Exploring Dielectric and Magnetic Properties of Ni and Co Ferrites through Biopolymer Composite Films
Abstract
:1. Introduction
2. Materials and Methods
2.1. Samples Preparation
2.2. Characterisation Techniques
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ferreira da Silva, M.G.; Valente, M.A. Magnesium Ferrite Nanoparticles Inserted in a Glass Matrix—Microstructure and Magnetic Properties. Mater. Chem. Phys. 2012, 132, 264–272. [Google Scholar] [CrossRef]
- Indira, T.K.; Lakshmi, P.K. Magnetic Nanoparticles—A Review. Int. J. Pharma. Sci. Nanotechnol. 2010, 3, 1035–1042. [Google Scholar] [CrossRef]
- Éfendiyev, É.H.; Ali-Zade, R.A.; Zubov, V.P. Synthesis of Polymer Magnetic Microspheres and Study of Their Magnetic Properties. Crystallogr. Rep. 2005, 50, S168–S172. [Google Scholar] [CrossRef]
- Sharifi, I.; Shokrollahi, H.; Amiri, S. Ferrite-Based Magnetic Nanofluids Used in Hyperthermia Applications. J. Magn. Magn. Mater. 2012, 324, 903–915. [Google Scholar] [CrossRef]
- Veiseh, O.; Gunn, J.W.; Zhang, M. Design and Fabrication of Magnetic Nanoparticles for Targeted Drug Delivery and Imaging. Adv. Drug. Deliv. Rev. 2010, 62, 284–304. [Google Scholar] [CrossRef] [PubMed]
- Medeiros, S.F.; Santos, A.M.; Fessi, H.; Elaissari, A. Stimuli-Responsive Magnetic Particles for Biomedical Applications. Int. J. Pharm. 2011, 403, 139–161. [Google Scholar] [CrossRef] [PubMed]
- Wu, H.; Liu, G.; Wang, X.; Zhang, J.; Chen, Y.; Shi, J.; Yang, H.; Hu, H.; Yang, S. Solvothermal Synthesis of Cobalt Ferrite Nanoparticles Loaded on Multiwalled Carbon Nanotubes for Magnetic Resonance Imaging and Drug Delivery. Acta Biomater. 2011, 7, 3496–3504. [Google Scholar] [CrossRef] [PubMed]
- Mahmoudi, M.; Sant, S.; Wang, B.; Laurent, S.; Sen, T. Superparamagnetic Iron Oxide Nanoparticles (SPIONs): Development, Surface Modification and Applications in Chemotherapy. Adv. Drug. Deliv. Rev. 2011, 63, 24–46. [Google Scholar] [CrossRef]
- Srinivasan, S.Y.; Paknikar, K.M.; Bodas, D.; Gajbhiye, V. Applications of cobalt ferrite nanoparticles in biomedical nanotechnology. Nanomedicine 2018, 13, 1221–1238. [Google Scholar] [CrossRef]
- Yudaev, P.; Butorova, I.; Stepanov, G.; Chistyakov, E. Extraction of Palladium (II) with a Magnetic Sorbent Based on Polyvinyl Alcohol Gel, Metallic Iron, and an Environmentally Friendly Polydentate Phosphazene-Containing Extractant. Gels 2022, 8, 492. [Google Scholar] [CrossRef]
- Divya, S.; Sivaprakash, P.; Raja, S.; Muthu, S.E.; Eed, E.M.; Arumugam, S.; Oh, T.H. Temperature-Dependent Dielectric and Magnetic Properties of NiFe2O4 Nanoparticles. Appl. Nanosci. 2023, 13, 1327–1336. [Google Scholar] [CrossRef]
- Gasser, A.; Ramadan, W.; Getahun, Y.; Garcia, M.; Karim, M.; El-Gendy, A.A. Feasibility of Superparamagnetic NiFe2O4 and GO-NiFe2O4 Nanoparticles for Magnetic Hyperthermia. Mater. Sci. Eng. B 2023, 297, 116721. [Google Scholar] [CrossRef]
- Mullurkara, S.; Fang, Y.; Taddei, K.M.; Wang, G.; Ohodnicki, P. Experimental and Theoretical Investigation of Cation Site Occupation and Magnetic Ordering in CoFe2O4. IEEE Trans. Magn. 2023, 59, 1–5. [Google Scholar] [CrossRef]
- Bilovol, V.; Sikora, M.; Lisníková, S.; Żukrowski, J.; Berent, K.; Gajewska, M. Occupancies of Tetra- and Octahedral Sites in CoFe2O4 Nanoparticles: The Effect of the Sintering Temperature. J. Appl. Phys. 2023, 134, 094304. [Google Scholar] [CrossRef]
- Sivanandan, V.T.; Prasad, A.S. Impact of Green Synthesis on Crystallographic Structure, Optical and Magnetic Properties of Nanocrystalline CoFe2O4. J. Electron. Mater. 2023, 52, 4045–4056. [Google Scholar] [CrossRef]
- Darvishi, M.; Hasani, S.; Mashreghi, A.; Taghi Rezvan, M.; Ziarati, A. Application of the Full Factorial Design to Improving the Properties of CoFe2O4 Nanoparticles by Simultaneously Adding Apple Cider Vinegar and Agarose. Mater. Sci. Eng. B 2023, 297, 116754. [Google Scholar] [CrossRef]
- Chang, P.R.; Yu, J.; Ma, X.; Anderson, D.P. Polysaccharides as Stabilizers for the Synthesis of Magnetic Nanoparticles. Carbohydr. Polym. 2011, 83, 640–644. [Google Scholar] [CrossRef]
- Philippova, O.; Barabanova, A.; Molchanov, V.; Khokhlov, A. Magnetic Polymer Beads: Recent Trends and Developments in Synthetic Design and Applications. Eur. Polym. J. 2011, 47, 542–559. [Google Scholar] [CrossRef]
- Rozenberg, B.A.; Tenne, R. Polymer-Assisted Fabrication of Nanoparticles and Nanocomposites. Prog. Polym. Sci. 2008, 33, 40–112. [Google Scholar] [CrossRef]
- Rezaei, B.; Yari, P.; Sanders, S.M.; Wang, H.; Chugh, V.K.; Liang, S.; Mostufa, S.; Xu, K.; Wang, J.; Gómez-Pastora, J.; et al. Magnetic Nanoparticles: A Review on Synthesis, Characterization, Functionalization, and Biomedical Applications. Small 2024, 20, e2304848. [Google Scholar] [CrossRef]
- Li, G.; Jiang, Y.; Huang, K.; Ding, P.; Chen, J. Preparation and Properties of Magnetic Fe3O4–Chitosan Nanoparticles. J. Alloys Compd. 2008, 466, 451–456. [Google Scholar] [CrossRef]
- Reddy, N.N.; Varaprasad, K.; Ravindra, S.; Reddy, G.V.S.; Reddy, K.M.S.; Mohan Reddy, K.M.; Raju, K.M. Evaluation of Blood Compatibility and Drug Release Studies of Gelatin Based Magnetic Hydrogel Nanocomposites. Colloids Surf. A Physicochem. Eng. Asp. 2011, 385, 20–27. [Google Scholar] [CrossRef]
- Chen, J.-P.; Yang, P.-C.; Ma, Y.-H.; Wu, T. Characterization of Chitosan Magnetic Nanoparticles for in Situ Delivery of Tissue Plasminogen Activator. Carbohydr. Polym. 2011, 84, 364–372. [Google Scholar] [CrossRef]
- Yardımcı, F.S.; Şenel, M.; Baykal, A. Amperometric Hydrogen Peroxide Biosensor Based on Cobalt Ferrite–Chitosan Nanocomposite. Mater. Sci. Eng. C 2012, 32, 269–275. [Google Scholar] [CrossRef]
- Karthikeyan, P.; Vigneshwaran, S.; Meenakshi, S. Al3+ Incorporated Chitosan-Gelatin Hybrid Microspheres and Their Use for Toxic Ions Removal: Assessment of Its Sustainability Metrics. Environ. Chem. Ecotoxicol. 2020, 2, 97–106. [Google Scholar] [CrossRef]
- Elanchezhiyan, S.S.D.; Meenakshi, S. Encapsulation of Metal Ions between the Biopolymeric Layer Beads for Tunable Action on Oil Particles Adsorption from Oily Wastewater. J. Mol. Liq. 2018, 255, 429–438. [Google Scholar] [CrossRef]
- Sheth, Y.; Dharaskar, S.; Khalid, M.; Sonawane, S. An Environment Friendly Approach for Heavy Metal Removal from Industrial Wastewater Using Chitosan Based Biosorbent: A Review. Sustain. Energy Technol. Assess. 2021, 43, 100951. [Google Scholar] [CrossRef]
- Dash, M.; Chiellini, F.; Ottenbrite, R.M.; Chiellini, E. Chitosan—A Versatile Semi-Synthetic Polymer in Biomedical Applications. Prog. Polym. Sci. 2011, 36, 981–1014. [Google Scholar] [CrossRef]
- Agrawal, P.; Strijkers, G.J.; Nicolay, K. Chitosan-Based Systems for Molecular Imaging. Adv. Drug. Deliv. Rev. 2010, 62, 42–58. [Google Scholar] [CrossRef]
- Hritcu, D.; Popa, M.I.; Popa, N.; Badescu, V.; Balan, V. Preparation and Characterization of Magnetic Chitosan Nanospheres. Turk. J. Chem. 2009, 33, 785–796. [Google Scholar] [CrossRef]
- Yudaev, P.; Semenova, A.; Chistyakov, E. Gel based on modified chitosan for oil spill cleanup. J. Appl. Polym. Sci. 2024, 141, e54838. [Google Scholar] [CrossRef]
- Mikhailov, O.V. Gelatin as It Is: History and Modernity. Int. J. Mol. Sci. 2023, 24, 3583. [Google Scholar] [CrossRef] [PubMed]
- Huss, F.R.M.; Nyman, E.; Bolin, J.S.C.; Kratz, G. Use of Macroporous Gelatine Spheres as a Biodegradable Scaffold for Guided Tissue Regeneration of Healthy Dermis in Humans: An In Vivo Study. J. Plast. Reconstr. Aesthetic Surg. 2010, 63, 848–857. [Google Scholar] [CrossRef] [PubMed]
- Gómez-Guillén, M.C.; Giménez, B.; López-Caballero, M.E.; Montero, M.P. Functional and Bioactive Properties of Collagen and Gelatin from Alternative Sources: A Review. Food Hydrocoll. 2011, 25, 1813–1827. [Google Scholar] [CrossRef]
- Abdeen, Z.I.; Ghoneim, A.I. Improving of the Mg-Co nanoferrites efficiency for crude oil adsorption from aqueous solution by blending them with chitosan hydrogel. Environ. Sci. Pollut. Res. 2020, 27, 19038–19048. [Google Scholar] [CrossRef] [PubMed]
- Barreto, A.C.H.; Maia, F.J.N.; Santiago, V.R.; Ribeiro, V.G.P.; Denardin, J.C.; Mele, G.; Carbone, L.; Lomonaco, D.; Mazzetto, S.E.; Fechine, P.B.A. Novel Ferrofluids Coated with a Renewable Material Obtained from Cashew Nut Shell Liquid. Microfluid. Nanofluidics 2012, 12, 677–686. [Google Scholar] [CrossRef]
- Muley, A.B.; Ladole, M.R.; Suprasanna, P.; Dalvi, S.G. Intensification in Biological Properties of Chitosan after γ-Irradiation. Int. J. Biol. Macromol. 2019, 131, 435–444. [Google Scholar] [CrossRef] [PubMed]
- Hartati, H.; Subaer, S.; Hasri, H.; Wibawa, T.; Hasriana, H. Microstructure and Antibacterial Properties of Chitosan-Fe3O4-AgNP Nanocomposite. Nanomaterials 2022, 12, 3652. [Google Scholar] [CrossRef] [PubMed]
- He, B.; Wang, X.; Xue, H. The Performance of Chitosan/Gelatin Composite Microspheres in the Wash-off Procedure of Reactive Dyeing. Color. Technol. 2016, 132, 353–360. [Google Scholar] [CrossRef]
- Peng, J.; Wang, X.; Lou, T. Preparation of Chitosan/Gelatin Composite Foam with Ternary Solvents of Dioxane/Acetic Acid/Water and Its Water Absorption Capacity. Polym. Bull. 2020, 77, 5227–5244. [Google Scholar] [CrossRef]
- Bartolomé, E.; Cayado, P.; Solano, E.; Ricart, S.; Gázquez, J.; Mundet, B.; Coll, M.; Puig, T.; Obradors, X.; Valvidares, M.; et al. Magnetic Stability against Calcining of Microwave-Synthesized CoFe2O4 Nanoparticles. New J. Chem. 2016, 40, 6890–6898. [Google Scholar] [CrossRef]
- Shokri, S.; Shariatifar, N.; Molaee-Aghaee, E.; Khaniki, G.J.; Sadighara, P.; Faramarzi, M.A.; Mohammadi, M.; Rezagholizade-Shirvan, A. Synthesis and characterization of a novel magnetic chitosan–nickel ferrite nanocomposite for antibacterial and antioxidant properties. Sci. Rep. 2023, 13, 15777. [Google Scholar] [CrossRef] [PubMed]
- Tuzi, S.; Stiller, K.; Thuvander, M. Oxidation of Alloy X-750 with Low Iron Content in Simulated BWR Environment. J. Nucl. Eng. 2023, 4, 711–722. [Google Scholar] [CrossRef]
- Jia, Z.; Yang, C.; Zhao, F.; Chao, X.; Li, Y.; Xing, H. One-Step Reinforcement and Deacidification of Paper Documents: Application of Lewis Base—Chitosan Nanoparticle Coatings and Analytical Characterization. Coatings 2020, 10, 1226. [Google Scholar] [CrossRef]
- Liu, X.; Liu, S.; Han, M.-G.; Zhao, L.; Deng, H.; Li, J.; Zhu, Y.; Krusin-Elbaum, L.; O’Brien, S. Magnetoelectricity in CoFe2O4 Nanocrystal-P(VDF-HFP) Thin Films. Nanoscale Res. Lett. 2013, 8, 374. [Google Scholar] [CrossRef] [PubMed]
- dos Santos, J.M.N.; Pereira, C.R.; Pinto, L.A.A.; Frantz, T.; Lima, É.C.; Foletto, E.L.; Dotto, G.L. Synthesis of a Novel CoFe2O4/Chitosan Magnetic Composite for Fast Adsorption of Indigotine Blue Dye. Carbohydr. Polym. 2019, 217, 6–14. [Google Scholar] [CrossRef] [PubMed]
- Lemine, O.M.; Alanazi, A.; Albert, E.L.; Hjiri, M.; M’hamed, M.O.; Alrub, S.A.; Alkaoud, A.; Abdullah, C.A.C. γ-Fe2O3/Gd2O3-chitosan magnetic nanocomposite for hyperthermia application: Structural, magnetic, heating efficiency and cytotoxicity studies. Appl. Phys. A 2020, 126, 471. [Google Scholar] [CrossRef]
- Deuflhard, M.; Eberbeck, D.; Hietschold, P.; Wilharm, N.; Mühlberger, M.; Friedrich, R.P.; Alexiou, C.; Mayr, S.G. Magnetically responsive composites: Electron beam assisted magnetic nanoparticle arrest in gelatin hydrogels for bioactuation. Phys. Chem. Chem. Phys. 2019, 21, 14654–14662. [Google Scholar] [CrossRef] [PubMed]
- Gurgel, A.L.; Martinelli, A.E.; de Aquino Conceição, O.L.; Xavier, M.M.; Morales Torres, M.A.; de Araújo Melo, D.M. Microwave-Assisted Hydrothermal Synthesis and Magnetic Properties of Nanostructured Cobalt Ferrite. J. Alloys Compd. 2019, 799, 36–42. [Google Scholar] [CrossRef]
- Drobota, M.; Vlad, S.; Gradinaru, L.M.; Bargan, A.; Radu, I.; Butnaru, M.; Rîmbu, C.M.; Ciobanu, R.C.; Aflori, M. Composite materials based on gelatin and iron oxide nanoparticles for MRI accuracy. Materials 2022, 15, 3479. [Google Scholar] [CrossRef]
- Bordewijk, P. Theory of Electric Polarization; Elsevier: Amsterdam, The Netherlands, 1978. [Google Scholar]
- Devesa, S.; da Silva, P.S.P.; Graça, M.P.; Costa, L.C.; Paixão, J.A. Impedance Spectroscopy Studies of ErNbO4 Synthesised by the Sol–Gel Method. J. Sol-Gel Sci. Technol. 2020, 96, 143–152. [Google Scholar] [CrossRef]
- Devesa, S.; Gonçalves, F.; Graça, M. Influence of the Preparation Method on the Structural, Morphological and Dielectric Properties of FeNbO4 Ceramics. Materials 2023, 16, 3202. [Google Scholar] [CrossRef]
- Devesa, S.; Graça, M.P.; Henry, F.; Costa, L.C. Dielectric Properties of FeNbO4 Ceramics Prepared by the Sol-Gel Method. Solid State Sci. 2016, 61, 44–50. [Google Scholar] [CrossRef]
- Lima, M.M.R.A.; Monteiro, R.C.C.; Graça, M.P.F.; Ferreira da Silva, M.G. Structural, Electrical and Thermal Properties of Borosilicate Glass–Alumina Composites. J. Alloys Compd. 2012, 538, 66–72. [Google Scholar] [CrossRef]
- Graça, M.P.F.; Prezas, P.R.; Costa, M.M.; Valente, M.A. Structural and Dielectric Characterization of LiNbO3 Nano-Size Powders Obtained by Pechini Method. J. Sol-Gel Sci. Technol. 2012, 64, 78–85. [Google Scholar] [CrossRef]
- Samouillan, V.; Lamure, A.; Lacabanne, C. Dielectric Relaxations of Collagen and Elastin in the Dehydrated State. Chem. Phys. 2000, 255, 259–271. [Google Scholar] [CrossRef]
- Gulino, M.; Bellia, P.; Falciglia, F.; Musumeci, F.; Pappalardo, A.; Scordino, A.; Triglia, A. Role of Water Content in Dielectric Properties and Delayed Luminescence of Bovine Achilles’ Tendon. FEBS Lett. 2005, 579, 6101–6104. [Google Scholar] [CrossRef]
- Marzec, E.; Warchoł, W. Dielectric Properties of a Protein–Water System in Selected Animal Tissues. Bioelectrochemistry 2005, 65, 89–94. [Google Scholar] [CrossRef]
- López, F.A.; Mercê, A.L.R.; Alguacil, F.J.; López-Delgado, A. A Kinetic Study on the Thermal Behaviour of Chitosan. J. Therm. Anal Calorim. 2008, 91, 633–639. [Google Scholar] [CrossRef]
Sample | ε′ (280 K, 1 MHz) | ε″ (280 K, 1 MHz) | tan δ (280 K, 1 MHz) | τo (×10−5 s) (280 K) | Ea(AC) (eV) (1 MHz) |
---|---|---|---|---|---|
CG11 | 3.315 | 0.104 | 0.0314 | 3.462 | 0.248 |
CG11Co | 3.725 | 0.194 | 0.0521 | 3.128 | 0.250 |
CG11Ni | 4.456 | 0.267 | 0.0601 | 2.687 | 0.241 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Góes, J.C.; Figueiró, S.D.; Sabóia, K.D.A.; Nunes, Y.L.; Barreto, A.C.H.; Fechine, P.B.A.; Devesa, S.; Sombra, A.S.B.; Valente, M.A.; Gavinho, S.R.; et al. Exploring Dielectric and Magnetic Properties of Ni and Co Ferrites through Biopolymer Composite Films. Magnetochemistry 2024, 10, 20. https://doi.org/10.3390/magnetochemistry10040020
Góes JC, Figueiró SD, Sabóia KDA, Nunes YL, Barreto ACH, Fechine PBA, Devesa S, Sombra ASB, Valente MA, Gavinho SR, et al. Exploring Dielectric and Magnetic Properties of Ni and Co Ferrites through Biopolymer Composite Films. Magnetochemistry. 2024; 10(4):20. https://doi.org/10.3390/magnetochemistry10040020
Chicago/Turabian StyleGóes, Júlio C., Sónia D. Figueiró, Karlo David A. Sabóia, Yana Luck Nunes, António César H. Barreto, Pierre Basílio Almeida Fechine, Susana Devesa, António Sérgio Bezerra Sombra, Manuel A. Valente, Sílvia Rodrigues Gavinho, and et al. 2024. "Exploring Dielectric and Magnetic Properties of Ni and Co Ferrites through Biopolymer Composite Films" Magnetochemistry 10, no. 4: 20. https://doi.org/10.3390/magnetochemistry10040020