.-F. Effect of exposure to fine particulate matter during pregnancy and infancy on paediatric allergic rhinitis. Thorax 2021, 76, 568–574. [Google Scholar] [CrossRef]
  116. Hsieh, C.-Y.; Jung, C.-R.; Lin, C.-Y.; Hwang, B.-F. Combined exposure to heavy metals in PM2.5 and pediatric asthma. J. Allergy Clin. Immunol. 2021, 147, 2171–2180.e13. [Google Scholar] [CrossRef]
  117. Wright, R.J.; Hsu, H.-H.L.; Chiu, Y.-H.M.; Coull, B.A.; Simon, M.C.; Hudda, N.; Schwartz, J.; Kloog, I.; Durant, J.L. Prenatal Ambient Ultrafine Particle Exposure and Childhood Asthma in the Northeastern United States. Am. J. Respir. Crit. Care Med. 2021, 204, 788–796. [Google Scholar] [CrossRef]
  118. Guo, M.; Wei, L.; Yan, H.; Duan, Z.; Niu, Z.; Xiao, C. Exposure to ambient air pollution during trimesters of pregnancy and childhood allergic diseases in Wuhan, China. Int. J. Environ. Health Res. 2021, 1–11. [Google Scholar] [CrossRef]
  119. Zhang, Y.; Wei, J.; Shi, Y.; Quan, C.; Ho, H.C.; Song, Y.; Zhang, L. Early-life exposure to submicron particulate air pollution in relation to asthma development in Chinese preschool children. J. Allergy Clin. Immunol. 2021, 148, 771–782.e12. [Google Scholar] [CrossRef]
  120. Rivera, N.Y.R.; Tamayo-Ortiz, M.; García, A.M.; Just, A.C.; Kloog, I.; Téllez-Rojo, M.M.; Wright, R.O.; Wright, R.J.; Rosa, M.J. Prenatal and early life exposure to particulate matter, environmental tobacco smoke and respiratory symptoms in Mexican children. Environ. Res. 2020, 192, 110365. [Google Scholar] [CrossRef]
  121. Madsen, C.; Haberg, S.E.; Magnus, M.C.; Aamodt, G.; Stigum, H.; London, S.; Nystad, W.; Nafstad, P. Pregnancy exposure to air pollution and early childhood respiratory health in the Norwegian Mother and Child Cohort Study (MoBa). BMJ Open 2017, 7, e015796. [Google Scholar] [CrossRef] [PubMed]
  122. Deng, Q.; Lu, C.; Yu, Y.; Li, Y.; Sundell, J.; Norbäck, D. Early life exposure to traffic-related air pollution and allergic rhinitis in preschool children. Respir. Med. 2016, 121, 67–73. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  123. Gehring, U.; Wijga, A.H.; Hoek, G.; Bellander, T.; Berdel, D.; Brüske, I.; Fuertes, E.; Gruzieva, O.; Heinrich, J.; Hoffmann, B.; et al. Exposure to air pollution and development of asthma and rhinoconjunctivitis throughout childhood and adolescence: A population-based birth cohort study. Lancet Respir. Med. 2015, 3, 933–942. [Google Scholar] [CrossRef] [Green Version]
  124. Gehring, U.; Wijga, A.H.; Brauer, M.; Fischer, P.; de Jongste, J.C.; Kerkhof, M.; Oldenwening, M.; Smit, H.A.; Brunekreef, B. Traffic-related Air Pollution and the Development of Asthma and Allergies during the First 8 Years of Life. Am. J. Respir. Crit. Care Med. 2010, 181, 596–603. [Google Scholar] [CrossRef] [Green Version]
  125. Gehring, U.; Beelen, R.; Eeftens, M.; Hoek, G.; de Hoogh, K.; de Jongste, J.C.; Keuken, M.; Koppelman, G.H.; Meliefste, K.; Oldenwening, M.; et al. Particulate Matter Composition and Respiratory Health. Epidemiology 2015, 26, 300–309. [Google Scholar] [CrossRef] [PubMed]
  126. To, T.; Zhu, J.; Stieb, D.; Gray, N.; Fong, I.; Pinault, L.; Jerrett, M.; Robichaud, A.; Ménard, R.; Van Donkelaar, A.; et al. Early life exposure to air pollution and incidence of childhood asthma, allergic rhinitis and eczema. Eur. Respir. J. 2019, 55, 1900913. [Google Scholar] [CrossRef]
  127. Gruzieva, O.; Bergström, A.; Hulchiy, O.; Kull, I.; Lind, T.; Melén, E.; Moskalenko, V.; Pershagen, G.; Bellander, T. Exposure to Air Pollution from Traffic and Childhood Asthma Until 12 Years of Age. Epidemiology 2013, 24, 54–61. [Google Scholar] [CrossRef]
  128. Lavigne, É.; Talarico, R.; van Donkelaar, A.; Martin, R.V.; Stieb, D.M.; Crighton, E.; Weichenthal, S.; Smith-Doiron, M.; Burnett, R.T.; Chen, H. Fine particulate matter concentration and composition and the incidence of childhood asthma. Environ. Int. 2021, 152, 106486. [Google Scholar] [CrossRef]
  129. Liu, W.; Cai, J.; Fu, Q.; Zou, Z.; Sun, C.; Zhang, J.; Huang, C. Associations of ambient air pollutants with airway and allergic symptoms in 13,335 preschoolers in Shanghai, China. Chemosphere 2020, 252, 126600. [Google Scholar] [CrossRef]
  130. Zhu, L.; Ge, X.; Chen, Y.; Zeng, X.; Pan, W.; Zhang, X.; Ben, S.; Yuan, Q.; Xin, J.; Shao, W.; et al. Short-term effects of ambient air pollution and childhood lower respiratory diseases. Sci. Rep. 2017, 7, 4414. [Google Scholar] [CrossRef] [Green Version]
  131. Jung, K.H.; Hsu, S.-I.; Yan, B.; Moors, K.; Chillrud, S.N.; Ross, J.; Wang, S.; Perzanowski, M.S.; Kinney, P.L.; Whyatt, R.M.; et al. Childhood exposure to fine particulate matter and black carbon and the development of new wheeze between ages 5 and 7 in an urban prospective cohort. Environ. Int. 2012, 45, 44–50. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  132. Brunst, K.J.; Ryan, P.H.; Brokamp, C.; Bernstein, D.; Reponen, T.; Lockey, J.; Hershey, G.K.K.; Levin, L.; Grinshpun, S.A.; LeMasters, G. Timing and Duration of Traffic-related Air Pollution Exposure and the Risk for Childhood Wheeze and Asthma. Am. J. Respir. Crit. Care Med. 2015, 192, 421–427. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  133. Bernstein, D.I. Traffic-Related Pollutants and Wheezing in Children. J. Asthma 2012, 49, 5–7. [Google Scholar] [CrossRef] [PubMed]
  134. Almeida, L.D.O.E.; Favaro, A.; Raimundo-Costa, W.; Anhê, A.C.B.M.; Ferreira, D.C.; Blanes-Vidal, V.; Senhuk, A.P.M.D.S. Influence of urban forest on traffic air pollution and children respiratory health. Environ. Monit. Assess. 2020, 192, 175. [Google Scholar] [CrossRef]
  135. Ranzi, A.; Porta, D.; Badaloni, C.; Cesaroni, G.; Lauriola, P.; Davoli, M.; Forastiere, F. Exposure to air pollution and respiratory symptoms during the first 7 years of life in an Italian birth cohort. Occup. Environ. Med. 2014, 71, 430–436. [Google Scholar] [CrossRef]
  136. Ghosh, R.; Joad, J.; Benes, I.; Dostal, M.; Sram, R.J.; Hertz-Picciotto, I. Ambient nitrogen oxides exposure and early childhood respiratory illnesses. Environ. Int. 2012, 39, 96–102. [Google Scholar] [CrossRef]
  137. HEI Collaborative Working Group on Air Pollution, Poverty, and Health in Ho Chi Minh City; Le, T.G.; Ngo, L.; Mehta, S.; Do, V.D.; Thach, T.Q.; Vu, X.D.; Nguyen, D.T.; Cohen, A. Effects of short-term exposure to air pollution on hospital admissions of young children for acute lower respiratory infections in Ho Chi Minh City, Vietnam. Res. Rep. 2012, 169, 5–72. [Google Scholar]
  138. Darrow, L.A.; Klein, M.; Flanders, W.D.; Mulholland, J.A.; Tolbert, P.E.; Strickland, M.J. Air Pollution and Acute Respiratory Infections Among Children 0–4 Years of Age: An 18-Year Time-Series Study. Am. J. Epidemiol. 2014, 180, 968–977. [Google Scholar] [CrossRef] [Green Version]
  139. Hertz-Picciotto, I.; Baker, R.J.; Yap, P.-S.; Dostál, M.; Joad, J.P.; Lipsett, M.; Greenfield, T.; Herr, C.E.; Beneš, I.; Shumway, R.H.; et al. Early Childhood Lower Respiratory Illness and Air Pollution. Environ. Health Perspect. 2007, 115, 1510–1518. [Google Scholar] [CrossRef] [Green Version]
  140. Suryadhi, M.; Abudureyimu, K.; Kashima, S.; Yorifuji, T. Nitrogen dioxide and acute respiratory tract infections in children in Indonesia. Arch. Environ. Occup. Health 2019, 75, 274–280. [Google Scholar] [CrossRef]
  141. Terrazas, C.; Castro-Rodriguez, J.A.; Camargo, C.A.; Borzutzky, A. Solar radiation, air pollution, and bronchiolitis hospitalizations in Chile: An ecological study. Pediatr. Pulmonol. 2019, 54, 1466–1473. [Google Scholar] [CrossRef] [PubMed]
  142. MacIntyre, E.A.; Gehring, U.; Moelter, A.; Fuertes, E.; Kluemper, C.; Kraemer, U.; Quass, U.; Hoffmann, B.; Gascon, M.; Brunekreef, B.; et al. Air Pollution and Respiratory Infections during Early Childhood: An Analysis of 10 European Birth Cohorts within the ESCAPE Project. Environ. Health Perspect. 2014, 122, 107–113. [Google Scholar] [CrossRef]
  143. Fuertes, E.; MacIntyre, E.; Agius, R.; Beelen, R.; Brunekreef, B.; Bucci, S.; Cesaroni, G.; Cirach, M.; Cyrys, J.; Forastiere, F.; et al. Associations between particulate matter elements and early-life pneumonia in seven birth cohorts: Results from the ESCAPE and TRANSPHORM projects. Int. J. Hyg. Environ. Health 2014, 217, 819–829. [Google Scholar] [CrossRef] [PubMed]
  144. Nicolussi, F.H.; Dos Santos, A.P.M.; André, S.C.D.S.; Veiga, T.B.; Takayanagui, A.M.M. Air pollution and respiratory allergic diseases in schoolchildren. Rev. Saude Publica 2014, 48, 326–330. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  145. Hao, S.; Yuan, F.; Pang, P.; Yang, B.; Jiang, X.; Yan, A. Early childhood traffic-related air pollution and risk of allergic rhinitis at 2–4 years of age modification by family stress and male gender: A case-control study in Shenyang, China. Environ. Health Prev. Med. 2021, 26, 48. [Google Scholar] [CrossRef]
  146. Odo, D.B.; Yang, I.A.; Dey, S.; Hammer, M.S.; van Donkelaar, A.; Martin, R.V.; Dong, G.-H.; Yang, B.-Y.; Hystad, P.; Knibbs, L.D. Ambient air pollution and acute respiratory infection in children aged under 5 years living in 35 developing countries. Environ. Int. 2021, 159, 107019. [Google Scholar] [CrossRef]
  147. Stoner, A.M.; Anderson, S.E.; Buckley, T.J. Ambient Air Toxics and Asthma Prevalence among a Representative Sample of US Kindergarten-Age Children. PLoS ONE 2013, 8, e75176. [Google Scholar] [CrossRef]
  148. Leibel, S.; Nguyen, M.; Brick, W.; Parker, J.; Ilango, S.; Aguilera, R.; Gershunov, A.; Benmarhnia, T. Increase in Pediatric Respiratory Visits Associated with Santa Ana Wind–Driven Wildfire Smoke and PM2.5 Levels in San Diego County. Ann. Am. Thorac. Soc. 2020, 17, 313–320. [Google Scholar] [CrossRef]
  149. Guxens, M.; Garcia-Esteban, R.; Giorgis-Allemand, L.; Forns, J.; Badaloni, C.; Ballester, F.; Beelen, R.; Cesaroni, G.; Chatzi, L.; De Agostini, M.; et al. Air Pollution during Pregnancy and Childhood Cognitive and Psychomotor Development. Epidemiology 2014, 25, 636–647. [Google Scholar] [CrossRef] [Green Version]
  150. Yorifuji, T.; Kashima, S.; Diez, M.H.; Kado, Y.; Sanada, S.; Doi, H. Prenatal Exposure to Traffic-related Air Pollution and Child Behavioral Development Milestone Delays in Japan. Epidemiology 2016, 27, 57–65. [Google Scholar] [CrossRef]
  151. Lertxundi, A.; Andiarena, A.; Martínez, M.D.; Ayerdi, M.; Murcia, M.; Estarlich, M.; Guxens, M.; Sunyer, J.; Julvez, J.; Ibarluzea, J. Prenatal exposure to PM2.5 and NO2 and sex-dependent infant cognitive and motor development. Environ. Res. 2019, 174, 114–121. [Google Scholar] [CrossRef] [PubMed]
  152. Ren, Y.; Yao, X.; Liu, Y.; Liu, S.; Li, X.; Huang, Q.; Liu, F.; Li, N.; Lu, Y.; Yuan, Z.; et al. Outdoor air pollution pregnancy exposures are associated with behavioral problems in China’s preschoolers. Environ. Sci. Pollut. Res. 2018, 26, 2397–2408. [Google Scholar] [CrossRef] [PubMed]
  153. Kim, E.; Park, H.; Hong, Y.-C.; Ha, M.; Kim, Y.; Kim, B.-N.; Kim, Y.; Roh, Y.-M.; Lee, B.-E.; Ryu, J.-M.; et al. Prenatal exposure to PM10 and NO2 and children’s neurodevelopment from birth to 24 months of age: Mothers and Children’s Environmental Health (MOCEH) study. Sci. Total Environ. 2014, 481, 439–445. [Google Scholar] [CrossRef] [PubMed]
  154. Lubczyńska, M.J.; Sunyer, J.; Tiemeier, H.; Porta, D.; Kasper-Sonnenberg, M.; Jaddoe, V.W.; Basagaña, X.; Dalmau-Bueno, A.; Forastiere, F.; Wittsiepe, J.; et al. Exposure to elemental composition of outdoor PM2.5 at birth and cognitive and psychomotor function in childhood in four European birth cohorts. Environ. Int. 2017, 109, 170–180. [Google Scholar] [CrossRef] [Green Version]
  155. Wang, P.; Zhao, Y.; Li, J.; Zhou, Y.; Luo, R.; Meng, X.; Zhang, Y. Prenatal exposure to ambient fine particulate matter and early childhood neurodevelopment: A population-based birth cohort study. Sci. Total Environ. 2021, 785, 147334. [Google Scholar] [CrossRef]
  156. Harris, M.H.; Gold, D.R.; Rifas-Shiman, S.L.; Melly, S.J.; Zanobetti, A.; Coull, B.A.; Schwartz, J.D.; Gryparis, A.; Kloog, I.; Koutrakis, P.; et al. Prenatal and childhood traffic-related air pollution exposure and childhood executive function and behavior. Neurotoxicol. Teratol. 2016, 57, 60–70. [Google Scholar] [CrossRef] [Green Version]
  157. Yu, T.; Zhou, L.; Xu, J.; Kan, H.; Chen, R.; Chen, S.; Hua, H.; Liu, Z.; Yan, C. Effects of prenatal exposures to air sulfur dioxide/nitrogen dioxide on toddler neurodevelopment and effect modification by ambient temperature. Ecotoxicol. Environ. Saf. 2021, 230, 113118. [Google Scholar] [CrossRef]
  158. Su, X.; Zhang, S.; Lin, Q.; Wu, Y.; Yang, Y.; Yu, H.; Huang, S.; Luo, W.; Wang, X.; Lin, H.; et al. Prenatal exposure to air pollution and neurodevelopmental delay in children: A birth cohort study in Foshan, China. Sci. Total Environ. 2021, 816, 151658. [Google Scholar] [CrossRef]
  159. Hurtado-Díaz, M.; Riojas-Rodríguez, H.; Rothenberg, S.J.; Schnaas-Arrieta, L.; Kloog, I.; Just, A.; Hernández-Bonilla, D.; Wright, R.O.; Téllez-Rojo, M.M. Prenatal PM2.5 exposure and neurodevelopment at 2 years of age in a birth cohort from Mexico city. Int. J. Hyg. Environ. Health 2021, 233, 113695. [Google Scholar] [CrossRef]
  160. Li, J.; Liao, J.; Hu, C.; Bao, S.; Mahai, G.; Cao, Z.; Lin, C.; Xia, W.; Xu, S.; Li, Y. Preconceptional and the first trimester exposure to PM2.5 and offspring neurodevelopment at 24 months of age: Examining mediation by maternal thyroid hormones in a birth cohort study. Environ. Pollut. 2021, 284, 117133. [Google Scholar] [CrossRef]
  161. Loftus, C.T.; Hazlehurst, M.F.; Szpiro, A.A.; Ni, Y.; Tylavsky, F.A.; Bush, N.R.; Sathyanarayana, S.; Carroll, K.N.; Karr, C.J.; LeWinn, K.Z. Prenatal air pollution and childhood IQ: Preliminary evidence of effect modification by folate. Environ. Res. 2019, 176, 108505. [Google Scholar] [CrossRef] [PubMed]
  162. Chiu, Y.-H.M.; Hsu, H.-H.L.; Coull, B.A.; Bellinger, D.C.; Kloog, I.; Schwartz, J.; Wright, R.O.; Wright, R.J. Prenatal particulate air pollution and neurodevelopment in urban children: Examining sensitive windows and sex-specific associations. Environ. Int. 2015, 87, 56–65. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  163. Jedrychowski, W.A.; Perera, F.P.; Camann, D.; Spengler, J.; Butscher, M.; Mroz, E.; Majewska, R.; Flak, E.; Jacek, R.; Sowa, A. Prenatal exposure to polycyclic aromatic hydrocarbons and cognitive dysfunction in children. Environ. Sci. Pollut. Res. 2014, 22, 3631–3639. [Google Scholar] [CrossRef] [Green Version]
  164. Volk, H.E.; Hertz-Picciotto, I.; Delwiche, L.; Lurmann, F.; McConnell, R. Residential Proximity to Freeways and Autism in the CHARGE Study. Environ. Health Perspect. 2011, 119, 873–877. [Google Scholar] [CrossRef]
  165. Volk, H.E.; Lurmann, F.; Penfold, B.; Hertz-Picciotto, I.; McConnell, R. Traffic-Related Air Pollution, Particulate Matter, and Autism. JAMA Psychiatry 2013, 70, 71–77. [Google Scholar] [CrossRef] [PubMed]
  166. Wang, S.-Y.; Cheng, Y.-Y.; Guo, H.-R.; Tseng, Y.-C. Air Pollution during Pregnancy and Childhood Autism Spectrum Disorder in Taiwan. Int. J. Environ. Res. Public Health 2021, 18, 9784. [Google Scholar] [CrossRef]
  167. Pagalan, L.; Bickford, C.; Weikum, W.; Lanphear, B.; Brauer, M.; Lanphear, N.; Hanley, G.; Oberlander, T.; Winters, M. Association of Prenatal Exposure to Air Pollution with Autism Spectrum Disorder. JAMA Pediatr. 2019, 173, 86–92. [Google Scholar] [CrossRef]
  168. Becerra, T.A.; Wilhelm, M.; Olsen, J.; Cockburn, M.; Ritz, B. Ambient Air Pollution and Autism in Los Angeles County, California. Environ. Health Perspect. 2013, 121, 380–386. [Google Scholar] [CrossRef]
  169. McGuinn, L.A.; Windham, G.C.; Kalkbrenner, A.E.; Bradley, C.; Di, Q.; Croen, L.A.; Fallin, M.D.; Hoffman, K.; Ladd-Acosta, C.; Schwartz, J.; et al. Early Life Exposure to Air Pollution and Autism Spectrum Disorder. Epidemiology 2020, 31, 103–114. [Google Scholar] [CrossRef]
  170. Kaufman, J.A.; Wright, J.M.; Rice, G.; Connolly, N.; Bowers, K.; Anixt, J. Ambient ozone and fine particulate matter exposures and autism spectrum disorder in metropolitan Cincinnati, Ohio. Environ. Res. 2019, 171, 218–227. [Google Scholar] [CrossRef]
  171. Raz, R.; Roberts, A.; Lyall, K.; Hart, J.E.; Just, A.; Laden, F.; Weisskopf, M.G. Autism Spectrum Disorder and Particulate Matter Air Pollution before, during, and after Pregnancy: A Nested Case–Control Analysis within the Nurses’ Health Study II Cohort. Environ. Health Perspect. 2015, 123, 264–270. [Google Scholar] [CrossRef] [PubMed]
  172. Carter, S.A.; Rahman, M.; Lin, J.C.; Shu, Y.-H.; Chow, T.; Yu, X.; Martinez, M.P.; Eckel, S.P.; Chen, J.-C.; Chen, Z.; et al. In utero exposure to near-roadway air pollution and autism spectrum disorder in children. Environ. Int. 2021, 158, 106898. [Google Scholar] [CrossRef] [PubMed]
  173. Sunyer, J.; Esnaola, M.; Alvarez-Pedrerol, M.; Forns, J.; Rivas, I.; López-Vicente, M.; Suades-González, E.; Foraster, M.; Garcia-Esteban, R.; Basagaña, X.; et al. Association between Traffic-Related Air Pollution in Schools and Cognitive Development in Primary School Children: A Prospective Cohort Study. PLoS Med. 2015, 12, e1001792. [Google Scholar] [CrossRef] [PubMed]
  174. van Kempen, E.; Fischer, P.; Janssen, N.; Houthuijs, D.; van Kamp, I.; Stansfeld, S.; Cassee, F. Neurobehavioral effects of exposure to traffic-related air pollution and transportation noise in primary schoolchildren. Environ. Res. 2012, 115, 18–25. [Google Scholar] [CrossRef]
  175. Luyten, L.J.; Saenen, N.D.; Janssen, B.G.; Vrijens, K.; Plusquin, M.; Roels, H.A.; Debacq-Chainiaux, F.; Nawrot, T.S. Air pollution and the fetal origin of disease: A systematic review of the molecular signatures of air pollution exposure in human placenta. Environ. Res. 2018, 166, 310–323. [Google Scholar] [CrossRef]
  176. Rogers, L.K.; Velten, M. Maternal inflammation, growth retardation, and preterm birth: Insights into adult cardiovascular disease. Life Sci. 2011, 89, 417–421. [Google Scholar] [CrossRef]
  177. Lopez-Lopez, J.; Lopez-Jaramillo, P.; Camacho, P.A.; Gomez-Arbelaez, D.; Cohen, D.D. The Link between Fetal Programming, Inflammation, Muscular Strength, and Blood Pressure. Mediat. Inflamm. 2015, 2015, 710613. [Google Scholar] [CrossRef] [Green Version]
  178. Wong, H.; Hoeffer, C. Maternal IL-17A in autism. Exp. Neurol. 2017, 299, 228–240. [Google Scholar] [CrossRef]
  179. Choi, G.B.; Yim, Y.S.; Wong, H.; Kim, S.; Kim, H.; Kim, S.V.; Hoeffer, C.A.; Littman, D.R.; Huh, J.R. The maternal interleukin-17a pathway in mice promotes autism-like phenotypes in offspring. Science 2016, 351, 933–939. [Google Scholar] [CrossRef] [Green Version]
  180. Xu, X.; Yavar, Z.; Verdin, M.; Ying, Z.; Mihai, G.; Kampfrath, T.; Wang, A.; Zhong, M.; Lippmann, M.; Chen, L.-C.; et al. Effect of Early Particulate Air Pollution Exposure on Obesity in Mice. Arter. Thromb. Vasc. Biol. 2010, 30, 2518–2527. [Google Scholar] [CrossRef] [Green Version]
  181. Møller, P.; Danielsen, P.H.; Karottki, D.G.; Jantzen, K.; Roursgaard, M.; Klingberg, H.; Jensen, D.M.; Vest Christophersen, D.; Hemmingsen, J.G.; Cao, Y.; et al. Oxidative stress and inflammation generated DNA damage by exposure to air pollution particles. Mutat. Res. Mutat. Res. 2014, 762, 133–166. [Google Scholar] [CrossRef] [PubMed]
  182. Rajagopalan, S.; Park, B.; Palanivel, R.; Vinayachandran, V.; Deiuliis, J.A.; Gangwar, R.S.; Das, L.M.; Yin, J.; Choi, Y.; Al-Kindi, S.; et al. Metabolic effects of air pollution exposure and reversibility. J. Clin. Investig. 2020, 130, 6034–6040. [Google Scholar] [CrossRef] [PubMed]
  183. Tillett, T. Potential Mechanism for PM10 Effects on Birth Outcomes: In Utero Exposure Linked to Mitochondrial DNA Damage. Environ. Health Perspect. 2012, 120, a363. [Google Scholar] [CrossRef] [Green Version]
  184. Gruzieva, O.; Xu, C.-J.; Yousefi, P.; Relton, C.; Merid, S.K.; Breton, C.V.; Gao, L.; Volk, H.E.; Feinberg, J.I.; Ladd-Acosta, C.; et al. Prenatal Particulate Air Pollution and DNA Methylation in Newborns: An Epigenome-Wide Meta-Analysis. Environ. Health Perspect. 2019, 127, 057012. [Google Scholar] [CrossRef] [PubMed]
  185. Saenen, N.D.; Plusquin, M.; Bijnens, E.; Janssen, B.G.; Gyselaers, W.; Cox, B.; Fierens, F.; Molenberghs, G.; Penders, J.; Vrijens, K.; et al. In Utero Fine Particle Air Pollution and Placental Expression of Genes in the Brain-Derived Neurotrophic Factor Signaling Pathway: An ENVIRONAGE Birth Cohort Study. Environ. Health Perspect. 2015, 123, 834–840. [Google Scholar] [CrossRef] [Green Version]
  186. Deng, Y.-L.; Liao, J.-Q.; Zhou, B.; Zhang, W.-X.; Liu, C.; Yuan, X.-Q.; Chen, P.-P.; Miao, Y.; Luo, Q.; Cui, F.-P.; et al. Early life exposure to air pollution and cell-mediated immune responses in preschoolers. Chemosphere 2021, 286, 131963. [Google Scholar] [CrossRef]
  187. Herr, C.E.W.; Ghosh, R.; Dostal, M.; Skokanova, V.; Ashwood, P.; Lipsett, M.; Joad, J.P.; Pinkerton, K.E.; Yap, P.-S.; Frost, J.D.; et al. Exposure to air pollution in critical prenatal time windows and IgE levels in newborns. Pediatr. Allergy Immunol. 2011, 22, 75–84. [Google Scholar] [CrossRef]
  188. García-Serna, A.M.; Hernández-Caselles, T.; Jiménez-Guerrero, P.; Martín-Orozco, E.; Pérez-Fernández, V.; Cantero-Cano, E.; Muñoz-García, M.; Ballesteros-Meseguer, C.; Cobos, I.P.D.L.; García-Marcos, L.; et al. Air pollution from traffic during pregnancy impairs newborn’s cord blood immune cells: The NELA cohort. Environ. Res. 2021, 198, 110468. [Google Scholar] [CrossRef]
  189. Black, C.; Gerriets, J.E.; Fontaine, J.H.; Harper, R.W.; Kenyon, N.J.; Tablin, F.; Schelegle, E.S.; Miller, L.A. Early Life Wildfire Smoke Exposure Is Associated with Immune Dysregulation and Lung Function Decrements in Adolescence. Am. J. Respir. Cell Mol. Biol. 2017, 56, 657–666. [Google Scholar] [CrossRef]
  190. Barker, D. The Developmental Origins of Adult Disease. J. Am. Coll. Nutr. 2004, 23, 588S–595S. [Google Scholar] [CrossRef]
  191. Hales, C.N.; Barker, D.J.P. The thrifty phenotype hypothesis. Br. Med. Bull. 2001, 60, 5–20. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  192. Barker, D. The developmental origins of chronic adult disease. Acta Paediatr. 2007, 93, 26–33. [Google Scholar] [CrossRef] [PubMed]
  193. Eriksson, J.G.; Forsén, T.; Tuomilehto, J.; Jaddoe, V.W.V.; Osmond, C.; Barker, D.J.P. Effects of size at birth and childhood growth on the insulin resistance syndrome in elderly individuals. Diabetologia 2002, 45, 342–348. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  194. Barker, D.J.P. The developmental origins of well–being. Philos. Trans. R. Soc. B Biol. Sci. 2004, 359, 1359–1366. [Google Scholar] [CrossRef] [PubMed]
  195. Savran, O.; Ulrik, C.S. Early life insults as determinants of chronic obstructive pulmonary disease in adult life. Int. J. Chronic Obstr. Pulm. Dis. 2018, 13, 683–693. [Google Scholar] [CrossRef] [Green Version]
  196. Bui, D.S.; Lodge, C.J.; Burgess, J.A.; Lowe, A.J.; Perret, J.; Bui, M.Q.; Bowatte, G.; Gurrin, L.; Johns, D.P.; Thompson, B.R.; et al. Childhood predictors of lung function trajectories and future COPD risk: A prospective cohort study from the first to the sixth decade of life. Lancet Respir. Med. 2018, 6, 535–544. [Google Scholar] [CrossRef]
  197. Jordan, B.K.; McEvoy, C.T. Trajectories of Lung Function in Infants and Children: Setting a Course for Lifelong Lung Health. Pediatrics 2020, 146, e20200417. [Google Scholar] [CrossRef]
  198. von Mutius, E. Childhood origins of COPD. Lancet Respir. Med. 2018, 6, 482–483. [Google Scholar] [CrossRef]
  199. Khandaker, G.M.; Zimbron, J.; Lewis, G.; Jones, P. Prenatal maternal infection, neurodevelopment and adult schizophrenia: A systematic review of population-based studies. Psychol. Med. 2012, 43, 239–257. [Google Scholar] [CrossRef] [Green Version]
  200. Al-Haddad, B.J.; Oler, E.; Armistead, B.; Elsayed, N.A.; Weinberger, D.R.; Bernier, R.; Burd, I.; Kapur, R.; Jacobsson, B.; Wang, C.; et al. The fetal origins of mental illness. Am. J. Obstet. Gynecol. 2019, 221, 549–562. [Google Scholar] [CrossRef]
  201. O’Donnell, K.J.; Meaney, M.J. Fetal Origins of Mental Health: The Developmental Origins of Health and Disease Hypothesis. Am. J. Psychiatry 2017, 174, 319–328. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  202. Wang, B.; Zeng, H.; Liu, J.; Sun, M. Effects of Prenatal Hypoxia on Nervous System Development and Related Diseases. Front. Neurosci. 2021, 15, 755554. [Google Scholar] [CrossRef] [PubMed]
  203. Al-Haddad, B.; Jacobsson, B.; Chabra, S.; Modzelewska, D.; Olson, E.M.; Bernier, R.; Enquobahrie, D.A.; Hagberg, H.; Östling, S.; Rajagopal, L.; et al. Long-term Risk of Neuropsychiatric Disease After Exposure to Infection In Utero. JAMA Psychiatry 2019, 76, 594–602. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  204. Liu, J.C.; Pereira, G.; Uhl, S.A.; Bravo, M.A.; Bell, M.L. A systematic review of the physical health impacts from non-occupational exposure to wildfire smoke. Environ. Res. 2014, 136, 120–132. [Google Scholar] [CrossRef] [Green Version]
  205. Reid, C.E.; Brauer, M.; Johnston, F.H.; Jerrett, M.; Balmes, J.R.; Elliott, C.T. Critical Review of Health Impacts of Wildfire Smoke Exposure. Environ. Health Perspect. 2016, 124, 1334–1343. [Google Scholar] [CrossRef] [Green Version]
  206. Youssouf, H.; Liousse, C.; Roblou, L.; Assamoi, E.-M.; Salonen, R.O.; Maesano, C.; Banerjee, S.; Annesi-Maesano, I. Non-Accidental Health Impacts of Wildfire Smoke. Int. J. Environ. Res. Public Health 2014, 11, 11772–11804. [Google Scholar] [CrossRef] [Green Version]
  207. Caamano-Isorna, F.; Figueiras, A.; Sastre, I.; Montes-Martínez, A.; Taracido, M.; Piñeiro-Lamas, M. Respiratory and mental health effects of wildfires: An ecological study in Galician municipalities (north-west Spain). Environ. Health 2011, 10, 48. [Google Scholar] [CrossRef] [Green Version]
  208. Mott, J.A. Wildland forest fire smoke: Health effects and intervention evaluation, Hoopa, California, 1999. West. J. Med. 2002, 176, 157–162. [Google Scholar] [CrossRef] [Green Version]
  209. Martin, K.L.; Hanigan, I.C.; Morgan, G.G.; Henderson, S.B.; Johnston, F.H. Air pollution from bushfires and their association with hospital admissions in Sydney, Newcastle and Wollongong, Australia 1994–2007. Aust. N. Z. J. Public Health 2013, 37, 238–243. [Google Scholar] [CrossRef]
  210. Mott, J.A.; Mannino, D.M.; Alverson, C.J.; Kiyu, A.; Hashim, J.; Lee, T.; Falter, K.; Redd, S.C. Cardiorespiratory hospitalizations associated with smoke exposure during the 1997 Southeast Asian forest fires. Int. J. Hyg. Environ. Health 2005, 208, 75–85. [Google Scholar] [CrossRef] [Green Version]
  211. Tse, K.; Chen, L.; Tse, M.; Zuraw, B.; Christiansen, S. Effect of catastrophic wildfires on asthmatic outcomes in obese children: Breathing fire. Ann. Allergy Asthma Immunol. 2015, 114, 308–311.e4. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  212. Rappold, A.G.; Stone, S.L.; Cascio, W.E.; Neas, L.M.; Kilaru, V.; Carraway, M.S.; Szykman, J.J.; Ising, A.; Cleve, W.E.; Meredith, J.T.; et al. Peat Bog Wildfire Smoke Exposure in Rural North Carolina Is Associated with Cardiopulmonary Emergency Department Visits Assessed through Syndromic Surveillance. Environ. Health Perspect. 2011, 119, 1415–1420. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  213. Rappold, A.G.; E Cascio, W.; Kilaru, V.J.; Stone, S.L.; Neas, L.M.; Devlin, R.B.; Diaz-Sanchez, D. Cardio-respiratory outcomes associated with exposure to wildfire smoke are modified by measures of community health. Environ. Health 2012, 11, 71. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  214. Aguilera, R.; Corringham, T.; Gershunov, A.; Benmarhnia, T. Wildfire smoke impacts respiratory health more than fine particles from other sources: Observational evidence from Southern California. Nat. Commun. 2021, 12, 1493. [Google Scholar] [CrossRef]
  215. Reid, C.E.; Jerrett, M.; Tager, I.B.; Petersen, M.L.; Mann, J.K.; Balmes, J.R. Differential respiratory health effects from the 2008 northern California wildfires: A spatiotemporal approach. Environ. Res. 2016, 150, 227–235. [Google Scholar] [CrossRef] [Green Version]
  216. Henderson, S.B.; Brauer, M.; Macnab, Y.C.; Kennedy, S.M. Three Measures of Forest Fire Smoke Exposure and Their Associations with Respiratory and Cardiovascular Health Outcomes in a Population-Based Cohort. Environ. Health Perspect. 2011, 119, 1266–1271. [Google Scholar] [CrossRef]
  217. Tinling, M.A.; West, J.J.; Cascio, W.E.; Kilaru, V.; Rappold, A.G. Repeating cardiopulmonary health effects in rural North Carolina population during a second large peat wildfire. Environ. Health 2016, 15, 12. [Google Scholar] [CrossRef] [Green Version]
  218. Künzli, N.; Avol, E.; Wu, J.; Gauderman, W.J.; Rappaport, E.; Millstein, J.; Bennion, J.; McConnell, R.; Gilliland, F.D.; Berhane, K.; et al. Health Effects of the 2003 Southern California Wildfires on Children. Am. J. Respir. Crit. Care Med. 2006, 174, 1221–1228. [Google Scholar] [CrossRef] [Green Version]
  219. Morgan, G.; Sheppeard, V.; Khalaj, B.; Ayyar, A.; Lincoln, D.; Jalaludin, B.; Beard, J.; Corbett, S.; Lumley, T. Effects of Bushfire Smoke on Daily Mortality and Hospital Admissions in Sydney, Australia. Epidemiology 2010, 21, 47–55. [Google Scholar] [CrossRef]
  220. Lee, T.-S.; Falter, K.; Meyer, P.; Mott, J.; Gwynn, C. Risk factors associated with clinic visits during the 1999 forest fires near the Hoopa Valley Indian Reservation, California, USA. Int. J. Environ. Health Res. 2009, 19, 315–327. [Google Scholar] [CrossRef]
  221. Moore, D.; Copes, R.; Fisk, R.; Joy, R.; Chan, K.; Brauer, M. Population health effects of air quality changes due to forest fires in British Columbia in 2003: Estimates from physician-visit billing data. Can. J. Public Health 2006, 97, 105–108. [Google Scholar] [CrossRef]
  222. Thelen, B.; French, N.H.; Koziol, B.W.; Billmire, M.; Owen, R.C.; Johnson, J.; Ginsberg, M.; Loboda, T.; Wu, S. Modeling acute respiratory illness during the 2007 San Diego wildland fires using a coupled emissions-transport system and generalized additive modeling. Environ. Health 2013, 12, 94. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  223. Tham, R.; Erbas, B.; Akram, M.; Dennekamp, M.; Abramson, M.J. The impact of smoke on respiratory hospital outcomes during the 2002-2003 bushfire season, Victoria, Australia. Respirology 2009, 14, 69–75. [Google Scholar] [CrossRef] [PubMed]
  224. Delfino, R.J.; Brummel, S.; Wu, J.; Stern, H.; Ostro, B.; Lipsett, M.; Winer, A.; Street, D.H.; Zhang, L.; Tjoa, T.; et al. The relationship of respiratory and cardiovascular hospital admissions to the southern California wildfires of 2003. Occup. Environ. Med. 2009, 66, 189–197. [Google Scholar] [CrossRef] [Green Version]
  225. Chen, L.; Verrall, K.; Tong, S. Air particulate pollution due to bushfires and respiratory hospital admissions in Brisbane, Australia. Int. J. Environ. Health Res. 2006, 16, 181–191. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  226. Vora, C.; Renvall, M.J.; Chao, P.; Ferguson, P.; Ramsdell, J.W. 2007 San Diego Wildfires and Asthmatics. J. Asthma 2010, 48, 75–78. [Google Scholar] [CrossRef] [Green Version]
  227. Hanigan, I.C.; Johnston, F.H.; Morgan, G.G. Vegetation fire smoke, indigenous status and cardio-respiratory hospital admissions in Darwin, Australia, 1996–2005: A time-series study. Environ. Health 2008, 7, 42. [Google Scholar] [CrossRef] [Green Version]
  228. Yao, J.; Eyamie, J.; Henderson, S. Evaluation of a spatially resolved forest fire smoke model for population-based epidemiologic exposure assessment. J. Expo. Sci. Environ. Epidemiol. 2014, 26, 233–240. [Google Scholar] [CrossRef] [Green Version]
  229. Elliott, C.T.; Henderson, S.B.; Wan, V. Time series analysis of fine particulate matter and asthma reliever dispensations in populations affected by forest fires. Environ. Health 2013, 12, 11. [Google Scholar] [CrossRef] [Green Version]
  230. Dennekamp, M.; Straney, L.D.; Erbas, B.; Abramson, M.J.; Keywood, M.; Smith, K.; Sim, M.R.; Glass, D.; DEL Monaco, A.; Haikerwal, A.; et al. Forest Fire Smoke Exposures and Out-of-Hospital Cardiac Arrests in Melbourne, Australia: A Case-Crossover Study. Environ. Health Perspect. 2015, 123, 959–964. [Google Scholar] [CrossRef] [Green Version]
  231. Haikerwal, A.; Akram, M.; Del Monaco, A.; Smith, K.; Sim, M.R.; Meyer, M.; Tonkin, A.M.; Abramson, M.J.; Dennekamp, M. Impact of Fine Particulate Matter (PM2.5) Exposure During Wildfires on Cardiovascular Health Outcomes. J. Am. Heart Assoc. 2015, 4, e001653. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  232. Saarnio, K.; Aurela, M.; Timonen, H.; Saarikoski, S.; Teinilä, K.; Mäkelä, T.; Sofiev, M.; Koskinen, J.; Aalto, P.P.; Kulmala, M.; et al. Chemical composition of fine particles in fresh smoke plumes from boreal wild-land fires in Europe. Sci. Total Environ. 2010, 408, 2527–2542. [Google Scholar] [CrossRef] [PubMed]
  233. Alves, C.A.; Vicente, A.; Monteiro, C.; Gonçalves, C.; Evtyugina, M.; Pio, C. Emission of trace gases and organic components in smoke particles from a wildfire in a mixed-evergreen forest in Portugal. Sci. Total Environ. 2011, 409, 1466–1475. [Google Scholar] [CrossRef] [PubMed]
  234. Wegesser, T.C.; Pinkerton, K.E.; Last, J.A. California Wildfires of 2008: Coarse and Fine Particulate Matter Toxicity. Environ. Health Perspect. 2009, 117, 893–897. [Google Scholar] [CrossRef]
  235. Kim, Y.H.; Warren, S.H.; Krantz, Q.T.; King, C.; Jaskot, R.; Preston, W.T.; George, B.J.; Hays, M.D.; Landis, M.; Higuchi, M.; et al. Mutagenicity and Lung Toxicity of Smoldering vs. Flaming Emissions from Various Biomass Fuels: Implications for Health Effects from Wildland Fires. Environ. Health Perspect. 2018, 126, 017011. [Google Scholar] [CrossRef] [Green Version]
Table 1. Cardiovascular and Metabolic Outcomes Associated with Early-Life Air Pollution Exposures.
Table 1. Cardiovascular and Metabolic Outcomes Associated with Early-Life Air Pollution Exposures.
Health
Outcome
Population AgeAP ExposureExposure Time WindowAssociationReferences
Intrauterine growth restrictionNewbornPM2.5, PM10, SO2, NO2, O3Prenatal↓ Birth weight[10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40]
NewbornPM constituentsPrenatal↓ Birth weight[12,13,49,50]
NewbornTRAPPrenatal↓ Birth weight[12,38,41]
NewbornWildfire smokePrenatal↓ Birth weight[60,61,62]
NewbornNO2PrenatalNo association with birth weight[59]
NewbornPM1, PM2.5, PM10, SO2, NO2, O3Prenatal↓ Fetal ultrasound measurements[22,51,52,53,54,55]
MacrosomiaNewbornPM2.5, PM10, SO2, O3Prenatal↑ Birth weight[44,66]
NewbornWildfire proximityPrenatal↑ Birth weight[63]
Preterm birthNewbornPM2.5, PM10, O3, NOxPrenatal↑ Odds of preterm birth[16,18,25,34,56,57]
NewbornTRAPPrenatal↑ Odds of preterm birth[58]
NewbornWildfire smoke PM2.5Prenatal↑ Odds of preterm birth[60]
NewbornNO2PrenatalNo association with preterm birth[59]
Deviant growth
trajectory
0–6 yearsPM2.5, PM10, NO2, O3, SO2, CO2, COPrenatal↑ or ↓ Anthropomorphic measures[40,64,65,66,67,68,69,70,71]
0–12 monthsCO, PM2.5Postnatal↓ Anthropomorphic measures[70]
Obesity and metabolic disorder0–12 monthsPM, NO2, O3Prenatal↑ BMI, ↑ fat mass, fat mass rate of change, ↑ weight for length[67,71]
4–14 yearsPM2.5, O3, PAHPrenatal↑ BMI, ↑ fat mass[72,76]
0–9 yearsTRAP, traffic proximityPrenatal↑ Fat mass, ↑ overweight risk[67,73,76]
6–11 yearsPM2.5, NO2, elemental carbonChildhood↑ BMI, ↑ overweight or obese risk[77,78]
6–10 yearsTRAP, traffic proximityChildhood↑ Overweight or obese risk, ↑ hemoglobin A1c, ↑ blood
pressure
[78,89]
4, 8 yearsTraffic proximity, ambient APChildhood (0–4)No association with obesity, waist circumference, or cholesterol[79]
NewbornPM2.5Prenatal↑ Systolic hypertension[80]
4–6 yearsPM2.5Prenatal↑ Microvascular changes[81,82]
3–9 yearsPM2.5Prenatal↑ Blood pressure[83,84,85]
NewbornPM2.5, PM10, NO2Prenatal↑ Insulin, ↑ adiponectin, ↑ leptin[74,86]
NewbornTRAPPrenatal↑ Adiponectin, ↑ leptin[75]
10 yearsTRAP and traffic proximityPrenatal↑ Insulin resistance[87]
4–6 yearsPM2.5Prenatal↑ Hemoglobin A1c[88]
0–5 yearsO3, PM10Childhood↑ Diabetes[90]
↑: increasing, ↓: decreasing.
Table 2. Respiratory and Allergic Outcomes Associated with Early-Life Air Pollution Exposures.
Table 2. Respiratory and Allergic Outcomes Associated with Early-Life Air Pollution Exposures.
Health OutcomePopulation AgeAP ExposureExposure Time WindowAssociationReferences
Lung function5–9 yearsPAHPrenatal↓ FEV1[95]
5–7 yearsNear-roadway air pollution (NRAP), TRAPPostnatal↓ FVC, ↓ FEV1[96,101,106]
2–10 yearsNO2, PM10, PM2.5, NO3Prenatal↓ FVC, ↓ FEV1, ↑ respiratory resistance, ↓ respiratory reactance[97,98,99,100,103,104,105]
2–10 yearsHousehold air pollutionPostnatal↑ Airway reactance, ↓ FEV1[99,102]
30 days–1 yearPM10, CO, NO2, O3Prenatal↑ Fractional exhaled NO, ↓ peak tidal expiratory flow, ↑ respiratory rate, ↑ minute ventilation[92,93,94]
Respiratory tract infections12–18 monthsNO2 and PM2.5Prenatal↑ Lower respiratory tract infections, ↑ LRTI hospitalizations[108,110]
0–5 yearsPM2.5, PM10, NOx, O3, SO2Postnatal↑ Respiratory infections, ↑ bronchitis, ↑ LRTI hospitalizations[130,136,137,138,139,140,141,142,143,146]
Asthma and allergic disordersNewbornPM2.5Preconception↑ Transient tachypnea, ↑ asphyxia, ↑ respiratory distress syndrome[107]
0–10 yearsSO2, NO2, PM10, PM2.5, black carbon, CO, ultrafine particles, regional NO2Prenatal↑ Wheeze, ↑ asthma[109,111,112,113,114,115,116,117,118,119,120,121]
3–6 yearsPM2.5, PM10, NOx, PAH, SO2Postnatal↑ Allergic symptoms, ↑ allergic rhinitis, ↑ eczema, ↑ asthma[102,114,115,119,120,123,124,125,126,127,128,129,130,131,144]
0–10 yearsTRAPPostnatal↑ Asthma, ↑ asthma hospitalizations[122,132,133,134,135,145]
0–5 yearsAmbient air toxicsPostnatalNo association with asthma[147]
0–5 yearsWildfire-generated air pollutionPostnatal↑ Respiratory hospital visits[148]
↑: increasing, ↓: decreasing.
Table 3. Neuropsychological Outcomes Associated with Early-Life Air Pollution Exposures.
Table 3. Neuropsychological Outcomes Associated with Early-Life Air Pollution Exposures.
Health OutcomePopulation AgeAP ExposureExposure Time WindowAssociationReferences
Impaired cognitive development0–2 yearsPM2.5, PM10Prenatal↓ Cognition Score, ↓ Mental Developmental Index, ↓ Problem Solving Score[151,153,155,160]
4–7 yearsNO2, PM2.5, PM10, PAHPrenatal↓ Global Cognition Score, ↓ IQ Score, ↓ Verbal IQ Index[151,161,162,163]
Impaired motor development
0–9 yearsPM1, PM2.5, PM10, NO2, NOx, SO2, iron (PM2.5 constituent)Prenatal↓ Fine Motor Score, ↓ Global Motor Score, ↓ Psychomotor Developmental Index[149,150,154,155,157,158,160]
Impaired behavioral development0–2 yearsPM1, PM2.5, PM10, NO2, SO2Prenatal↓ Personal-Social Score, ↓ Adaptability Score, ↓ Social-Response Score[155,158]
2–6 yearsPM2.5, PM10, NO2, SO2Prenatal↓ Inhibition, ↓ impulsivity, ↓ emotion expression, ↑ reported behavioral problems[150,152]
0–3 yearsNO2, SO2Prenatal↓ Adaptive-Behavior Score, ↓ Social-Behavior Score[157]
6–10 yearsTRAP, black carbonChildhood↑ Behavioral problems[156]
Impaired language development0–2 yearsPM2.5Prenatal↓ Communication Score[155]
2–6 yearsPM2.5, PM10, NO2Prenatal↓ Sentence completion, ↓ Verbal Score[150,151]
0–2 yearsPM1, PM2.5, PM10, NO2, SO2Prenatal↓ Language Score[157,158,159]
Attention and memory deficit2–7 yearsPM2.5, NO2Prenatal↓ Memory Score, ↑ omission errors, ↓ Hit Reaction Time, ↓ general memory, ↓ visual memory[151,162]
7–11 yearsTRAPChildhood↓ Working memory, ↓ memory span length, ↑ inattentiveness[173,174]
Autism spectrum disorders2–5 yearsTRAP, NRAP, freeway proximityPrenatal↑ ASD risk[164,165,172]
2–10 yearsPM2.5, PM10, NO2, NO, O3, COPrenatal↑ ASD risk[165,166,167,168,169,170,171]
2–5 yearsTRAPChildhood↑ ASD risk[165]
2–10 yearsPM2.5, PM10, NO2Childhood (0–2 years)↑ ASD risk[165,169,170]
↑: increasing, ↓: decreasing.
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Share and Cite

MDPI and ACS Style

Gheissari, R.; Liao, J.; Garcia, E.; Pavlovic, N.; Gilliland, F.D.; Xiang, A.H.; Chen, Z. Health Outcomes in Children Associated with Prenatal and Early-Life Exposures to Air Pollution: A Narrative Review. Toxics 2022, 10, 458. https://doi.org/10.3390/toxics10080458

AMA Style

Gheissari R, Liao J, Garcia E, Pavlovic N, Gilliland FD, Xiang AH, Chen Z. Health Outcomes in Children Associated with Prenatal and Early-Life Exposures to Air Pollution: A Narrative Review. Toxics. 2022; 10(8):458. https://doi.org/10.3390/toxics10080458

Chicago/Turabian Style

Gheissari, Roya, Jiawen Liao, Erika Garcia, Nathan Pavlovic, Frank D. Gilliland, Anny H. Xiang, and Zhanghua Chen. 2022. "Health Outcomes in Children Associated with Prenatal and Early-Life Exposures to Air Pollution: A Narrative Review" Toxics 10, no. 8: 458. https://doi.org/10.3390/toxics10080458

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop