Hydraulic Performance of Horticultural Substrates—3. Impact of Substrate Composition and Ingredients
Abstract
:1. Introduction
2. Experimental Section
2.1. Horticultural Substrates
2.2. Hydraulic Criteria
2.3. Hydraulic Measurements
2.4. Statistical Analysis
3. Results and Discussion
3.1. Hydraulic Properties
3.2. Quality Scores
3.3. Correlations of Hydraulic Ratings with Basic Properties and Statistical Grouping
4. Conclusions
Author Contributions
Conflicts of Interest
References
- Yogev, A.; Raviv, M.; Hadar, Y. Plant-waste based compost suppressive to deseases caused to pathogenic Fusarium oxysporum. Eur. J. Plant Pathol. 2006, 116, 267–278. [Google Scholar] [CrossRef]
- Verdonck, O. Status of soilless culture in Europe. Acta Hortic. 2007, 742, 35–39. [Google Scholar] [CrossRef]
- Raviv, M.; Lieth, J.H. Soilless Culture; Elsevier Publications: London, UK, 2008; p. 608. [Google Scholar]
- Blanco-Canqui, H.; Lal, R. Extent of soil water repellency under long-term no-till soils. Geoderma 2009, 149, 171–180. [Google Scholar] [CrossRef]
- Letey, J. Measurement of contact angle, water drop penetration time, and critical surface tension. In Water-Repellent Soils; DeBano, L.F., Letey, J., Eds.; University of California: Berkeley, CA, USA, 1968; pp. 43–47. [Google Scholar]
- Bauters, T.W.J.; Steenhuis, T.S.; DiCarlo, D.A.; Nieber, J.L.; Dekker, L.W.; Ritsema, C.J.; Parlangea, J.-Y.; Haverkampe, R. Physics of water repellent soils. J. Hydrol. 2000, 231, 233–243. [Google Scholar] [CrossRef]
- Schindler, U.; Durner, W.; von Unold, G.; Mueller, L.; Wieland, R. The evaporation method—Extending the measurement range of soil hydraulic properties using the air-entry pressure of the ceramic cup. J. Plant Nutr. Soil Sci. 2010, 173, 563–572. [Google Scholar] [CrossRef]
- Schindler, U.; Mueller, L.; Eulenstein, F. Hydraulic performance of horticultural substrates—1. Method for measuring the hydraulic quality indicators. In Proceedings of the International Symposium on Quality Management of Organic Horticultural Produce, Ubon Ratchathani, Thailand, 7–9 December 2015.
- R Development Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2010. [Google Scholar]
- Wösten, J.H.M.; Lilly, A.; Nemes, A.; Le Bas, C. Development and use of a database of hydraulic properties of European soils. Geoderma 1999, 90, 169–185. [Google Scholar] [CrossRef]
- Heiskanen, J. Physical properties of two-component growth media based on Sphagnum peat and their implications for plant-available water and aeration. Plant Soil 1995, 172, 45–54. [Google Scholar] [CrossRef]
- Richards, D.; Lane, M.; Beardsell, D.V. The influence of particle size distribution in pinebark, sand, brown coal potting mixes on water supply aeration and plant growth. Sci. Hortic. 1986, 29, 1–14. [Google Scholar] [CrossRef]
- Nowak, J.S.; Strojny, Z. Changes in physical properties of peat-based substrates during cultivation period of gerbera. Acta Hortic. 2004, 644, 319–323. [Google Scholar] [CrossRef]
- Al Naddafa, O.; Livieratos, I.; Stamatakisa, A.; Tsirogiannisb, I.; Gizasb, G.; Savvasc, D. Hydraulic characteristics of composted pig manure, perlite, and mixtures of them, and their impact on cucumber grown on bags. Sci. Hortic. 2011, 129, 135–141. [Google Scholar] [CrossRef]
- Caron, J.; Pepin, S.; Periard, Y. Physics of growing media in a green future. International Symposium on Growing Media and Soilless Cultivation. Acta Hortic. 2014, 1034, 309–317. [Google Scholar] [CrossRef]
- Schindler, U.; Mueller, L. Hydraulic performance of horticultural substrates—2. Development of an evaluation framework. In Proceedings of the International Symposium on Quality Management of Organic Horticultural Produce, Ubon Ratchathani, Thailand, 7–9 December 2015.
- Pittenger, D.R. Potting soil label information is inadequate. Calif. Agric. 1986, 40, 6–8. [Google Scholar]
- Regand, R.V.; Machado, S.; Alam, M.; Ali, A. Greenhouse production of potato (Solanum tuberosum cv. Desiree) seed tubers using in-vitro plantlets and rooted cutting in large propagation beds. Potato Res. 1995, 38, 61–68. [Google Scholar]
- Özkaynak, E.; Samanci, B. Yield and yield components of greenhouse, field and seed bed grown potato (Solanum tuberosum L.) plantlets. Akdeniz Univ. Ziraat Fak. Derg. 2005, 18, 125–129. [Google Scholar]
- Fazeli Sabzevar, R.; Mirabdulagh, M.; Zarghami, R.; Pakdaman, B. Mini-tuber production as affected by planting bed composition and node position in tissue cultured plantlet in two potato cultivars. Int. J. Agric. Biol. 2007, 9, 416–418. [Google Scholar]
HS | Product | Price x | Application y | Ingredients z |
---|---|---|---|---|
1 | Falkena | M | P | 90% Hh (H4–H8), 10% C |
2 | Plantop | M | P | Hh (H2–H5), G, F |
3 | Plantop, for grass | M | F | 35% Hh (H2–H8), 30% F, 15% G, 20% L, C, S |
4 | Falkena, rhododen | M | F | Hh (H3–H9) |
5 | Falkena, potting soil | M | P | Hh (H3–H8), P, C |
6 | Bodengold, bio. | M | P/F | 40% Hh (H2–H8), 20% F, 40% G, P, C |
7 | Bodengold, premium | M | P | 100% Hh (H2–H5), P, C |
8 | Chrysal, active soil | H | P | no information |
9 | Cuxin, balcony plants | H | P | Hh (H3–H7), C, Co |
10 | Cuxin for turf rolls | H | F | Hh, G, Co |
11 | Falkena, balcony | M | P/F | Hh (H2–H9) |
12 | Mecklenburger | kA | F | Hh (H3–H5) |
13 | Treff_Jiffy Products | kA | F | Hh (H5–H8) |
14 | Plantop, substrate I | M | P/F | 80% Hh (H2–H8), 15% F, 5% G |
15 | Thomas Phillips | M | P | 80% Hh (H3–H7), 15% F, 5% G, S |
16 | Netto supermarket | M | P | Hh (H3–H8), F, G |
17 | Blumenrisse | M | P | 100% Hh (H2–H8), C |
18 | Gartenkrone | M | P | 80% Hh (H4–H8), F, P, Gu |
19 | Compo Sana | H | P | 96% Hh (H3–H8), P, Gu |
20 | Floragard | H | P | 100% Hh (H2–H8), Gu |
21 | Fleurelle | M | P | Hh (H2–H6), F, G, Gu |
22 | Hewita Flor | M | P/F | Hh (H2–H6), G, C, S |
23 | Grüne Welle bio soil | M | P/F | Hh (H2–H5), G, W |
24 | Compo Bio. | H | F | Hh (H2–H5, H6–H8), G, Gu, Ca |
25 | Cuxin, for vegetables | H | F | 60% Hh (H3–H5, H5–H7), G, C, L |
26 | Stender potting soil | M | P | 100% Hh (H3–H5, H5–H7), C |
27 | Frux with natural clay | H | P | Hh, C |
28 | Euflor, plantahum | H | P/F | Hh (H3–H5), S, C |
29 | Kuhlmann potting soil | M | F | 82% Hh, 10% G, 5.5% S, 2.5% C |
30 | Grüne Welle | M | P | Hh (H3–H6), C |
31 | Raiffeisen Gartenkraft | M | P | 97% Hh (H3–H8), C, Ca, 0.07% Gu |
32 | Cuxin, for container | H | P | Hh (H3–H4, H5–H6), Co, C |
33 | DCM Cuxin, peat-free | H | P | 100% Co |
34 | Neudohum, peat-free | H | P | F, CO, C |
35 | Uniflor, Schohmaker | M | P | 100% Hh |
36 | Pro-green-BK | kA | P/F | 30% Hh, 40% Co, 30% P |
HS No. | Θs | FC | pWP | Airp20 | AirBed | EAWp20 | EAWBed | Sdry | CR5 | WDPT4 |
---|---|---|---|---|---|---|---|---|---|---|
% by vol. | cm | s | ||||||||
HS 1 | 86.2 | 48.4 | 11.9 | 9.4 | 37.8 | 32.7 | 20.0 | 29.2 | 24.4 | 5 |
HS 2 | 77.2 | 43.0 | 18.1 | 8.5 | 34.2 | 31.2 | 19.8 | 19.1 | 10.1 | 20 |
HS 3 | 78.8 | 42.2 | 16.2 | 8.4 | 36.6 | 32.9 | 19.0 | 20.2 | 26.7 | 12 |
HS 4 | 88.8 | 55.0 | 10.9 | 7.9 | 33.8 | 30.1 | 25.3 | 35.9 | 47.7 | 13 |
HS 5 | 86.3 | 47.8 | 14.4 | 13.1 | 38.5 | 27.9 | 18.3 | 25.3 | 45.7 | 0.1 |
HS 6 | 80.7 | 46.7 | 13.5 | 12.8 | 34.0 | 25.4 | 19.7 | 22.2 | 13.1 | 1 |
HS 7 | 87.2 | 52.1 | 15.3 | 10.6 | 35.2 | 29.2 | 23.8 | 27.1 | 54.7 | 0.1 |
HS 8 | 88.9 | 55.2 | 16.3 | 9.2 | 33.8 | 29.9 | 25.7 | 23.6 | 45.3 | 0.1 |
HS 9 | 90.0 | 54.6 | 19.0 | 6.0 | 35.4 | 25.9 | 27.5 | 27.2 | 29.3 | 0.1 |
HS 10 | 87.3 | 45.0 | 14.5 | 12.4 | 42.4 | 34.9 | 21.2 | 22.1 | 30.6 | 0.1 |
HS 11 | 84.3 | 46.7 | 11.6 | 6.3 | 37.6 | 34.2 | 19.0 | 29.8 | 30.4 | 32 |
HS 12 | 88.3 | 39.5 | 18.3 | 10.7 | 48.8 | 44.1 | 20.8 | 22.8 | 40.5 | 3 |
HS 13 | 87.6 | 47.2 | 16.8 | 8.3 | 40.5 | 37.2 | 24.9 | 24.1 | 18.3 | 57 |
HS 14 | 80.3 | 44.8 | 18.7 | 8.7 | 35.5 | 32.3 | 20.1 | 24.1 | 21.8 | 17 |
HS 15 | 86.2 | 51.7 | 13.6 | 7.5 | 34.5 | 32.1 | 25.2 | 31.3 | 29.0 | 7 |
HS 16 | 85.5 | 44.4 | 17.1 | 9.1 | 41.1 | 36.9 | 20.3 | 23.8 | 15.9 | 10 |
HS 17 | 87.7 | 54.3 | 15.2 | 10.5 | 33.4 | 26.4 | 26.0 | 35.2 | 35.3 | 1 |
HS 18 | 88.1 | 50.8 | 13.3 | 13.5 | 37.3 | 27.6 | 24.5 | 29.5 | 52.7 | 0.1 |
HS 19 | 88.3 | 51.1 | 7.9 | 10.9 | 37.2 | 30.5 | 26.0 | 27.1 | 36.4 | 1 |
HS 20 | 86.5 | 48.0 | 16.7 | 12.2 | 38.4 | 30.5 | 23.1 | 27.7 | 46.4 | 2 |
HS 21 | 89.3 | 48.7 | 13.2 | 13.9 | 40.6 | 32.1 | 23.5 | 19.1 | 21.5 | 1 |
HS 22 | 86.6 | 49.2 | 16.1 | 6.0 | 37.5 | 37.6 | 24.7 | 26.3 | 29.8 | 0.1 |
HS 23 | 77.9 | 41.4 | 11.3 | 8.0 | 36.5 | 33.1 | 18.4 | 18.4 | 37.2 | 19 |
HS 24 | 85.9 | 58.2 | 14.2 | 5.0 | 27.7 | 30.5 | 32.2 | 23.4 | 87.9 | 0.1 |
HS 25 | 82.9 | 44.6 | 16.7 | 9.8 | 38.3 | 34.3 | 23.9 | 24.7 | 12.7 | 3 |
HS 26 | 84.7 | 47.5 | 15.9 | 8.0 | 37.2 | 36.2 | 26.4 | 23.4 | 37.2 | 32 |
HS 27 | 83.6 | 51.9 | 11.4 | 4.2 | 31.7 | 34.6 | 36.0 | 32.1 | 79.9 | 240 |
HS 28 | 83.6 | 44.7 | 20.9 | 6.5 | 38.8 | 36.9 | 21.0 | 27.8 | 53.4 | 5 |
HS 29 | 81.6 | 47.4 | 11.1 | 6.7 | 34.3 | 32.3 | 24.0 | 24.9 | 69.6 | 7 |
HS 30 | 79.3 | 43.3 | 11.3 | 8.0 | 36.0 | 32.8 | 19.9 | 24.0 | 57.7 | 1 |
HS 31 | 84.5 | 50.7 | 10.4 | 8.7 | 33.8 | 30.0 | 23.9 | 28.4 | 53.0 | 1 |
HS 32 | 83.2 | 49.4 | 10.8 | 6.1 | 33.8 | 33.8 | 27.4 | 20.6 | 42.9 | 62 |
HS 33 | 89.0 | 38.1 | 9.1 | 17.0 | 50.9 | 38.2 | 25.1 | 14.5 | 76.3 | 0.1 |
HS 34 | 84.1 | 44.3 | 10.0 | 6.0 | 39.9 | 25.5 | 19.6 | 13.0 | 17.9 | 0.1 |
HS 35 | 79.9 | 53.2 | 15.1 | 23.9 | 26.7 | 25.4 | 22.7 | 27.6 | 26.0 | 10 |
HS 36 | 83.4 | 40.8 | 12.3 | 17.5 | 42.7 | 37.7 | 24.7 | 8.0 | 40.1 | 0.1 |
MW | 84.8 | 47.8 | 14.1 | 9.8 | 37.0 | 32.6 | 23.4 | 24.5 | 38.8 | 15.6 |
Sub-Strate | Score_Basic Requirement | Score Limitation | Score | |||||||
---|---|---|---|---|---|---|---|---|---|---|
Container | Bed | |||||||||
EAWp20 | Airp20 | EAWBed | AirBed | CR5 | Sdry | WDPT4 | Bed | Cont. | Total | |
PS 1 | 5 | 4 | 4 | 5 | 1 | 1 | 0 | 9 | 9 | 9 |
PS 2 | 5 | 4 | 3 | 5 | 1 | 0 | 2 | 8 | 7 | 7.5 |
PS 3 | 5 | 4 | 3 | 5 | 1 | 0 | 1 | 9 | 8 | 8.5 |
PS 4 | 5 | 3 | 5 | 5 | 2 | 2 | 1 | 7 | 9 | 8 |
PS 5 | 5 | 5 | 3 | 5 | 2 | 1 | 0 | 11 | 9 | 10 |
PS 6 | 5 | 5 | 3 | 5 | 1 | 0 | 0 | 11 | 9 | 10 |
PS 7 | 5 | 5 | 4 | 5 | 2 | 1 | 0 | 11 | 10 | 10.5 |
PS 8 | 5 | 4 | 5 | 5 | 2 | 0 | 0 | 11 | 12 | 11.5 |
PS 9 | 5 | 3 | 5 | 5 | 1 | 1 | 0 | 8 | 10 | 9 |
PS 10 | 5 | 5 | 4 | 5 | 2 | 0 | 0 | 12 | 11 | 11.5 |
PS 11 | 5 | 3 | 3 | 5 | 2 | 1 | 2 | 7 | 7 | 7 |
PS 12 | 5 | 5 | 4 | 5 | 2 | 0 | 0 | 12 | 11 | 11.5 |
PS 13 | 5 | 4 | 5 | 5 | 1 | 0 | 2 | 8 | 9 | 8.5 |
PS 14 | 5 | 4 | 4 | 5 | 1 | 0 | 2 | 8 | 8 | 8 |
PS 15 | 5 | 3 | 5 | 5 | 1 | 2 | 1 | 6 | 8 | 7 |
PS 16 | 5 | 4 | 4 | 5 | 1 | 0 | 1 | 9 | 9 | 9 |
PS 17 | 5 | 5 | 5 | 5 | 2 | 2 | 0 | 10 | 10 | 10 |
PS 18 | 5 | 5 | 5 | 5 | 2 | 1 | 0 | 11 | 11 | 11 |
PS 19 | 5 | 5 | 5 | 5 | 2 | 1 | 0 | 11 | 11 | 11 |
PS 20 | 5 | 5 | 4 | 5 | 2 | 1 | 0 | 11 | 10 | 10.5 |
PS 21 | 5 | 5 | 4 | 5 | 1 | 0 | 0 | 11 | 10 | 10.5 |
PS 22 | 5 | 3 | 5 | 5 | 1 | 1 | 0 | 8 | 10 | 9 |
PS 23 | 5 | 4 | 3 | 5 | 2 | 0 | 2 | 9 | 8 | 8.5 |
PS 24 | 5 | 3 | 5 | 5 | 2 | 0 | 0 | 10 | 12 | 11 |
PS 25 | 5 | 4 | 4 | 5 | 1 | 0 | 0 | 10 | 10 | 10 |
PS 26 | 5 | 4 | 5 | 5 | 2 | 0 | 2 | 9 | 10 | 9.5 |
PS 27 | 5 | 2 | 5 | 5 | 2 | 2 | 2 | 5 | 8 | 6.5 |
PS 28 | 5 | 3 | 4 | 5 | 2 | 1 | 0 | 9 | 10 | 9.5 |
PS 29 | 5 | 3 | 5 | 5 | 2 | 0 | 1 | 9 | 11 | 10 |
PS 30 | 5 | 4 | 3 | 5 | 2 | 0 | 0 | 11 | 10 | 10.5 |
PS 31 | 5 | 4 | 4 | 5 | 2 | 1 | 0 | 10 | 10 | 10 |
PS 32 | 5 | 3 | 5 | 5 | 2 | 0 | 2 | 8 | 10 | 9 |
PS 33 | 4 | 5 | 5 | 5 | 2 | 0 | 0 | 12 | 11 | 11.5 |
PS 34 | 5 | 3 | 3 | 5 | 1 | 0 | 0 | 9 | 9 | 9 |
PS 35 | 5 | 5 | 4 | 5 | 1 | 1 | 1 | 9 | 8 | 8.5 |
PS 36 | 4 | 5 | 5 | 5 | 2 | 0 | 0 | 12 | 11 | 11.5 |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Schindler, U.; Lischeid, G.; Müller, L. Hydraulic Performance of Horticultural Substrates—3. Impact of Substrate Composition and Ingredients. Horticulturae 2017, 3, 7. https://doi.org/10.3390/horticulturae3010007
Schindler U, Lischeid G, Müller L. Hydraulic Performance of Horticultural Substrates—3. Impact of Substrate Composition and Ingredients. Horticulturae. 2017; 3(1):7. https://doi.org/10.3390/horticulturae3010007
Chicago/Turabian StyleSchindler, Uwe, Gunnar Lischeid, and Lothar Müller. 2017. "Hydraulic Performance of Horticultural Substrates—3. Impact of Substrate Composition and Ingredients" Horticulturae 3, no. 1: 7. https://doi.org/10.3390/horticulturae3010007
APA StyleSchindler, U., Lischeid, G., & Müller, L. (2017). Hydraulic Performance of Horticultural Substrates—3. Impact of Substrate Composition and Ingredients. Horticulturae, 3(1), 7. https://doi.org/10.3390/horticulturae3010007