UNMIX Methods Applied to Characterize Sources of Volatile Organic Compounds in Toronto, Ontario
Abstract
:1. Introduction
2. Experimental Section
2.1. VOC Measurements and Data
2.2. VOC Data Processing Method
3. Results and Discussion
3.1. Motor Vehicle Exhaust and Automotive Evaporative Emissions in Toronto, Ontario
3.2. Inert Gases and Stable Background
3.3. Polymer, Plastics, and Metalworking Industries
3.4. Food Industries
3.5. Secondary Sources
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- ATSDR Priority List of Hazardous Substances. Agency for Toxic Substances and Disease Registry (ATSDR): Atlanta, GA, USA, 2013. Available online: http://www.atsdr.cdc.gov/spl/index.html (accessed on 26 January 2016).
- Integrated Risk Information System. U.S. Environmental Protection Agency (EPA): Washington, DC, USA, 2005. Available online: www.epa.gov/iris (accessed on 3 February 2016).
- United States National Library of Medicine. Toxicology Data Network HSDB: Hazardous Substances Data Bank. Available online: http://toxnet.nlm.nih.gov/cgi-bin/sis/htmlgen?HSDB (accessed on 3 February 2016).
- U.S. Environmental Protection Agency (EPA). Carcinogenic Effects of Benzene: An Update (Final); Office of Research and Development, National Center for Environmental Assessment, Washington Office: Washington, DC, USA, 1998. Available online: http://cfpub.epa.gov/ncea/risk/recordisplay.cfm?deid=2806 (accessed on 11 January 2016).
- International Agency for Research on Cancer (IARC). 1,3-butadiene, ethylene oxide and vinyl halides (vinyl fluoride, vinyl chloride and vinyl bromide). IARC Monographs on the evaluation of carcinogenic risks to humans. Lyon, France, 2008. Available online: http://monographs.iarc.fr/ENG/Monographs/vol97/mono97.pdf (accessed on 25 January 2016).
- Welch, V.A.; Fallon, K.J.; Gelbke, H.-P. “Ethylbenzene” in Ullmann’s Encyclopedia of Industrial Chemistry; Wiley-VCH: Weinheim, Germany, 2005. [Google Scholar]
- Fabri, J.; Graeser, U.; Simo, T.A. Xylenes. In Ullmann’s Encyclopedia of Industrial Chemistry; Wiley-VCH: Weinheim, Germany, 2002. [Google Scholar]
- Doherty, R.E. A History of the Production and Use of Carbon Tetrachloride, Tetrachloroethylene, Trichloroethylene and 1,1,1-Trichloroethane in the United States: Part 2—Trichloroethylene and 1,1,1-Trichloroethane. J. Environ. Forensics 2000, 1, 83–93. [Google Scholar] [CrossRef]
- Rossberg, M.; Lendle, W.; Pfleiderer, G.; Tögel, A.; Dreher, E.-L.; Langer, E.; Rassaerts, H.; Kleinschmidt, P.; Strack, H.; Cook, R.; et al. Chlorinated Hydrocarbons, in Ullmann’s Encyclopedia of Industrial Chemistry; Wiley-VCH: Weinheim, Germany, 2006. [Google Scholar]
- Toxic Substances Portal—Carbon Tetrachloride. Agency for Toxic Substances and Disease Registry (ATSDR): Atlanta, GA, USA, 2005. Available online: http://www.atsdr.cdc.gov/phs/phs.asp?id=194&tid=35 (accessed on 10 February 2016).
- Marshall, K.A. Chlorocarbons and Chlorohydrocarbons, Survey. Kirk-Othmer Encycl. Chem. Technol. 2003. [Google Scholar] [CrossRef]
- Pereira, M.A.; Lin, L.H.; Lippitt, J.M.; Herren, S.L. Trihalomethanes as initiators and promoters of carcinogenesis. Environ. Health Perspect. 1982, 46, 151–156. [Google Scholar] [CrossRef] [PubMed]
- Shaw, G.M.; Malcoe, L.H.; Milea, A.; Swan, S.H. Chlorinated water exposures and cardiac anomalies. Epidemiology 1991, 2, 459–460. [Google Scholar] [PubMed]
- King, W.D.; Dodds, L.; Allen, A.C. Relation between stillbirth and specific chlorination by-products in public water supplies. Environ. Health Perspect. 2000, 108, 883–886. [Google Scholar] [CrossRef] [PubMed]
- Elliott, L.; Longnecker, M.P.; Kissling, G.E.; London, S.J. Volatile organic compounds and pulmonary function in the Third National Health and Nutrition Examination Survey, 1988–1994. Environ. Health Perspect. 2006, 114, 1210–1214. [Google Scholar] [CrossRef] [PubMed]
- McCarthy, M.C.; O’Brien, T.E.; Charrier, J.G.; Hafner, H.R. Characterization of the chronic risk and hazard of hazardous air pollutants in the United States using ambient monitoring data. Environ. Health Perspect. 2009, 117, 790–796. [Google Scholar] [CrossRef] [PubMed]
- Villeneuve, P.J.; Jerrett, M.; Su, J.; Burnett, R.T.; Chen, H.; Brook, J.; Wheeler, A.J.; Cakmak, S.; Goldberg, M.S. A cohort study of intra-urban variations in volatile organic compounds and mortality, Toronto, Canada. Environ. Pollut. 2013, 183, 30–39. [Google Scholar] [CrossRef] [PubMed]
- Villeneuve, P.J.; Jerrett, M.; Brenner, D.; Su, J.; Chen, H.; McLaughlin, J. A case-control study of long-term exposure to ambient volatile organic compounds and lung cancer in Toronto, Canada. Am. J. Epidemiol. 2013. [Google Scholar] [CrossRef] [PubMed]
- Norman, C.S.; DeCanio, S.J.; Fan, L. The Montreal Protocol at 20: Ongoing opportunities for integration with climate protection. Glob. Environ. Chang. 2008, 18, 330–340. [Google Scholar] [CrossRef]
- United Nations Environment Programme. Ozone Secretariat 2015: The Montreal Protocol on Substances that Deplete the Ozone Layer. Available online: http://ozone.unep.org/new_site/en/montreal_protocol.php (accessed on 11 January 2016).
- U.S. Environmental Protection Agency. Overview of the Clean Air Act and Air Pollution. Updated on 17 November 2015. Available online: http://www.epa.gov/clean-air-act-overview (accessed on 14 January 2016).
- Beauregard-Tellier, F.; Banks, S.N.K.; Douglas, K.; Lynne, C.; Myers, T.W. Legislative Summary of Bill C-30, 2006: Canada’s Clean Air and Climate Change Act. Available online: http://www.lop.parl.gc.ca/Content/LOP/LegislativeSummaries/39/1/c30-e.pdf (accessed on 15 January 2016).
- Stockholm Convention. Overview: Stockholm Convention on Persistent Organic Pollutants. UNEP: Châtelaine, Switzerland, 2008. Available online: http://chm.pops.int/TheConvention/Overview/tabid/3351/ (accessed on 31 January 2016).
- Propper, R.; Wong, P.; Bui, S.; Austin, J.; Vance, W.; Alvarado, Á.; Croes, B.; Luo, D. Ambient and Emission Trends of Toxic Air Contaminants in California. Environ. Sci. Technol. 2015, 6, 11329–11339. [Google Scholar] [CrossRef] [PubMed]
- Seinfeld, J.H.; Pandis, S.N. Atmospheric Chemistry and Physics: From Air Pollution to Climate Change, 2nd ed.; Wiley-Interscience: New York, NY, USA, 2006; pp. 38–54. [Google Scholar]
- Atkinson, R. Gas-Phase Tropospheric Chemistry of Organic Compounds: A Review. Atmos. Environ. 1990, 24A, 1–41. [Google Scholar] [CrossRef]
- Atkinson, R. Atmospheric Chemistry of VOC and NOx. Atmos. Environ. 2000, 34, 2063–2101. [Google Scholar] [CrossRef]
- Calvert, J.G.; Atkinson, R.; Becker, K.H.; Kamens, R.M.; Seinfeld, J.H.; Wallington, T.H.; Yarwood, G. The Mechanisms of Atmospheric Oxidation of the Aromatic Hydrocarbons; Oxford University Press: New York, NY, USA, 2002. [Google Scholar]
- Alam, M.S.; Camredon, M.; Rickard, A.R.; Carr, T.; Wyche, K.P.; Hornsby, K.E.; Monks, P.S.; Bloss, W.J. Total radical yields from tropospheric ethene ozonolysis. Phys. Chem. Chem. Phys. 2011, 13, 11002–11015. [Google Scholar] [CrossRef] [PubMed]
- Vereecken, L.; Francisco, J.S. Theoretical studies of atmospheric reaction mechanisms in the troposphere. Chem. Soc. Rev. 2012, 41, 6259–6293. [Google Scholar] [CrossRef] [PubMed]
- Howard, P.H. Handbook of Environmental Fate and Exposure Data for Organic Chemicals; CRC Press (Lewis Publishers): Boca Raton, FL, USA, 1993; Volume 4, pp. 110–117. [Google Scholar]
- Meuser, H. Contaminated Urban Soils. Chaptar 3: Causes of Soil Contamination in the Urban Environment. Environ. Pollut. 2010, 18, 29–94. [Google Scholar]
- Jones, V.T.; Burtell, S.G. Soil vapor—Petroleum product constituents contained in near surface soils and/or groundwater. In Hydrocarbon Flux Variations in Natural and Anthropogenic Seeps, in Hydrocarbon Migration and its Near Surface Expression; Schumacher, D., Abrams, M.A., Eds.; AAPG Memoir 66; AAPG: Tulsa, OK, USA, 1996; pp. 203–221. [Google Scholar]
- Valsaraj, K.T.; Thibodeaux, L.J.; Reible, D.D. Modeling Air Emissions from Contaminated Sediment Dredged Materials. In Dredging, Remediation, and Containment of Contaminated Sediments; Demars, K.R., Richardson, G.N., Yong, R.N., Chaney, R.C., Eds.; ASTM: Philadelphia, PA, USA, 1995; pp. 227–238. [Google Scholar]
- Namkung, E.; Rittmann, B.E. Estimating Volatile Organic Compound Emissions from Publicly Owned Treatment Works. J. Water Pollut. Control Fed. 1987, 59, 670–678. [Google Scholar]
- Rosner, D.; Markowitz, G. Persistent pollutants: A brief history of the discovery of the widespread toxicity of chlorinated hydrocarbons. Environ. Res. 2013, 120, 126–133. [Google Scholar] [CrossRef] [PubMed]
- EPA International Cooperation. Persistent Organic Pollutants: A Global Issue, a Global Response. Washington, DC, USA, 2002. Available online: http://www.epa.gov/international-cooperation/persistent-organic-pollutants-global-issue-global-response (accessed on 31 January 2016). [Google Scholar]
- Watson, J.G.; Chow, J.C.; Fujita, E.M. Review of volatile organic compound source apportionment by chemical mass balance. Atmos. Environ. 2001, 35, 1567–1584. [Google Scholar] [CrossRef]
- Srivastava, A. Source apportionment of ambient VOCS in Mumbai city. Atmos. Environ. 2004, 38, 6829–6843. [Google Scholar] [CrossRef]
- Srivastava, A.; Majumdar, D. Emission Inventory of evaporative emissions of VOCs in four metro cities in India. Environ. Monit. Assess. 2010, 160, 315–322. [Google Scholar] [CrossRef] [PubMed]
- Kim, E.; Brown, S.; Hafner, H.; Hopke, P. Characterization of non-methane volatile organic compound sources in Houston during 2001 using positive matrix factorization. Atmos. Environ. 2005, 39, 5934–5946. [Google Scholar] [CrossRef]
- Buzcu, B.; Fraser, M. Source identification and apportionment of volatile organic compounds in Houston, TX. Atmos. Environ. 2006, 40, 2385–2400. [Google Scholar] [CrossRef]
- Reimann, S.; Lewis, A.C. Anthropogenic VOCs. In Volatile Organic Compounds in the Atmosphere; Koppman, R., Ed.; Blackwell Publishing Ltd.: Oxford, UK, 2007; pp. 33–81. [Google Scholar]
- Brown, S.G.; Frankel, A.; Hafner, H.R. Source apportionment of VOC in the Los Angeles area using positive matrix factorization. Atmos. Environ. 2007, 41, 227–237. [Google Scholar] [CrossRef]
- Song, Y.; Shao, M.; Liu, Y.; Lu, S.; Kuster, W.; Goldan, P.; Xie, S. Source apportionment of ambient volatile organic compounds in Beijing. Environ. Sci. Technol. 2007, 41, 4348–4353. [Google Scholar] [CrossRef] [PubMed]
- Song, Y.; Dai, W.; Shao, M.; Liu, Y.; Lu, S.; Kuster, W.; Goldan, P. Comparison of receptor models for source apportionment of volatile organic compounds in Beijing, China. Environ. Pollut. 2008, 156, 174–183. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Shao, M.; Lu, S.; Chang, C.-C.; Wang, J.-L.; Fu, L. Source apportionment of ambient volatile organic compounds in the Pearl River Delta, China, Part II. Atmos. Environ. 2008, 42, 6261–6274. [Google Scholar] [CrossRef]
- Zhang, Y.; Sheesley, R.J.; Schauer, J.J.; Lewandowski, M.; Jaoui, M.; Offenberg, J.H. Source apportionment of primary and secondary organic aerosols using positive matrix factorization (PMF) of molecular markers. Atmos. Environ. 2009, 43, 5567–5574. [Google Scholar] [CrossRef]
- Bon, D.M.; Ulbrich, I.M.; de Gouw, J.A.; Warneke, C.; Kuster, W.C.; Alexander, M.L.; Baker, A.; Beyersdorf, A.J.; Blake, D.; Fall, R.; et al. Measurements of volatile organic compounds at a suburban groundside (T1) in Mexico City during the MILAGRO 2006 campaign: Measurement comparison, emission ratios, and source attribution. Atmos. Chem. Phys. 2011, 11, 2399–2421. [Google Scholar] [CrossRef]
- Rosenbaum, A.S.; Axelrad, D.A.; Woodruff, T.J.; Wei, Y.; Ligocki, M.P.; Cohen, J.P. National estimates of outdoor air toxic concentrations. J. Air Waste Manag. 1999, 49, 1138–1152. [Google Scholar] [CrossRef]
- Miller, S.L.; Anderson, M.J.; Daly, E.P.; Jana, B.; Milford, J.B. Source apportionment of exposures to volatile organic compounds. I. Evaluation of receptor models using simulated exposure data. Atmos. Environ. 2002, 36, 3629–3641. [Google Scholar] [CrossRef]
- Cahill, T.M.; Mackay, D. Complexity in Multimedia Mass Balance Models: When are simple models adequate and when are more complex models necessary? Environ. Toxicol. Chem. 2003, 22, 1404–1412. [Google Scholar] [CrossRef] [PubMed]
- Mukerjee, S.; Norris, G.A.; Smith, L.A.; Noble, C.A.; Neas, L.M.; Ozkaynak, A.H.; Gonzales, M. Receptor model comparisons and wind direction analyses of volatile organic compounds and submicrometer particles in an arid, binational, urban air shed. Environ. Sci. Technol. 2004, 38, 2317–2327. [Google Scholar] [CrossRef] [PubMed]
- Allen, D.; Cohen, Y.; Kaplan, I.R. Intermedia Pollutant Transport: Modeling and Field Measurements; Plenum Press: New York, NY, USA, 1989; pp. 143–146. [Google Scholar]
- Rathbuna, R.E. Transport, Behavior, and Fate of Volatile Organic Compounds in Streams. Crit. Rev. Environ. Sci. Technol. 2000, 30, 129–295. [Google Scholar] [CrossRef]
- Pankow, J.F.; Thomson, N.R.; Johnson, R.L.; Baehr, A.L.; Zogorski, J.S. The urban atmosphere as a non-point source for the transport of MTBE and other volatile organic compounds (VOC’s) to shallow groundwater. Environ. Sci. Technol. 1997, 31, 2821–2828. [Google Scholar] [CrossRef]
- Gouin, T.; Mackay, D.; Jones, K.C.; Harner, T.; Meijer, S.N. Evidence for the “grasshopper” effect and fractionation during long-range atmospheric transport of organic contaminants. Environ. Pollut. 2004, 128, 139–148. [Google Scholar] [CrossRef] [PubMed]
- Mackay, D.; Webster, E.; Gouin, T. Partitioning, Persistence and Long-Range Transport. In Chapter 7 Chemicals in the Environment: Assessing and Managing Risk; Hester, R.E., Harrison, R.M., Eds.; Royal Society of Chemistry: Cambridge, UK, 2006. [Google Scholar]
- Henry, R.C. Multivariate receptor modeling by N-dimensional edge detection. Chemometr. Intell. Lab. 2003, 65, 179–189. [Google Scholar] [CrossRef]
- Norris, G.A.; Vedantham, R.; Duvall, R.M. EPA UNMIX 6.0 User Guide (EPA/600/R-07/089). Washington, DC, USA, 2007. Available online: http://www.epa.gov/sites/production/files/2015-02/documents/unmix-6-user-manual.pdf (accessed on 18 January 2016). [Google Scholar]
- Environment Canada. National Air Pollution Surveillance Program (NAPS). Ottawa, ON, Canada, 1969. Available online: http://www.ec.gc.ca/rnspa-naps/ (accessed on 1 May 2014).
- Porada, E.; Kousha, T. Factorization methods applied to characterize the sources of volatile organic compounds in Montreal, Quebec. Int. J. Occup. Med. Environ. Health 2016, 29, 15–39. [Google Scholar] [CrossRef] [PubMed]
- Environment Canada. 10 Years of Data from the National Air Pollution Surveillance (NAPS) Network. Data Summary from 1999 to 2008. 2013. Available online: http://www.ec.gc.ca/rnspa-naps/77FECF05-E241-4BED-8375-5A2A1DF3688C/NAPS_Annual_Report_August2013_E.pdf (accessed on 10 February 2016).
- Fortin, T.J.; Howard, B.J.; Parrish, D.D.; Goldan, P.D.; Kuster, W.C.; Atlas, E.L.; Harley, R.A. Temporal changes in U.S. benzene emissions inferred from atmospheric measurements. Environ. Sci. Technol. 2005, 39, 1403–1408. [Google Scholar] [CrossRef] [PubMed]
- Curren, K.C.; Dann, T.F.; Wang, D.K. Ambient air 1,3-butadiene concentrations in Canada (1995–2003): Seasonal, day of week variations, trends, and source influences. Atmos. Environ. 2006, 40, 170–181. [Google Scholar] [CrossRef]
- McKeen, S.A.; Liu, S.C. Hydrocarbon ratios and photochemical history of air masses. Geophys. Res. Lett. 1993, 20, 2363–2666. [Google Scholar] [CrossRef]
- Baldasano, J.M.; Delgado, R.; Calbo, J. Applying Receptor Models to Analyze Urban/Suburban VOCs Air Quality in Martorell (Spain). Environ. Sci. Technol. 1998, 32, 405–412. [Google Scholar] [CrossRef]
- PubChem. Available online: http://pubchem.ncbi.nlm.nih.gov/ (accessed on 9 June 2016).
- Wixtrom, R.N.; Brown, S.L. Individual and population exposures to gasoline. J. Expo. Anal. Environ. Epidemiol. 1992, 2, 23–78. [Google Scholar] [PubMed]
- Lee, S.C.; Chiu, M.Y.; Ho, K.F.; Zou, S.C.; Wang, X. Volatile organic compounds (VOCs) in urban atmosphere of Hong Kong. Chemosphere 2002, 48, 375–382. [Google Scholar] [CrossRef]
- Guo, H.; Lee, S.C.; Louie, P.K.; Ho, K.F. Characterization of hydrocarbons, halocarbons and carbonyls in the atmosphere of Hong Kong. Chemosphere 2004, 57, 1363–1372. [Google Scholar] [CrossRef] [PubMed]
- Rubin, J.I.; Kean, A.J.; Harley, R.A.; Millet, D.B.; Goldstein, A.H. Temperature dependence of volatile organic compound evaporative emissions from motor vehicles. J. Geophys. Res. 2006, 111. [Google Scholar] [CrossRef]
- Chan, Y.C.; Christensen, E.; Golding, G.; King, G.; Gore, W.; Cohen, D.D.; Hawas, O.; Stelcer, E.; Simpson, R.; Denison, L.; et al. Source Apportionment of Ambient Volatile Organic Compound in Major Cities in Australia by Positive Matrix Factorization. Clean Air Environ. Qual. 2008, 42, 21–29. [Google Scholar]
- Ras, M.R.; Marcé, R.M.; Borrull, F. Volatile organic compounds in air at urban and industrial areas in the Tarragona region by thermal desorption and gas chromatography-mass spectrometry. Environ. Monit. Assess. 2010, 161, 389–402. [Google Scholar] [CrossRef] [PubMed]
- Ling, Z.H.; Guo, H.; Cheng, H.R.; Yu, Y.F. Sources of ambient volatile organic compounds and their contributions to photochemical ozone formation at a site in the Pearl River Delta, southern China. Environ Pollut. 2011, 159, 2310–2319. [Google Scholar] [CrossRef] [PubMed]
- U.S. Department of Transportation, Federal Highway Administration. HEP (Office of Planning, Environment, & Realty) 2006: Transportation Air Quality Facts and Figures. Available online: http://www.fhwa.dot.gov/environment/air_quality/publications/fact_book/ (accessed on 11 February 2016).
- Ajit, S.; Thirumalini, S. Investigation on evaporative emission from a gasoline polycarbonate fuel tank. IJRET 2013, 2, 46–49. [Google Scholar]
- CRC Report: Phase 2 of the Advanced Collaborative Emissions Study. Coordinating Research Council: Alpharetta, GA, USA, 2013. Available online: http://crcao.org/reports/recentstudies2013/ACES%20Ph2/03-17124_CRC%20ACES%20Phase2-%20FINAL%20Report_Khalek-R6-SwRI.pdf (accessed on 11 February 2016).
- Thomas, L.M. Report 11/89: A US Perspective on Hydrocarbon Controls at Service Stations; Environmental Science for the European Refining Industry (CONCAWE): Hague, The Netherlands, 1989; Available online: https://www.concawe.eu/uploads/Modules/Publications/rpt_89-11ocr-2004-;01315-01-e.pdf (accessed on 11 February 2016).
- Report 4/05: Evaluation of Automotive Polycyclic Aromatic Hydrocarbon Emissions. Environmental Science for the European Refining Industry (CONCAWE): Brussels, Belgium, 2005. Available online: https://www.concawe.eu/uploads/Modules/Publications/rpt_98-55-2004-01306-01-e.pdf (accessed on 11 February 2016).
- Government of Canada, Environment Canada. Benzene in Canadian Gasoline: Effect of the Benzene in Gasoline Regulations 2010–2012 Triennial Report. Internet: Environment and Climate Change Canada; 2015. Available online: http://ec.gc.ca/Publications/default.asp?lang=En&xml=E376ABE7-85E1-4C5C-855D-0EFB5F50179B (accessed on 11 February 2016). [Google Scholar]
- Harley, R.A.; Hooper, D.S.; Kean, A.J.; Kirchstetter, T.W.; Hesson, J.M.; Balberan, N.T.; Stevenson, E.D.; Kendall, G.R. Effects of reformulated gasoline and motor vehicle fleet turnover on emissions and ambient concentrations of benzene. Environ. Sci. Technol. 2006, 40, 5084–5088. [Google Scholar] [CrossRef] [PubMed]
- Mohamed, M.F.; Kang, D.; Aneja, V.P. Volatile organic compounds in some urban locations in United States. Chemosphere 2002, 47, 863–882. [Google Scholar] [CrossRef]
- Bravo, H.; Sosa, R.; Sanchez, P.; Bueno, E.; Gonzalez, L. Concentrations of benzene and toluene in the atmosphere of the Southwestern area at the Mexico City Metropolitan Zone. Atmos. Environ. 2002, 36, 3843–3849. [Google Scholar] [CrossRef]
- Kim, K.-H.; Ho, D.X.; Park, C.G.; Ma, C.-J.; Pandey, S.K.; Lee, S.C.; Jeong, H.J.; Lee, S.H. Volatile Organic Compounds in Ambient Air at Four Residential Locations in Seoul, Korea. Environ. Eng. Sci. 2012, 29, 875–889. [Google Scholar] [CrossRef] [PubMed]
- Monod, A.; Sive, B.C.; Avino, P.; Chen, T.; Blake, D.R.; Rowland, F.S. Monoaromatic compounds in ambient air of various cities: A focus on correlations between the xylenes and ethylbenzene. Atmos. Environ. 2001, 35, 135–149. [Google Scholar] [CrossRef]
- James, D.H.; Castor, W.M. “Styrene”, in Ullmann’s Encyclopedia of Industrial Chemistry; Wiley-VCH: Weinheim, Germany, 2005; Available online: http://onlinelibrary.wiley.com/doi/10.1002/14356007.a25_329.pub2/abstract (accessed on 1 February 2016).
- ToxGuide for Styrene. Agency for Toxic Substances and Disease Registry (ATSDR): Atlanta, GA, USA, 2011. Available online: http://www.atsdr.cdc.gov/toxguides/toxguide-53.pdf (accessed on 16 May 2016).
- McLaren, R.; Singleton, D.L.; Lai, J.Y.K.; Khouw, B.; Singer, E.; Wu, Z.; Niki, H. Analysis of motor vehicle sources and their contribution to ambient hydrocarbon distributions at urban sites in Toronto during the Southern Ontario Oxidants Study. Atmos. Environ. 1996, 30, 2219–2232. [Google Scholar] [CrossRef]
- “Ethylene” in New World Encyclopedia 2014. Available online: http://www.newworldencyclopedia.org/entry/Ethylene (accessed on 24 January 2016).
- Organization for Economic Cooperation and Development, Screening Information Data Set (OECD SIDS). UNEP Chemicals 2007: Record for Ethylene. Available online: http://www.chem.unep.ch/irptc/sids/OECDSIDS/sidspub.html (accessed on 15 January 2016).
- Kirchstetter, T.W.; Singer, B.C.; Harley, R.A.; Kendall, G.R.; Hesson, J.M. Impact of California reformulated gasoline on motor vehicle emissions. 2. Volatile organic compound speciation and reactivity. Environ. Sci. Technol. 1999, 33, 329–336. [Google Scholar] [CrossRef]
- Streicher, C.; Asselineau, L.; ForestiBre, A. Separation of alcohol/ether/hydrocarbon mixtures in industrial etherification processes for gasoline production. Pure Appl. Chem. 1995, 67, 985–992. [Google Scholar] [CrossRef]
- SABIC Americas, Inc. The Company: Products. Chemicals: Butane-1. Available online: http://www.sabic.com/corporate/en/productsandservices/chemicals/butene-1 (accessed on 16 January 2016).
- Wilson, E.W., Jr.; Hamilton, W.A.; Kennington, H.R.; Evans, B., 3rd; Scott, N.W.; DeMore, W.B. Measurement and estimation of rate constants for the reactions of hydroxyl radical with several alkanes and cycloalkanes. J. Phys. Chem. A 2006, 16, 593–604. [Google Scholar]
- Organization for Economic Cooperation and Development, Screening Information Data Set (OECD SIDS). 2-Methyl-2-Butene CAS N°: 513–35–9. Available online: http://www.chem.unep.ch/irptc/sids/OECDSIDS/513359.pdf (accessed on 24 January 2016).
- Organization for Economic Cooperation and Development, Screening Information Data Set (OECD SIDS). Initial Assessment Report for SIAM 16. Paris, France, 2003. Available online: http://webnet.oecd.org/hpv/ui/handler.axd?id=e696b85b-60f2-45ba-ad7b-4f1a47c83c1c (accessed on 24 January 2016).
- “2-Methylpentane” in TOXNET (Toxicology Data Network). U.S. National Library of Medicine: Bethesda, MD, USA, 2016. Available online: http://toxnet.nlm.nih.gov/cgi-bin/sis/search/a?dbs+hsdb:@term+@DOCNO+1125 (accessed on 1 February 2016).
- Toxicological Profile for Benzene. Agency for Toxic Substances and Disease Registry: Atlanta, GA, USA, 2007. Available online: http://www.atsdr.cdc.gov/ToxProfiles/tp3.pdf (accessed on 10 May 2016).
- Warnhoff, E.W. The curiously intertwined Histories of Benzene and Cyclohexane. J. Chem. Ed. 1996, 73. [Google Scholar] [CrossRef]
- Zhang, F.F.; van Rijnman, T.; Kim, J.S.; Cheng, A. On Present Methods of Hydrogenation of Aromatic Compound, 1945 to Present Day; Lunds Tekniska Hogskola: Lund, Sweden, 2008. [Google Scholar]
- Aschmann, S.M.; Arey, J.; Atkinson, R. Products and mechanism of the reaction of OH radicals with 2,3,4-trimethylpentane in the presence of NO. Environ. Sci. Technol. 2004, 1, 5038–5045. [Google Scholar] [CrossRef]
- “Propane” in TOXNET (Toxicology Data Network). U.S. National Library of Medicine: Bethesda, MD, USA, 2015. Available online: https://toxnet.nlm.nih.gov/cgi-bin/sis/search2/f?./temp/~2IKC7A:1 (accessed on 17 May 2016).
- Tuazon, E.C.; Alvarado, A.; Aschmann, S.M.; Atkinson, R.; Arey, J. Products of the gas-phase reactions of 1,3-butadiene with OH and NO3 radicals. Environ. Sci. Technol. 1999, 33, 3586–3595. [Google Scholar] [CrossRef]
- Weiss, E.B. United Nations’ Audiovisual Library of International Low: Vienna Convention for the Protection of the Ozone Layer & Montreal Protocol on Substances that Deplete the Ozone Layer. Available online: http://legal.un.org/avl/ha/vcpol/vcpol.html (accessed on 18 January 2016).
- Government of Canada. Ozone-depleting Substances and Halocarbon Alternatives Regulations. In Can. Gaz.; 2015; 149. Available online: http://www.gazette.gc.ca/rp-pr/p1/2015/2015-03-21/html/reg1-eng.php (accessed on 18 January 2016). [Google Scholar]
- McCulloch, A.; Midgley, P.M.; Ashford, P. Releases of refrigerant gases (CFC-12, HCFC-22 and HFC-134a) to the atmosphere. Atmos. Environ. 2003, 37, 889–902. [Google Scholar] [CrossRef]
- “Ethane” in TOXNET (Toxicology Data Network). U.S. National Library of Medicine: Bethesda, MD, USA, 2014. Available online: https://toxnet.nlm.nih.gov/cgi-bin/sis/search2/f?./temp/~UXlGqe:1 (accessed on 17 May 2016).
- Howe-Grant, M. (Ed.) Chlorocarbons, hydrocarbons (chloroform). In Kirk-Othmer Encyclopedia of Chemical Technology, 4th ed.; John Wiley and Sons: New York, NY, USA, 1991; Volume 5.
- Organization for Economic Cooperation and Development, Screening Information Data Set (OECD SIDS). UNEP Chemicals 2003: Record for Chloromethane. Available online: http://www.chem.unep.ch/irptc/sids/OECDSIDS/CLMETHANE.pdf (accessed on 21 January 2016).
- EPA Technology Transfer Network—Air Toxics Web Site 2015. Methyl Bromide (Bromomethane). Available online: http://www3.epa.gov/airtoxics/hlthef/methylbr.html (accessed on 25 January 2016).
- International Joint Commission (IJC). Canada-United States Air Quality Agreement. 1991. Available online: http://www.ijc.org/en_/Air_Quality_Agreement (accessed on 23 January 2016).
- Environment and Climate Change Canada. CEPA Environmental Registry. 2015. Available online: http://www.ec.gc.ca/lcpe-cepa/ (accessed on 25 January 2016).
- Environment and Climate Change Canada. Management of Toxic Substances. 2013. Available online: http://www.ec.gc.ca/toxiques-toxics/ (accessed on 25 January 2016).
- Agency for Toxic Substances and Disease Registry. Toxicological Profile for 1,4-Dichlorobenzene. Public Health Service. U.S. Department of Health and Human Services: Atlanta, GA, USA, 1998. Available online: http://www.bvsde.paho.org/bvstox/i/fulltext/toxprofiles/1,4-DICHLOROBENZENE.pdf (accessed on 11 February 2016).
- Guenther, A.T.; Karl, P.H.; Wiedinmyer, C.; Palmer, P.I.; Geron, C. Estimates of global terrestrial isoprene emissions using Model of Emissions of Gases and Aerosols from Nature (MEGAN). Atmos. Chem. Phys. 2006, 6, 3181–3210. [Google Scholar] [CrossRef]
- Borbon, A.; Fontaine, H.; Veillerot, M.; Locoge, N.; Galloo, J.C.; Guillermo, R. An investigation into the traffic-related fraction of isoprene at an urban location. Atmos. Environ. 2001, 35, 3749–3760. [Google Scholar] [CrossRef]
- Guenther, A.T.; Hewitt, N.; Erickson, D.; Fall, R.; Geron, C.; Graedel, T.; Harley, P.; Klinger, L.; Lerdau, M.; Mckay, W.A.; et al. A global model of natural volatile organic compound emissions. J. Geophys. Res. 1995, 100, 8873–8892. [Google Scholar] [CrossRef]
- National Toxicology Program. Isoprene, in Report on Carcinogens, 13th ed.National Institutes of Health: Bethesda, MD, USA, 2014. Available online: http://ntp.niehs.nih.gov/ntp/roc/content/profiles/isoprene.pdf (accessed on 16 May 2016).
- Budavari, S. “8034. Propylene” in The Merck Index, 12th ed.; Budavari, S., Ed.; Merck & Co.: Kenilworth, NJ, USA, 1996; pp. 1348–1349. [Google Scholar]
- Chemicals: Propylene. SABIC Americas, Inc. SABIC Technology Center: Houston, TX, USA. Available online: http://www.sabic.com/corporate/en/productsandservices/chemicals/propylene (accessed on 15 January 2016).
- Spectrum Laboratories: Chemical Fact Sheet. Florida-Spectrum Environnemental Services: Fort Lauderdale, FL, USA. Available online: http://www.speclab.com/compound/c110827.htm (accessed on 10 February 2016).
- TOXNET (Toxicological Data Network). HSDB: CYCLOHEXANE. U.S. National Library of Medicine: Bethesda, MD, USA. Available online: http://toxnet.nlm.nih.gov/cgi-bin/sis/search2/r?dbs+hsdb:@term+@rn+110-82-7 (accessed on 10 February 2016).
- UNEP Chemicals. Screening Information Dataset. Existing Chemicals Database (OECD): Alfa Olefins CAS N°: 592-41-6, 111-66-0, 872-05-9, 112-41-4, 1120-36-1. Available online: http://www.chem.unep.ch/irptc/sids/OECDSIDS/AOalfaolefins.pdf (accessed on 19 January 2016).
- Scottish Environmental Protection Agency. Scottish pollutant Release Inventory 2012: Ethyl toluene—All Isomers. Available online: http://apps.sepa.org.uk/spripa/Pages/SubstanceInformation.aspx?pid=53 (accessed on 16 January 2016).
- Chapter 5.15: Trichloroethylene. WHO Regional Office for Europe: Copenhagen, Denmark, 2000. Available online: http://www.euro.who.int/_data/assets/pdf_file/0003/123069/AQG2ndEd_5_15Trichloroethylene.pdf (accessed on 10 May 2016).
- Toxicology Data Network (TOXNET). 1,2-Diethylbenzene. 2000. Available online: http://toxnet.nlm.nih.gov/cgi-bin/sis/search/a?dbs+hsdb:@term+@DOCNO+4081 (accessed on 10 May 2016). [Google Scholar]
- Li, Z.; Singh, S.; Woodward, W.; Dang, L. Kinetics study of OH radical reactions with n-octane, n-nonane, and n-decane at 240–340 K using the relative rate/discharge flow/mass spectrometry technique. J. Phys. Chem. A 2006, 110, 12150–12157. [Google Scholar] [CrossRef] [PubMed]
- Scott, C.S.; Cogliano, V.J. Trichloroethylene Health Risks-State of the Science. U.S. Environmental Protection Agency: Washington, DC, USA, 2000. Available online: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1637768/pdf/envhper00311-0013.pdf (accessed on 26 January 2016). [Google Scholar]
- Haile, C.L. Chlorinated Hydrocarbons in the Lake Ontario Ecosystem (IFYGL); U.S. EPA National Environmental Research Center: Corvallis, OR, USA, 1975.
- Durham, R.W.; Oliver, B.G. History of Lake Ontario contamination from the Niagara River by sediment radiodating and chlorinated hydrocarbon analysis. J. Great Lakes Res. 1983, 9, 160–168. [Google Scholar] [CrossRef]
- Eisenreich, S.J.; Looney, B.B.; Thorton, J.D. Airborn organic contaminants in the Great Lakes ecosystem. Environ. Sci. Technol. 1981, 23, 57–62. [Google Scholar]
- International Joint Commission (IJC). Great Lakes Water Quality Agreement—2012. Available online: http://www.ijc.org/en_/Great_Lakes_Water_Quality (accessed on 23 January 2016).
- Health Canada. Priority Substances List Assessment Report for Trichlorobenzenes. Cat. No. En40–215/25E. 2013. Available online: http://www.hc-sc.gc.ca/ewh-semt/pubs/contaminants/psl1-lsp1/trichlorobenzenes/index-eng.php (accessed on 26 January 2016).
- U.S. Environmental Protection Agency. Locating and Estimating Air Emission from Sources of Chlorobenzenes (Revised). Office of Air Quality Planning and Standards. Research Triangle Park (NC) 1994; EPA-454/R-93–044. Available online: http://www.epa.gov/ttnchie1/le/chlorbnz.pdf (accessed on 21 January 2016).
- Beck, U.; Löser, E. Chlorinated Benzenes and other Nucleus-Chlorinated Aromatic Hydrocarbons. In Ullmann’s Encyclopedia of Industrial Chemistry; Wiley-VCH: Weinheim, Germany, 2005. [Google Scholar]
- Anderson, T.A.; Beauchamp, J.J.; Walton, B.T. Organic chemicals in the environment. Fate of volatile and semivolatile organic chemicals in soil: Abiotic versus biotic losses. J. Environ. Qual. 1991, 20, 420–424. [Google Scholar] [CrossRef]
- Chu, I.; Villeneuve, D.C.; Secours, V.E.; Becking, G.C.; Valli, V.E. Trihalomethanes: I. Toxicity of trihalomethanes: The acute and subacute toxicity of chloroform, bromodichloromethane, chlorodibromomethane and bromoform in rats. J. Environ. Sci. Health 1982, B17, 205–224. [Google Scholar]
- Hrudey, S.E. Chlorination disinfection by-products, public health risk tradeoffs and me. Water Res. 2009, 43, 2057–2092. [Google Scholar] [CrossRef] [PubMed]
- Environment Canada & Health Canada. Canadian Environmental Protection Act, 1999. Priority Substances List Assessment Report: Chloroform, Cat. No. En40-215/56E. 2001, pp. 13–19. Available online: http://publications.gc.ca/collections/Collection/En40-215-56E.pdf (accessed on 11 February 2016).
- Health Canada. Guidelines for Canadian Drinking Water Quality: Guideline Technical Document—Trihalomethanes. 2006. Available online: http://healthycanadians.gc.ca/publications/healthy-living-vie-saine/water-trihalomethanes-eau/index-eng.php (accessed on 26 January 2016).
- U.S. Environmental Protection Agency. National Primary Drinking Water Regulations: Stage 2 Disinfectants and Disinfection Byproducts Rule: Final Rule. Fed. Regist. 2006, 71, 395–406. [Google Scholar]
- International Programme on Chemical Safety. Disinfectants and disinfectant by-products. Environmental Health Criteria 216. World Health Organization: Geneva, Switzerland, 2000. [Google Scholar]
- UNEP 2000, International Programme on Chemical Safety. Environmental Health Criteria 216: Disinfectants and Disinfectant By-Products. Available online: http://www.inchem.org/documents/ehc/ehc/ehc216.htm (accessed on 25 January 2016).
- World Chlorine Council. Drinking Water Chlorination. 2008. Available online: http://www.worldchlorine.org/wpcontent/themes/brickthemewp/pdfs/WCC_Policy_Paper_Water_Chlorination.pdf (accessed on 25 January 2016).
- Robins, G.A.; Deyo, B.G.; Temple, M.R.; Stuart, J.D.; Lacy, M.J. Soil-gas surveying for subsurface gasoline contamination using total organic vapor detection instruments Part 1: Theory and laboratory experimentation. Ground Water Monit. Remediat. 1990, 10, 122–131. [Google Scholar] [CrossRef]
- Urano, K.; Kawamoto, K.; Abe, Y.; Otake, M. Chlorinated organic compounds in urban air in Japan. Sci. Total Environ. 1988, 74, 121–131. [Google Scholar] [CrossRef]
- Williams, D.T.; LeBel, G.L.; Benoit, F.M. Disinfection by-products in Canadian drinking water. Chemosphere 1997, 34, 299–316. [Google Scholar] [CrossRef]
- Chang, C.C.; Lo, S.J.; Lo, J.G.; Wang, J.L. Analysis of methyl tert-butyl ether in the atmosphere and implications as an exclusive indicator of automobile exhaust. Atmos. Environ. 2003, 37, 4747–4755. [Google Scholar] [CrossRef]
- Reactivity Research Working Group’s Atmospheric Availability and Environmental Fate Subgroup. Workshop on Combining Environmental Fate and Air Quality Modeling. Research Triangle Park (NC). 2000. Available online: http://www.narsto.org/sites/narsto-dev.ornl.gov/files/Appendix_F_Vol%26Fate.pdf (accessed on 11 January 2016). [Google Scholar]
- Wolf, J.L.; Richters, S.; Pecher, J.; Zeuch, T. Pressure dependent mechanistic branching in the formation pathways of secondary organic aerosol from cyclic-alkene gas-phase ozonolysis. Phys. Chem. Chem. Phys. 2011, 13, 10952–10964. [Google Scholar] [CrossRef] [PubMed]
- Mackay, D.; Matsugu, R.S. Evaporation rates of liquid hydrocarbon spills on land and water. Can. J. Chem. Eng. 1973, 51, 434–439. [Google Scholar] [CrossRef]
- Yuan, B.; Shao, M.; de Gouw, J.; David, D.; Parrish, D.D.; Lu, S.; Wang, M.; Zeng, L.; Zhang, Q.; Song, Y.; et al. Volatile organic compounds (VOCs) in urban air: How chemistry affects the interpretation of positive matrix factorization (PMF) analysis. J. Geophys. Res. Atmos. 2012, 117, 1984–2012. [Google Scholar] [CrossRef]
VOC * | Known Sources/Origins | Used in/as | Atmospheric Chemistry & Half-Life | CID ** & Refs. |
---|---|---|---|---|
Ethylene | Vegetation (natural plant hormone), refinery gases | Petrochemical and chemical industries (used to produce ethylene oxide, ethylene dichloride, ethylbenzene and polyethylene), refrigeration, welding gas | Reacts with photochemically-produced hydroxyl radicals half-life time counted in days. | 6325 [90,91] |
1-butene/isobutene (isobutylene) | Refineries, reactions of ethylene and butanes | Production of octane enhancers: ETBE (ethyl tert-butyl ether) and MTBE (methyl tert-butyl ether) | Reacts with hydroxyl radicals, with a half-life of several hours, and with ozone molecules, a half-life of about a day. | 8255 [92,93,94] |
Isobutane | Evaporations from gasoline or wastewaters | Refineries to enhance the octane content of gasoline | Reacts with hydroxyl and nitrate radicals; half-lives are a week and half a year, resp. | 6360 [95] |
2-methyl-2-butene (amylene) | Isolation from C5 fraction by steam stripping, byproduct of deep catalytic cracking | Production of gasoline blending components MTBE and tert-amyl methyl ether (TAME) | Reacts with photochemically-produced hydroxyl radicals (half-life time counted in hours), with ozone and with nitrate radicals (half-life times counted in minutes). | 10553 [96] |
m and p-Xylene | Leaks and evaporations from fuels | Fuels | Hydroxyl radicals make it degrade by half in less than 20 h. | 7929 [97] |
Isopentane (2-methylbutane) | Petroleum, natural gas, evaporations from fuel tanks | Gasoline component | Reacts with photochemically produced hydroxyl radicals, half-life of 4 or 5 days. | 6556 [31,95] |
Pentane | Petroleum | Gasoline, petroleum industry | Reacts with photochemically produced hydroxyl radicals, half-life of 3 to 4 days. | 8003 [31,95,98] |
Benzene | Escapes from petrochemical industry (where benzene is produced via catalytic reformatting) automobile service stations, exhaust from motor vehicles | Production of ethylbenzene, styrene, cumene, cyclohexane solvent in paints, varnishes, lacquer thinners, production of rubbers, lubricants, dyes, detergents, drugs, explosives, and pesticides gasoline products | Half-life of reaction with hydroxyl radicals is estimated to be several days, much longer for reactions with ozone and other radicals. Can be deposited on the ground by rain or snow. | 241 [99] |
2,2-dimethylbutane (neohexane) 2,3-dimethylbutane (diisopropyl) | Gasoline vapors, alkylation of ethylene and isobutane recovered from refinery gases | High octane fuels, production of solvents, glues, coatings, and paints | Degrades in the atmosphere by reaction with hydroxyl radicals (half-life: less than a week) and with nitrate radicals (the half-life is less than a year). | 6403 6589 [95] |
2-methylpentane (isohexane) | Natural petroleum seepages, fugitive emissions or spills, motor vehicle exhaust | Petrochemicals and numerous industries worldwide as solvent, raw material, fuel, lubricant | Degrades by half in reactions with hydroxyl radicals in 3 days or faster when photochemical smog is created. | 7892 [98] |
Cyclohexane | Exhaust benzene reacting with hydrogen, evaporations from fuels, industrial wastes | Fuels, petrochemical and chemical industries | Degrades in the atmosphere by reaction with hydroxyl radicals, half-life of about 2 days. | 8078 [95,100,101] |
Cyclopentane | Evaporations from fuels | Gasoline (more than 4%) | Degrades in the atmosphere by reaction with hydroxyl radicals, half-life of about 2 days | 9253 [93] |
Heptane 2,4-dimethylpentane 2-methylhexane 3-methylhexane | High-octane gasoline, exhaust alkanes reacting with OH radicals | High-octane gasoline (up to 6%) | Reacts with photochemically produced hydroxyl radicals, half-life of 2 or 3 days. | 89002 7907 11582 11507 [31,95] |
2,3,4-trimethylpentane 2,2-dimethylhexane 2,5-dimethylhexane | Combustion of gasoline | Aviation industry, production of specialty gasoline | Reacts with hydroxyl radicals, half-life of approximately 2 days. | 11269 11551 11592 [95,102] |
Propane | Wide usage as fuel by industry and consumers | Fuels, gasoline products | Half-life of reactions with hydroxyl radicals is 2 weeks. | 6334 [103] |
1,3-butadiene | Petroleum refining, petroleum usage, industrial wastes | Manufacture of polymers, synthetic rubber, plastics, and resins | Degrades by reaction with hydroxyl radicals, ozone molecules, and nitrate radicals, half-lives being some hours, up to one day. | 7845 [5,104] |
CAS * | VOC | #60413 | #60418 | #60427 | #60429 | ||||
---|---|---|---|---|---|---|---|---|---|
Inert | Concentration | Inert | Concentration | Inert | Concentration | Inert | Concentration | ||
74-84-0 | Ethane | 80 | 3.18 | 48 | 3.92 | 80 | 3.87 | 76 | 3.18 |
74-85-1 | Ethylene | 37 | 1.62 | 33 | 2.57 | 55 | 2.25 | 59 | 1.93 |
74-98-6 | Propane | 60 | 3.23 | 29 | 3.97 | 77 | 3.37 | 74 | 4.00 |
74-99-7 | 1-Propyne | 32 | 0.06 | - | - | 33 | 0.08 | 43 | 0.07 |
115-07-1 | Propylene | 13 | 0.54 | 9 | 0.90 | 30 | 0.79 | 23 | 0.67 |
106-97-8 | Butane | 36 | 3.24 | 2 | 5.54 | 42 | 3.74 | - | 3.83 |
106-99-0 | 1,3-Butadiene | 32 | 0.09 | 10 | 0.16 | - | 0.13 | 11 | 0.11 |
75-28-5 | Isobutane | 25 | 1.76 | 25 | 2.26 | 64 | 1.62 | 44 | 1.77 |
115-11-7 | 1-Butene/Isobutene | −4 | 0.37 | 10 | 0.69 | 23 | 0.49 | 18 | 0.42 |
78-78-4 | Isopentane | 10 | 2.53 | 10 | 4.14 | 29 | 2.99 | 7 | 2.92 |
71-43-2 | Benzene | 40 | 0.85 | 7 | 1.31 | 25 | 1.05 | 50 | 0.92 |
75-83-2 | 2,2-Dimethylbutane | 12 | 0.11 | 26 | 0.19 | 29 | 0.13 | 16 | 0.12 |
67-66-3 | Chloroform | 57 | 0.10 | 39 | 0.12 | - | - | 24 | 0.11 |
71-55-6 | 1,1,1-Trichloroethane | 61 | 0.13 | 41 | 0.23 | - | - | 35 | 0.14 |
74-83-9 | Bromomethane | 50 | 0.09 | 63 | 0.11 | - | - | 19 | 0.08 |
74-87-3 | Chloromethane | 88 | 1.15 | 78 | 1.17 | 95 | 1.17 | 55 | 1.15 |
74-95-3 | Dibromomethane | 53 | 0.04 | 80 | 0.06 | 74 | 0.04 | 15 | 0.04 |
75-00-3 | Chloroethane | 30 | 0.04 | 10 | 0.13 | 42 | 0.84 | - | - |
75-09-2 | Dichloromethane | 17 | 0.65 | 9 | 0.65 | 104 | 1.21 | 8 | 1.01 |
75-45-6 | Freon22 | 56 | 0.90 | 17 | 0.90 | 81 | 1.79 | 56 | 1.01 |
75-69-4 | Freon11 | 86 | 1.68 | 73 | 1.68 | 82 | 2.74 | 68 | 1.71 |
75-71-8 | Freon12 | 92 | 2.70 | 67 | 2.70 | 80 | 0.68 | 69 | 2.74 |
76-13-1 | Freon113 | 93 | 0.64 | - | - | 77 | 0.13 | 66 | 0.64 |
76-14-2 | Freon114 | 84 | 0.14 | 65 | 0.17 | −21 | 0.15 | 56 | 0.14 |
79-01-6 | Trichloroethylene | 1 | 0.26 | 18 | 0.43 | - | - | 3 | 0.30 |
106-46-7 | 1,4-Dichlorobenzene | 0 | 0.08 | 63 | 0.93 | - | - | - | 0.10 |
107-06-2 | 1,2-Dichloroethane | - | - | 33 | 0.06 | - | - | 23 | 0.05 |
CAS | VOC | #60413 | #60418 | #60429 | |||
---|---|---|---|---|---|---|---|
Inert | Concentration | Inert | Concentration | Inert | Concentration | ||
115-07-1 | Propylene | −2 | 0.54 | - | 0.90 | 27 | 0.67 |
106-97-8 | Butane | - | 3.24 | −3 | 5.54 | 54 | 3.83 |
106-99-0 | 1,3-butadiene | - | 0.09 | 14 | 0.16 | 20 | 0.11 |
75-28-5 | Isobutane | −38 | 1.76 | 0 | 2.26 | 39 | 1.77 |
115-11-7 | 1-butene/Isobutene | −5 | 0.37 | 12 | 0.69 | 21 | 0.42 |
78-79-5 | Isoprene | 19 | 0.21 | 40 | 0.18 | −5 | 0.13 |
78-78-4 | Isopentane | −22 | 2.53 | −5 | 4.14 | 29 | 2.92 |
463-82-1 | 2,2-dimethylpropane | - | - | 42 | 0.05 | - | - |
590-35-2 | 2,2-dimethylpentane | - | - | 25 | 0.05 | - | 0.03 |
591-49-1 | 1-methylcyclohexene | - | - | 92 | 0.03 | - | - |
100-42-5 | Styrene | - | 0.24 | 42 | 0.24 | - | - |
75-83-2 | 2,2-dimethylbutane | 1 | 0.11 | 3 | 0.19 | 20 | 0.12 |
79-29-8 | 2,3-dimethylbutane | −12 | 0.18 | −2 | 0.37 | 19 | 0.22 |
589-81-1 | 3-methylheptane | - | 0.10 | 31 | 0.20 | - | 0.14 |
589-43-5 | 2,4-dimethylhexane | - | - | 25 | 0.12 | - | 0.07 |
592-13-2 | 2,5-dimethylhexane | - | 0,05 | 13 | 0.10 | - | 0.06 |
638-04-0 | cis-1,3-dimethylcyclohexane | - | 0.06 | 22 | 0.10 | - | 0.08 |
111-84-2 | Nonane | −11 | 0.16 | −16 | 0.48 | 24 | 0.22 |
1120-21-4 | Undecane | −13 | 0.26 | 8 | 0.51 | 19 | 0.36 |
112-40-3 | Dodecane | 2 | 0.19 | 28 | 0.25 | 12 | 0.27 |
98-82-8 | iso-propylbenzene | 17 | 0.03 | 20 | 0.07 | 4 | 0.04 |
135-01-3 | 1,2-diethylbenzene | - | - | 27 | 0.04 | - | - |
56-23-5 | Carbontetrachloride | 27 | 0.59 | 72 | 0.64 | - | 0.61 |
67-66-3 | Chloroform | 32 | 0.10 | 45 | 0.12 | - | 0.11 |
71-55-6 | 1,1,1-trichloroethane | 65 | 0.13 | 79 | 0.23 | - | 0.14 |
74-83-9 | Bromomethane | 58 | 0.09 | 88 | 0.11 | - | 0.08 |
74-87-3 | Chloromethane | 32 | 1.15 | 57 | 1.17 | - | 1.15 |
74-95-3 | Dibromomethane | 71 | 0.04 | 93 | 0.06 | - | 0.04 |
75-00-3 | Chloroethane | 28 | 0.04 | −2 | 0.13 | - | - |
75-45-6 | Freon22 | 6 | 0.90 | 13 | 1.41 | 26 | 1.01 |
75-69-4 | Freon11 | 28 | 1.68 | 26 | 1.84 | 29 | 1.71 |
75-71-8 | Freon12 | 28 | 2.70 | 25 | 3.10 | 30 | 2.74 |
76-13-1 | Freon113 | 31 | 0.64 | - | - | 29 | 0.64 |
76-14-2 | Freon114 | 45 | 0.14 | 46 | 45 | 27 | 0.14 |
79-01-6 | Trichloroethylene | 5 | 0.26 | 47 | 0.17 | 82 | 0.30 |
107-06-2 | 1,2-dichloroethane | - | - | 58 | 0.06 | 26 | 0.05 |
127-18-4 | Tetrachloroethylene | −2 | 0.33 | - | - | 26 | 1.01 |
VOC | Known Sources/Origins | Used in/as | Atmospheric Chemistry & Half-Life | CID & Refs. |
---|---|---|---|---|
Carbontetrachloride | Fugitive releases from specialized industrial applications | Cleaning agent, synthesis of nylon, chlorination processes | Extremely slowly reacts with hydroxyl radicals, half-life is hundreds of years. | 5943 [106] |
Freon-11 Freon-12 Freon-113 Freon-114 | Use as refrigerants and propellants | Commercial and industrial refrigeration, appliances and many other customer products, as sprays (currently phased out) | Extremely slow reactions with hydroxyl radicals, half-life counted in hundreds of years | 6389 6391 6428 6429 [107] |
Ethane | Natural gas, gasoline combustion, cracking of hydrocarbons , liquefaction of coal, biodegradation processes | Fuels and fuel additives, intermediate in chemical industry, paints, plasticizers , textiles, foams, many consumer products | Slow photo-oxidation, half-life around 2 months | 6324 [108] |
Chloroform | Atmospheric photodegradation of trichloroethylenes, indirectly: through reactions of chlorine with organic chemicals, mainly as a by-product during the addition of chlorine to drinking water and wastewaters for disinfection | Solvent, production of Freon-22, compound is popular as an extractant, dry cleaning agent, fumigant ingredient, rubber production, feedstock for polytetrafluoroethylene, ethylene dichloride, and fluorinated ethylene-propylene resin | Degrades by reaction with hydroxyl radicals; half-life of 5 months | 6212 [109] |
Chloromethane (methyl chloride) Bromomethane | Oceans, production and use as pesticide and fumigant, natural petroleum seepages, fugitive emissions or spills, motor vehicle exhaust | Intermediates in chemical industries | Slowly degrades in the atmosphere by reactions with hydroxyl radicals half-life: around 10 months and over 1 year, respectively | 6327 6323 [110,111] |
Dichloromethane (methylene chloride) Dibromomethane | Contaminated surface water and groundwater, hazardous waste sites | Common solvents and reagents, blowing agents, paint strippers and degreasers, in food industry (and formerly in preparation of pesticides and fumigants) | Half-life of the reaction with hydroxyl radicals is several months. | 6344 3024 [31,112,113,114] |
Tetrachloroethylene | Contaminated groundwater | Solvent, dry cleaning agent, transformer insulating fluid, in automotive and metalworking industries, desulfurization of coal | Half-life of the reaction with hydroxyl radicals is several months. | 31373 [9] |
1,2-dichloroethane | Exclusively volatilization from around locations of industrial manufactures | Chemical intermediate in soaps, lead scavenger, solvent | Reacts with hydroxyl radicals, degrading by half in 2 months. | 11 [62] |
1,4-Dichlorobenzene | Direct releases to the air from fumigant and deodorants, indirectly: industrial wastewater treatment | Solvent, intermediate for the manufacture of dyes, 2,5-dichloroaniline, pharmaceutical, and agricultural products | Reaction with atmospheric hydroxyl radicals has a half-life of 50 days. | 4685 [115] |
VOC | Known Sources/Origins | Used in/as | Atmospheric Chemistry & Half-Life | CID & Refs. |
---|---|---|---|---|
Ethylbenzene | Burning of coal, gas, and oil, direct releases to the air from industrial applications | Intermediate for the production of styrene, component of automotive and aviation fuels | Half-life of reactions with hydroxyl radicals is 2 to 3 days. (Sunlight and other chemicals break down ethylbenzene into components of smog.) | 7500 [6] |
Styrene | Polymer and plastic industries | Making polystyrene, styrene-butadiene rubber (SBR), and styrene-butadiene latex (SBL) | Photodegrades in the atmosphere with a half-life of 7–16 h. | 7501 [87,88] |
Isoprene | Vegetation (intense source), fossil fuels, polymer industry | Making cis-1,4-polyisoprene (synthetic rubber), petrochemical processes | Half-life of reactions: with nitric oxide–0.5 h, with hydroxyl radicals–3 h, with ozone–19 h | 6557 [116,117,118,119] |
2-methylhexane 3-methylhexane | Organic synthesis processes, traffic (see Table 1) | Solvents | Half-life of the reactions with hydroxyl radicals is about 2 days. | 11582 11507 [31,95] |
Isobutane | Fugitive releases from industrial processes, but primarily production and usage of high-octane gasoline (see Table 1) | Refrigeration systems, propellant for aerosol cans and in foam production (as an ozone friendly gas) | Reacts with hydroxyl and nitrate radicals; half-lives are a week and half a year, resp. | 6360 [95] |
2-methyl-2-butene | Nearby point sources, but mostly traffic (see Table 1) | Intermediate in chemical industry | Indirect photolysis mediated by hydroxyl radicals and ozone, with a half-live at most some hours | 10553 [96] |
Pentane | Evaporations from solvent and refrigerant blends, manufacturing of petroleum (see Table 1) | General laboratory solvent, polymerization reactions, primary blowing agent in the production of polystyrene foam, refrigerant | Reacts with photochemically produced hydroxyl radicals, half-life 3 to 4 days. | 8003 [31,95,98] |
m and p-Xylene | Releases from printing, rubber, plastic, and leather industries | Precursor to terephthalic acid and dimethyl terephthalate, monomer in polyethylene terephthalate (PET) | Reacts with hydroxyl radicals, degrades by half in less than 20 h. | 7929 [97] |
Propylene | Fugitive releases from ethylene production , petrochemical industry, and numerous polymer, plastics, and metalworking industries | Chemical and plastic products: detergents, automotive brake fluids, fibers, polyurethane for foams, films,, ABS resins, automotive trim parts, also production of polypropylene, acrylonitrile, propylene glycols, cumene, butyraldehydes, and acrolein | Degrades in the atmosphere by reaction with hydroxyl radicals with a half-life of 15 h. | 8252 [120,121] |
Cyclohexane | Escapes from production of nylon precursors, but mainly exhaust and evaporations from fuels (see Table 1) | Solvent in chemical industry , intermediate in production of adipic acid and caprolactam | Degrades in the atmosphere by reaction with hydroxyl radicals, half-life of about 2 days. | 8078 [93,97,98,122,123] |
Cyclopentane | Escapes from the manufacture of synthetic resins, rubber adhesives, polyurethane insulating foam, pharmaceuticals but mainly evaporations from fuels (see Table 1) | Domestic appliances (replacing freon-11), advanced lubricants (extremely low volatility), pharmaceutical products. | Degrades in the atmosphere by reaction with hydroxyl radicals, half-life of about 2 days | 9253 [31,93] |
1-hexene | Fugitive releases from chemical, pharmaceutical, and plastic industries | Intermediate in the manufacture of : flavors, perfumes, dyes, oxo alcohols, alkyldimethylamines, surfactants , plastics (e.g., polyethylenes), synthetic fatty acids, lube oil additives, linear mercaptans, alkenyl succinic anhydrides, epoxides, and leather treating compounds | Degrades in the atmosphere by reaction with hydroxyl radicals and ozone molecules; half-lives of these reactions are of several hours to one day | 11597 [124] |
2-ethyltoluene 3-ethyltoluene 4-ethyltoluene | Fugitive releases from chemical plants, but mostly petroleum refineries, petrol stations and facilities, also vehicle exhaust | Solvents in the manufacture of plastics, coatings, printing materials and inks, cleaning products, and in pesticides | Atmospheric photodegradation half-life: less than 2 days | 11903 12100 12160 [125] |
p-cymene | - | Solvent, production of synthetic resins, disinfectants, dyestuff, perfume, and some medicines | The half-life of the reaction with hydroxyl radicals is about 1 day. | 7463 [31] |
Trichloroethylene | - | Degreasing operations, In production of plastics, appliances, jewelry, automobile, plumbing fixtures, textiles, paper, glass, In printing industries | The half-life of the reaction with hydroxyl radicals varies from 1 day to several weeks (decreasing with northern latitudes) | 6575 [8,126] |
1,2-diethylbenzene 1,3-diethylbenzene 1,4-diethylbenzene | Ethylbenzene production (byproducts) | Manufacturing naphthalene and some plastics | React with UV radiation and hydroxyl radicals; the half-lives are estimated to be 1 to 2 days. | 8657 8864 7734 [127] |
2-pentenes, cis- and trans- | - | Specialized solvents in organic synthesis, polymerization inhibitors, manufacture of petroleum resins and amyl alcohols | Half-life of their reaction with hydroxyl radicals—several hours, with ozone—about one hour | 5326160 5326161 |
Nonane Decane Undecane Dodecane | Refining of petroleum, hydrogenation of 1-nonene, isolation of paraffins from petroleum distillates and selective separation by molecular sieves | Solvents in organic synthesis, petroleum/jet fuel research, manufacturing paraffin products rubber products, detergents distillation chasers | Atmospheric half-life is estimated to be about 2 days. | 8141 15600 14257 8282 [31,128] |
CAS | VOC | Station #60413 | Station #60418 | Station #60427 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Evaporations | Exhaust | A | Concentration | Evaporations | Exhaust | A | Concentration | Evaporations | Exhaust | Concentration | ||
109-66-0 | Pentane | - | 46 | 19 | 1.56 | 45 | 49 | 5 | 2.35 | 54 | 33 | 1.74 |
693-89-0 | 1-Methylcyclopentene | 50 | - | 43 | 0.02 | 18 | 26 | - | 0.06 | - | - | - |
108-87-2 | Methylcyclohexane | 46 | 40 | 21 | 0.15 | 8 | 41 | - | 0.26 | 53 | 37 | 0.15 |
100-41-4 | Ethylbenzene | 51 | 60 | 19 | 0.54 | 30 | 62 | - | 0.99 | - | 45 | 0.64 |
108-38-3 | m and p-Xylene | 72 | 60 | 21 | 1.63 | 35 | 64 | - | 3.02 | 53 | 44 | 1.95 |
111-65-9 | Octane | - | 33 | 34 | 0.13 | 21 | 36 | 57 | 0.24 | 47 | 40 | 0.15 |
592-27-8 | 2-Methylheptane | 22 | - | 27 | 0.11 | 15 | 49 | 54 | 0.22 | 44 | 26 | 0.13 |
589-53-7 | 4-Methylheptane | - | - | 36 | 0.04 | 16 | 12 | 40 | 0.09 | 45 | 25 | 0.05 |
589-81-1 | 3-Methylheptane | - | - | 26 | 0.10 | 15 | - | 58 | 0.20 | 44 | 26 | 0.12 |
638-04-0 | cis-1,3-Dimethylcyclohexane | 20 | - | 34 | 0.06 | 5 | 47 | 66 | 0.10 | 13 | 32 | 0.06 |
592-13-2 | 2,5-Dimethylhexane | 17 | - | 21 | 0.05 | 21 | 50 | - | 0.10 | 51 | 20 | 0.07 |
565-75-3 | 2,3,4-Trimethylpentane | - | - | 22 | 0.10 | 33 | 23 | 29 | 0.24 | 13 | 32 | 0.17 |
111-84-2 | Nonane | 19 | 27 | 54 | 0.16 | 19 | 41 | - | 0.48 | 36 | 50 | 0.18 |
98-82-8 | iso-Propylbenzene | 4 | 36 | 22 | 0.03 | 15 | - | - | 0.07 | 50 | 35 | 0.04 |
103-65-1 | n-Propylbenzene | - | 38 | - | 0.10 | 18 | 46 | - | 0.23 | 47 | 45 | 0.13 |
95-63-6 | 1,2,4-Trimethylbenzene | 38 | 46 | 38 | 0.42 | 21 | 53 | - | 1.14 | - | 53 | 0.60 |
108-67-8 | 1,3,5-Trimethylbenzene | 58 | 37 | 47 | 0.12 | 17 | 44 | - | 0.35 | 46 | 50 | 0.18 |
526-73-8 | 1,2,3-Trimethylbenzene | 26 | - | 52 | 0.11 | 13 | 11 | 13 | 0.36 | - | 51 | 0.14 |
611-14-3 | 2-Ethyltoluene | 11 | - | 43 | 0.11 | 15 | 59 | - | 0.28 | 44 | 48 | 0.15 |
620-14-4 | 3-Ethyltoluene | 15 | - | 41 | 0.25 | 22 | 57 | 16 | 0.59 | 54 | 45 | 0.35 |
622-96-8 | 4-Ethyltoluene | 13 | - | 40 | 0.13 | 18 | 49 | 19 | 0.31 | 53 | 42 | 0.18 |
1120-21-4 | Undecane | 51 | 24 | 78 | 0.26 | 17 | - | - | 0.51 | 24 | 71 | 0.38 |
112-40-3 | Dodecane | −1 | 27 | 76 | 0.19 | 6 | −11 | - | 0.25 | 11 | 62 | 0.22 |
106-46-7 | 1,4-Dichlorobenzene | 43 | 38 | - | 0.08 | 12 | 2 | - | 0.93 | 40 | 52 | 0.20 |
CAS | VOC | Evaporations | Exhaust | B | C | Concentration |
---|---|---|---|---|---|---|
75-28-5 | Isobutane | 63 | 27 | 55 | −3 | 1.76 |
78-79-5 | Isoprene | −5 | 5 | 21 | 24 | 0.21 |
109-66-0 | Pentane | - | 46 | 22 | 2 | 1.56 |
107-83-5 | 2-Methylpentane | 34 | 48 | 23 | 7 | 0.78 |
110-82-7 | Cyclohexane | - | 50 | 16 | 10 | 0.12 |
108-88-3 | Toluene | 58 | 86 | 44 | 6 | 3.62 |
108-08-7 | 2,4-Dimethylpentane | 41 | 48 | 20 | 7 | 0.08 |
591-76-4 | 2-Methylhexane | 3 | - | 43 | 13 | 0.36 |
589-34-4 | 3-Methylhexane | - | - | 35 | 8 | 0.41 |
100-42-5 | Styrene | - | 17 | 44 | 29 | 0.24 |
108-38-3 | m and p-Xylene | 72 | 60 | 18 | 14 | 1.63 |
56-23-5 | Carbontetrachloride | - | - | 2 | 71 | 0.59 |
67-66-3 | Chloroform | -8 | - | 15 | 4 | 0.10 |
79-01-6 | Trichloroethylene | 30 | 14 | 15 | 45 | 0.26 |
127-18-4 | Tetrachloroethylene | 21 | - | 52 | 30 | 0.33 |
CAS | VOC | Evaporations | Exhaust | D | E | Concentration |
---|---|---|---|---|---|---|
115-07-1 | Propylene | 63 | - | 36 | −1 | 0.90 |
78-79-5 | Isoprene | 19 | 8 | 45 | 12 | 0.18 |
71-43-2 | Benzene | 32 | 30 | 57 | 3 | 1.31 |
4050-45-7 | trans-2-hexene | 33 | - | 20 | 3 | 0.06 |
108-88-3 | Toluene | 31 | 64 | 36 | 10 | 6.05 |
108-08-7 | 2,4-himethylpentane | 36 | 55 | 18 | 4 | 0.16 |
100-41-4 | Ethylbenzene | 30 | 62 | - | 5 | 0.99 |
100-42-5 | Styrene | 17 | 22 | - | 2 | 0.24 |
108-38-3 | m and p-xylene | 35 | 64 | 32 | 7 | 3.02 |
111-84-2 | Nonane | 19 | 41 | 21 | 60 | 0.48 |
98-82-8 | iso-propylbenzene | 15 | - | 5 | 18 | 0.07 |
103-65-1 | n-propylbenzene | 18 | 46 | 12 | 26 | 0.23 |
95-63-6 | 1,2,4-trimethylbenzene | 21 | 53 | 3 | 50 | 1.14 |
108-67-8 | 1,3,5-trimethylbenzene | 17 | 44 | 15 | 37 | 0.35 |
526-73-8 | 1,2,3-trimethylbenzene | 13 | 11 | 0 | 67 | 0.36 |
496-11-7 | Indane | 19 | 17 | 4 | 30 | 0.12 |
611-14-3 | 2-ethyltoluene | 15 | 59 | 10 | 42 | 0.28 |
620-14-4 | 3-ethyltoluene | 22 | 57 | 5 | 31 | 0.59 |
622-96-8 | 4-ethyltoluene | 18 | 49 | 6 | 31 | 0.31 |
99-87-6 | p-cymene | −7 | - | 5 | 60 | 0.11 |
124-18-5 | Decane | 6 | - | 2 | 105 | 1.71 |
105-05-5 | 1,4-diethylbenzene | 11 | 30 | 0 | 43 | 0.25 |
135-01-3 | 1,2-diethylbenzene | −1 | - | 7 | 42 | 0.04 |
141-93-5 | 1,3-diethylbenzene | 9 | - | 8 | 44 | 0.08 |
15869-94-0 | 3,6-dimethyloctane | 7 | - | −1 | 81 | 0.09 |
104-51-8 | n-butylbenzene | 6 | 25 | 48 | 0.10 | |
135-98-8 | sec-butylbenzene | 2 | - | 5 | 78 | 0.07 |
538-93-2 | iso-butylbenzene | 2 | - | 7 | 59 | 0.05 |
1120-21-4 | Undecane | 17 | - | 68 | 7 | 0.51 |
112-40-3 | Dodecane | 6 | −11 | 86 | −2 | 0.25 |
75-00-3 | Chloroethane | 2 | −6 | 34 | 24 | 0.13 |
CAS | VOC | #60418 | #60427 | #60429 | ||||
---|---|---|---|---|---|---|---|---|
F | Concentration | F | G | Concentration | G | Concentartion | ||
115-07-1 | Propylene | - | 0.90 | 26 | 4 | 0.79 | - | 0.67 |
106-99-0 | 1,3-Butadiene | - | 0.16 | 23 | - | 0.13 | - | 0.11 |
115-11-7 | 1-Butene/Isobutene | - | 0.69 | 19 | 3 | 0.49 | - | 0.42 |
590-18-1 | cis-2-Butene | −6 | 0.22 | - | 22 | 0.14 | 49 | 0.13 |
624-64-6 | trans-2-Butene | −2 | 0.25 | - | - | 0.16 | 52 | 0.15 |
78-79-5 | Isoprene | - | 0.18 | - | 35 | 0.15 | - | 0.13 |
78-78-4 | Isopentane | - | 4.14 | - | 32 | 2.99 | - | 2.92 |
109-66-0 | Pentane | 5 | 2.35 | 32 | - | 1.74 | - | 1.97 |
109-67-1 | 1-Pentene | 20 | 0.17 | 32 | - | 0.10 | - | 0.10 |
287-92-3 | Cyclopentane | 17 | 0.28 | 6 | 26 | 0.18 | 34 | 0.19 |
563-46-2 | 2-Methyl-1-butene | - | 0.19 | - | 38 | 0.16 | 46 | 0.15 |
513-35-9 | 2-Methyl-2-butene | - | 0.37 | 14 | 22 | 0.17 | 63 | 0.16 |
563-45-1 | 3-Methyl-1-butene | - | 0.96 | - | 26 | 0.04 | 36 | 0.04 |
627-20-3 | cis-2-Pentene | - | - | - | - | 0.08 | 45 | 0.08 |
646-04-8 | trans-2-Pentene | - | - | - | - | 0.15 | 52 | 0.14 |
75-83-2 | 2,2-Dimethylbutane | - | 0.19 | - | 24 | 0.13 | - | 0.12 |
79-29-8 | 2,3-Dimethylbutane | - | 0.37 | - | 22 | 0.24 | - | 0.22 |
107-83-5 | 2-Methylpentane | - | 1.45 | 44 | - | 1.00 | - | 0.94 |
110-82-7 | Cyclohexane | 43 | 0.22 | 33 | - | 0.15 | - | 0.15 |
592-41-6 | 1-Hexene | - | 0.15 | 42 | 15 | 0.08 | 10 | 0.08 |
108-88-3 | Toluene | 19 | 6.05 | 38 | - | 3.94 | - | 4.28 |
108-08-7 | 2,4-Dimethylpentane | - | 0.16 | 42 | - | 0.11 | - | 0.10 |
108-38-3 | m and p-Xylene | - | 3.02 | 40 | - | 1.95 | - | 1.91 |
111-65-9 | Octane | 57 | 0.24 | 24 | - | 0.15 | - | 0.19 |
592-27-8 | 2-Methylheptane | 54 | 0.22 | - | −10 | 0.13 | 3 | 0.15 |
589-53-7 | 4-Methylheptane | 40 | 0.09 | - | −10 | 0.05 | 4 | 0.06 |
589-81-1 | 3-Methylheptane | 58 | 0.20 | - | −11 | 0.12 | 1 | 0.14 |
589-43-5 | 2,4-Dimethylhexane | 54 | 0.12 | 37 | −9 | 0.08 | 0 | 0.07 |
592-13-2 | 2,5-Dimethylhexane | - | 0.10 | - | −30 | 0.07 | 5 | 0.06 |
638-04-0 | cis-1,3-Dimethylcyclohexane | 66 | 0.10 | - | - | 0.06 | 6 | 0.08 |
540-84-1 | 2,2,4-Trimethylpentane | 26 | 0.64 | - | 16 | 0.46 | 12 | 0.37 |
565-75-3 | 2,3,4-Trimethylpentane | 29 | 0.24 | - | 0 | 0.17 | - | - |
111-84-2 | Nonane | - | 0.48 | 17 | - | 0.18 | - | 0.22 |
108-67-8 | 1,3,5-Trimethylbenzene | - | 0.35 | 58 | - | 0.18 | - | 0.17 |
526-73-8 | 1,2,3-Trimethylbenzene | 13 | 0.36 | 54 | 8 | 0.14 | 9 | 0.13 |
496-11-7 | Indane | 23 | 0.12 | 45 | 9 | 0.07 | 10 | 0.06 |
3522-94-9 | 2,2,5-Trimethylhexane | 22 | 0.05 | 25 | 11 | 0.03 | 12 | 0.03 |
124-18-5 | Decane | - | 1.71 | 14 | −33 | 0.35 | - | 0.38 |
141-93-5 | 1,3-Diethylbenzene | −4 | 0.08 | 44 | −12 | 0.04 | 10 | 0.04 |
104-51-8 | n-Butylbenzene | - | 0.10 | 63 | - | 0.04 | - | 0.04 |
112-40-3 | Dodecane | - | 0.25 | 50 | - | 0.22 | - | 0.27 |
75-09-2 | Dichloromethane | 23 | 1.10 | - | 63 | 0.84 | - | 1.01 |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Porada, E.; Szyszkowicz, M. UNMIX Methods Applied to Characterize Sources of Volatile Organic Compounds in Toronto, Ontario. Toxics 2016, 4, 11. https://doi.org/10.3390/toxics4020011
Porada E, Szyszkowicz M. UNMIX Methods Applied to Characterize Sources of Volatile Organic Compounds in Toronto, Ontario. Toxics. 2016; 4(2):11. https://doi.org/10.3390/toxics4020011
Chicago/Turabian StylePorada, Eugeniusz, and Mieczysław Szyszkowicz. 2016. "UNMIX Methods Applied to Characterize Sources of Volatile Organic Compounds in Toronto, Ontario" Toxics 4, no. 2: 11. https://doi.org/10.3390/toxics4020011
APA StylePorada, E., & Szyszkowicz, M. (2016). UNMIX Methods Applied to Characterize Sources of Volatile Organic Compounds in Toronto, Ontario. Toxics, 4(2), 11. https://doi.org/10.3390/toxics4020011