An Overview of the Current Trends in Marine Plastic Litter Management for a Sustainable Development
Abstract
:1. Introduction
2. Methodology
2.1. Sources, Impact and Valorization
2.2. Marine Plastic Litter Actions
3. Sources, Monitoring and Detection of Marine Plastic Litter in the Aquatic Ecosystem
3.1. Sources of Marine Plastic Litter
3.1.1. Land-Based Sources
3.1.2. Sea-Based Sources
3.2. Monitoring and Detection Methods
3.2.1. Analytical Methods
3.2.2. Machine Learning
3.2.3. Internet of Things
3.2.4. Citizen Science
3.3. Potential Impact of Marine Macro- and Microplastic Litter
3.3.1. Socio-Economic Impact
3.3.2. Environmental Impact
4. Technologies for Recycling of Plastic Litter
4.1. Mechanical Recycling
4.2. Additive Manufacturing
4.3. Chemical Recycling
4.4. Hydrothermal Carbonization
4.5. Blockchain Technology
4.6. Cleaner Manufacturing Processes
5. Policy Support in Addressing Marine Plastic Litter
6. Conclusions and Perspectives
- The specific characteristics of marine plastic litter influence the choice of recycling technology.
- The traditional mechanical recycling methods are widely applied to SUP. However, for marine plastic litter, the technology is impractical, due to a combination of plastic types and poor mechanical properties. The important challenges include establishing the mechanical properties of marine plastic litter, incorporating virgin polymers, if necessary, and identifying the appropriate product for processing.
- A promising approach for addressing marine plastic litter involves thermochemical recycling (pyrolysis). However, due to the complex chemical composition of marine plastic litter as well as the presence of biomass, heavy metals, salts, and toxic gases during heat treatment, chemical recycling of marine plastic litter has not been developed at an industrial scale.
- Marine plastic waste can constitute raw materials for different applications such as 3D samples, fiber reinforcement in gypsum-based materials, fuel, energy, and adsorbent materials for dye, heavy metal, and emerging pollutant removal.
- BCT could be investigated for its significant potential to transform waste management practices, offering a contribution to making plastic waste management more sustainable, environmentally friendly, and economically efficient.
- Further research and development, such as the integration of Industry 4.0 technologies for creating sensors and IoT devices, analyzing data with machine learning algorithms, and exploring new methods for transforming collected plastic waste into high-value products through advanced processing and 3D printing technologies, is necessary to overcome associated challenges and improve the efficiency of existing monitoring and recycling methods for marine plastic litter.
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- UN Environment Programme. Available online: https://www.unep.org/interactives/beat-plastic-pollution/ (accessed on 27 March 2024).
- Agamuthu, P.; Mehran, S.B.; Norkhairah, A.; Norkhairiyah, A. Marine debris: A review of impacts and global initiatives. Waste Manag. Res. 2019, 37, 987–1002. [Google Scholar] [CrossRef] [PubMed]
- The Environmental Impacts of Plastics and Micro-Plastics Use, Waste and Pollution: EU and National Measures. Available online: https://www.europarl.europa.eu/RegData/etudes/STUD/2020/658279/IPOL_STU(2020)658279_EN.pdf (accessed on 22 November 2023).
- Plastics—The Facts 2022. Available online: https://plasticseurope.org/wp-content/uploads/2022/10/PE-PLASTICS-THE-FACTS_V7-Tue_19-10-1.pdf (accessed on 22 November 2023).
- Narayanan, M. Origination, fate, accumulation, and impact, of microplastics in a marine ecosystem and bio/technological approach for remediation: A review. Process Saf. Environ. Prot. 2023, 177, 472–485. [Google Scholar] [CrossRef]
- World Health Organization (WHO)—Health-Care Waste. Available online: https://www.who.int/news-room/fact-sheets/detail/health-care-waste (accessed on 27 March 2024).
- U.S. Environmental Protection Agency—National Overview: Facts and Figures on Materials, Wastes and Recycling. Available online: https://www.epa.gov/facts-and-figures-about-materials-waste-and-recycling/national-overview-facts-and-figures-materials (accessed on 27 March 2024).
- Tuuri, E.; Leterme, S. How plastic debris and associated chemicals impact the marine food web: A review. Environ. Pollut. 2023, 321, 121156. [Google Scholar] [CrossRef] [PubMed]
- Andrady, A.L. Persistence of Plastic Litter in the Oceans. In Marine Anthropogenic Litter; Bergmann, M., Gutow, L., Klages, M., Eds.; Springer: Berlin/Heidelberg, Germany, 2015; pp. 57–72. [Google Scholar]
- Iñiguez, M.E.; Conesa, J.A.; Fullana, A. Hydrothermal carbonization (HTC) of marine plastic debris. Fuel 2019, 257, 116033. [Google Scholar] [CrossRef]
- Hee, J.; Schlögel, K.; Lechthaler, S.; Plaster, J.; Bitter, K.; Blank, L.M.; Quicker, P. Comparative Analysis of the Behaviour of Marine Litter in Thermochemical Waste Treatment Processes. Processes 2021, 9, 13. [Google Scholar] [CrossRef]
- Roager, L.; Sonnenschein, E.C. Bacterial Candidates for Colonization and Degradation of Marine Plastic Debris. Environ. Sci. Technol. 2019, 53, 11636–11643. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, T.T.T.; Ha, N.H.; Bui, T.K.L.; Nguyen, K.L.P.; Tran, D.P.T.; Nguyen, H.Q.; El-Arini, A.; Schuyler, Q.; Nguyen, T.T.L. Baseline Marine Litter Surveys along Vietnam Coasts Using Citizen Science Approach. Sustainability 2022, 14, 4919. [Google Scholar] [CrossRef]
- Derraik, J.G.B. The pollution of the marine environment by plastic debris: A review. Mar. Pollut. Bull. 2002, 44, 842–852. [Google Scholar] [CrossRef] [PubMed]
- Orthodoxou, D.L.; Loizidou, X.I.; Baldwin, C.; Kocareis, C.; Karonias, A.; Ates, M.A. Seasonal and geographic variations of marine litter: A comprehensive study from the island of Cyprus. Mar. Pollut. Bull. 2022, 177, 113495. [Google Scholar] [CrossRef]
- Paiu, A.; Mirea, M.C.; Gheorghe, A.M.; Ionascu, A.S.; Paiu, M.; Timofte, C.; Panayotova, M.; Bekova, R.; Todorova, V.; Stefanova, K.; et al. Marine litter monitoring on the Black Sea beaches in 2019: The ANEMONE Project experience. In Marine Litter in the Black Sea; Aytan, U., Pogojeva, M., Simeonova, A., Eds.; Turkish Marine Research Foundation Publication; Turkish Marine Research Foundation-Tudav: Istanbul, Turkey, 2020; Volume 56, pp. 23–36. [Google Scholar]
- Camacho, M.; Herrera, A.; Gómez, M.; Acosta-Dacal, A.; Martínez, I.; Henríquez-Hernández, L.A.; Luzardo, O.P. Organic pollutants in marine plastic debris from Canary Islands beaches. Sci. Total Environ. 2019, 662, 22–31. [Google Scholar] [CrossRef]
- De-la-Torre, G.E.; Dioses-Salinas, D.C.; Pizarro-Ortega, C.I.; López, A.D.F.; Severini, M.D.F.; Rimondino, G.N.; Malanca, F.E.; Dobaradaran, S.; Aragaw, T.A.; Mghili, B.; et al. Plastic and paint debris in marine protected areas of Peru. Sci. Total Environ. 2023, 901, 165788. [Google Scholar] [CrossRef] [PubMed]
- Reinold, S.; Herrera, A.; Stile, N.; Saliu, F.; Hernandez-Gonzalez, C.; Martinez, I.; Ortega, Z.; Marrero, M.D.; Lasagni, M.; Gomez, M. An annual study on plastic accumulation in surface water and sediment cores from the coastline of Tenerife (Canary Island, Spain). Mar. Pollut. Bull. 2021, 173, 113072. [Google Scholar] [CrossRef] [PubMed]
- Kusenberg, M.; Faussone, G.C.; Thi, H.D.; Roosen, M.; Grilc, M.; Eschenbacher, A.; De Meester, S.; Van Geem, K.M. Maximizing olefin production via steam cracking of distilled pyrolysis oils from difficult-to-recycle municipal plastic waste and marine litter. Sci. Total Environ. 2022, 838, 156092. [Google Scholar] [CrossRef] [PubMed]
- Davidson, J.; Arienzo, M.M.; Harrold, Z.; West, C.; Bandala, E.R.; Easler, S.; Senft, K. Polymer Characterization of Submerged Plastic Litter from Lake Tahoe, United States. Appl. Spectrosc. 2023, 77, 1240–1252. [Google Scholar] [CrossRef] [PubMed]
- Arenas, L.R.; Gentile, S.R.; Zimmermann, S.; Stoll, S. Fate and removal efficiency of polystyrene nanoplastics in a pilot drinking water treatment plant. Sci. Total Environ. 2022, 813, 152623. [Google Scholar] [CrossRef] [PubMed]
- Jiménez-Lamana, J.; Marigliano, L.; Allouche, J.; Grassl, B.; Szpunar, J.; Reynaud, S. A Novel Strategy for the Detection and Quantification of Nanoplastics by Single Particle Inductively Coupled Plasma Mass Spectrometry (ICP-MS). Anal. Chem. 2020, 92, 11664–11672. [Google Scholar] [CrossRef] [PubMed]
- Udenby, F.A.O.; Almuhtaram, H.; McKie, M.J.; Andrews, R.C. Adsorption of fluoranthene and phenanthrene by virgin and weathered polyethylene microplastics in freshwaters. Chemosphere 2022, 307, 135585. [Google Scholar] [CrossRef] [PubMed]
- Yu, J.K.; Ma, X.Y. Exploring the management policy of marine microplastic litter in China: Overview, challenges and prospects. Sustain. Prod. Consum. 2022, 32, 607–618. [Google Scholar] [CrossRef]
- Faussone, G.C.; Krzan, A.; Grilc, M. Conversion of Marine Litter from Venice Lagoon into Marine Fuels via Thermochemical Route: The Overview of Products, Their Yield, Quality and Environmental Impact. Sustainability 2021, 13, 9481. [Google Scholar] [CrossRef]
- ISO/TR 21960:2020; Plastics—Environmental Aspects—State of Knowledge and Methodologies. International Organization for Standardization: Geneva, Switzerland, 2020.
- Devi, M.K.; Karmegam, N.; Manikandan, S.; Subbaiya, R.; Song, H.; Kwon, E.E.; Sarkar, B.; Bolan, N.; Kim, W.; Rinklebe, J.; et al. Removal of nanoplastics in water treatment processes: A review. Sci. Total Environ. 2022, 845, 157168. [Google Scholar] [CrossRef]
- Zhang, Y.L.; Diehl, A.; Lewandowski, A.; Gopalakrishnan, K.; Baker, T. Removal efficiency of micro- and nanoplastics (180 nm–125 μm) during drinking water treatment. Sci. Total Environ. 2020, 720, 137383. [Google Scholar] [CrossRef]
- Shruti, V.C.; Pérez-Guevara, F.; Elizalde-Martínez, I.; Kutralam-Muniasamy, G. Toward a unified framework for investigating micro(nano)plastics in packaged beverages intended for human consumption. Environ. Pollut. 2021, 268, 115811. [Google Scholar] [CrossRef]
- Rapa, M.; Darie-Nita, R.N.; Matei, E.; Predescu, A.M.; Berbecaru, A.C.; Predescu, C. Insights into Anthropogenic Micro- and Nanoplastic Accumulation in Drinking Water Sources and Their Potential Effects on Human Health. Polymers 2023, 15, 2425. [Google Scholar] [CrossRef]
- Borongan, G.; NaRanong, A. Practical Challenges and Opportunities for Marine Plastic Litter Reduction in Manila: A Structural Equation Modeling. Sustainability 2022, 14, 6128. [Google Scholar] [CrossRef]
- Zhou, R.R.; Lu, G.H.; Yan, Z.H.; Jiang, R.R.; Bao, X.H.; Lu, P. A review of the in fluences of microplastics on toxicity and transgenerational effects of pharmaceutical and personal care products in aquatic environment. Sci. Total Environ. 2020, 732, 39222. [Google Scholar] [CrossRef]
- Wilkinson, J.; Hooda, P.S.; Barker, J.; Barton, S.; Swinden, J. Occurrence, fate and transformation of emerging contaminants in water: An overarching review of the field. Environ. Pollut. 2017, 231, 954–970. [Google Scholar] [CrossRef]
- Sandre, F.; Dromard, C.R.; Le Menach, K.; Bouchon-Navaro, Y.; Cordonnier, S.; Tapie, N.; Budzinski, H.; Bouchon, C. Microplastic Distribution and Detection of Chlordecone on Microplastics in Marine Sediments in Guadeloupe: A Preliminary Study. Gulf Caribb. Res. 2019, 30, GCFI8–GCFI14. [Google Scholar] [CrossRef]
- Bakir, A.; O’Connor, I.A.; Rowland, S.J.; Hendriks, A.J.; Thompson, R.C. Relative importance of microplastics as a pathway for the transfer of hydrophobic organic chemicals to marine life. Environ. Pollut. 2016, 219, 56–65. [Google Scholar] [CrossRef]
- Campanale, C.; Dierkes, G.; Massarelli, C.; Bagnuolo, G.; Uricchio, V.F. A Relevant Screening of Organic Contaminants Present on Freshwater and Pre-Production Microplastics. Toxics 2020, 8, 100. [Google Scholar] [CrossRef]
- Agbo, I.A.; Abaye, D. Levels of Polychlorinated Biphenyls in Plastic Resin Pellets from Six Beaches on the Accra-Tema Coastline, Ghana. J. Health Pollut. 2016, 6, 9–17. [Google Scholar] [CrossRef]
- Zhu, X.; Qiang, L.; Shi, H.; Cheng, J. Bioaccumulation of microplastics and its in vivo interactions with trace metals in edible oysters. Mar. Pollut. Bull. 2020, 154, 111079. [Google Scholar] [CrossRef] [PubMed]
- Prunier, J.; Maurice, L.; Perez, E.; Gigault, J.; Wickmann, A.C.P.; Davranche, M.; ter Halle, A. Trace metals in polyethylene debris from the North Atlantic subtropical gyre. Environ. Pollut. 2019, 245, 371–379. [Google Scholar] [CrossRef] [PubMed]
- Turner, A. PBDEs in the marine environment: Sources, pathways and the role of microplastics. Environ. Pollut. 2022, 301, 18943. [Google Scholar] [CrossRef] [PubMed]
- Dimassi, S.N.; Hahladakis, J.N.; Yahia, M.N.D.; Ahmad, M.I.; Sayadi, S.; Al-Ghouti, M.A. Effect of temperature and sunlight on the leachability potential of BPA and phthalates from plastic litter under marine conditions. Sci. Total Environ. 2023, 894, 164954. [Google Scholar] [CrossRef] [PubMed]
- Mejjad, N.; Laissaoui, A.; Fekri, A.; El Hammoumi, O. Marine plastic pollution in Morocco: State of the knowledge on origin, occurrence, fate, and management. Environ. Sci. Pollut. Res. 2023, 30, 107371–107389. [Google Scholar] [CrossRef] [PubMed]
- Mankaa, R.N.; Traverso, M. Regional management options for floating marine litter in coastal waters from a life cycle assessment perspective. Int. J. Life Cycle Assess. 2023, 28, 1705–1722. [Google Scholar] [CrossRef]
- Tondl, G.; Bonell, L.; Pfeifer, C. Thermogravimetric analysis and kinetic study of marine plastic litter. Mar. Pollut. Bull. 2018, 133, 472–477. [Google Scholar] [CrossRef] [PubMed]
- Grant, M.L.; Lavers, J.L.; Hutton, I.; Bond, A.L. Seabird breeding islands as sinks for marine plastic debris. Environ. Pollut. 2021, 276, 116734. [Google Scholar] [CrossRef] [PubMed]
- Zhu, C.Y.; Li, D.N.; Sun, Y.X.; Zheng, X.B.; Peng, X.Z.; Zheng, K.; Hu, B.B.; Luo, X.J.; Mai, B.X. Plastic debris in marine birds from an island located in the South China Sea. Mar. Pollut. Bull. 2019, 149, 110566. [Google Scholar] [CrossRef]
- Pelamatti, T.; Fonseca-Ponce, I.A.; Rios-Mendoza, L.M.; Stewart, J.D.; Marín-Enríquez, E.; Marmolejo-Rodriguez, A.J.; Hoyos-Padilla, E.M.; Galván-Magana, F.; González-Armas, R. Seasonal variation in the abundance of marine plastic debris in Banderas Bay, Mexico. Mar. Pollut. Bull. 2019, 145, 604–610. [Google Scholar] [CrossRef]
- Carlotti, F.; Gérigny, O.; Bienvenu, D.; Ravel, C.; Fierro-González, P.; Guilloux, L.; Makhlouf, N.; Onrubia, J.T.; Pagano, M. Microplastics in the maximum chlorophyll layer along a north-south transect in the Mediterranean Sea in comparison with zooplankton concentrations. Mar. Pollut. Bull. 2023, 196, 115614. [Google Scholar] [CrossRef] [PubMed]
- Binetti, U.; Silburn, B.; Russell, J.; van Hoytema, N.; Meakins, B.; Kohler, P.; Desender, M.; Preston-Whyte, F.; Fa’abasu, E.; Maniel, M.; et al. First marine litter survey on beaches in Solomon Islands and Vanuatu, South Pacific: Using OSPAR protocol to inform the development of national action plans to tackle land-based solid waste pollution. Mar. Pollut. Bull. 2020, 161, 1827. [Google Scholar] [CrossRef] [PubMed]
- Pinheiro, L.M.; Lupchinski, E.; Denuncio, P.; Machado, R. Fishing plastics: A high occurrence of marine litter in surf-zone trammel nets of Southern Brazil. Mar. Pollut. Bull. 2021, 173, 112946. [Google Scholar] [CrossRef] [PubMed]
- Thushari, G.G.N.; Senevirathna, J.D.M. Plastic pollution in the marine environment. Heliyon 2020, 6, e04709. [Google Scholar] [CrossRef] [PubMed]
- van Emmerik, T.H.M.; Schreyers, L.J.; Mellink, Y.A.M.; Sok, T.; Arias, M.E. Large variation in Mekong river plastic transport between wet and dry season. Front. Environ. Sci. 2023, 11, 1173946. [Google Scholar] [CrossRef]
- McGoran, A.R.; Clark, P.F.; Smith, B.D.; Morritt, D. Macrolitter and mesolitter in the Thames Estuary: A temporal litter assessment and brand audit of submerged and riverbed debris. Environ. Pollut. 2023, 337, 22484. [Google Scholar] [CrossRef]
- Meijer, L.J.J.; van Emmerik, T.; van der Ent, R.; Schmidt, C.; Lebreton, L. More than 1000 rivers account for 80% of global riverine plastic emissions into the ocean. Sci. Adv. 2021, 7, eaaz5803. [Google Scholar] [CrossRef] [PubMed]
- Kanhai, L.K.; Asmath, H.; Gobin, J.F. The status of marine debris/litter and plastic pollution in the Caribbean Large Marine Ecosystem (CLME): 1980–2020. Environ. Pollut. 2022, 300, 18919. [Google Scholar] [CrossRef] [PubMed]
- Ben Haddad, M.; De-la-Torre, G.E.; Abelouah, M.R.; Hajji, S.; Alla, A.A. Personal protective equipment (PPE) pollution associated with the COVID-19 pandemic along the coastline of Agadir, Morocco. Sci. Total Environ. 2021, 798, 149282. [Google Scholar] [CrossRef] [PubMed]
- Islam, M.S.; Phoungthong, K.; Islam, A.M.T.; Ali, M.M.; Ismail, Z.; Shahid, S.; Kabir, M.H.; Idris, A.M. Sources and management of marine litter pollution along the Bay of Bengal coast of Bangladesh. Mar. Pollut. Bull. 2022, 185, 114362. [Google Scholar] [CrossRef]
- Xayachak, T.; Haque, N.; Lau, D.; Emami, N.; Hood, L.; Tait, H.; Foley, A.; Pramanik, B.K. White spill: Life cycle assessment approach to managing marine EPS litter from flood-released pontoons. Chemosphere 2023, 337, 139400. [Google Scholar] [CrossRef] [PubMed]
- Reddy, A.S.; Nair, A.T. The fate of microplastics in wastewater treatment plants: An overview of source and remediation technologies. Environ. Technol. Innov. 2022, 28, 25. [Google Scholar] [CrossRef]
- Wu, X.W.; Zhao, X.L.; Chen, R.Z.; Liu, P.; Liang, W.G.; Wang, J.Y.; Teng, M.M.; Wang, X.; Gao, S.X. Wastewater treatment plants act as essential sources of microplastic formation in aquatic environments: A critical review. Water Res. 2022, 221, 118825. [Google Scholar] [CrossRef]
- Pan, Y.S.; Gao, S.H.; Ge, C.; Gao, Q.; Huang, S.J.; Kang, Y.Y.; Luo, G.Y.; Zhang, Z.Q.; Fan, L.; Zhu, Y.M.; et al. Removing microplastics from aquatic environments: A critical review. Environ. Sci. Ecotechnol. 2023, 13, 100222. [Google Scholar] [CrossRef]
- Brown, E.; MacDonald, A.; Allen, S.; Allen, D. The potential for a plastic recycling facility to release microplastic pollution and possible filtration remediation effectiveness. J. Hazard. Mater. Adv. 2023, 10, 100309. [Google Scholar] [CrossRef]
- Ronkay, F.; Molnar, B.; Gere, D.; Czigany, T. Plastic waste from marine environment: Demonstration of possible routes for recycling by different manufacturing technologies. Waste Manag. 2021, 119, 101–110. [Google Scholar] [CrossRef]
- da Silva, E.F.; do Carmo, D.D.; Muniz, M.C.; dos Santos, C.A.; Cardozo, B.B.I.; Costa, D.M.D.; dos Anjos, R.M.; Vezzone, M. Evaluation of microplastic and marine debris on the beaches of Niteroi Oceanic Region, Rio De Janeiro, Brazil. Mar. Pollut. Bull. 2022, 175, 13161. [Google Scholar] [CrossRef] [PubMed]
- Black, J.E.; Kopke, K.; O’Mahony, C. A Trip Upstream to Mitigate Marine Plastic Pollution—A Perspective Focused on the MSFD and WFD. Front. Mar. Sci. 2019, 6, 689. [Google Scholar] [CrossRef]
- Consoli, P.; Falautano, M.; Sinopoli, M.; Perzia, P.; Canese, S.; Esposito, V.; Battaglia, P.; Romeo, T.; Andaloro, F.; Galgani, F.; et al. Composition and abundance of benthic marine litter in a coastal area of the central Mediterranean Sea. Mar. Pollut. Bull. 2018, 136, 243–247. [Google Scholar] [CrossRef]
- Kammann, U.; Nogueira, P.; Wilhelm, E.; Int-Veen, I.; Aust, M.O.; Wysujack, K. Abandoned, lost or otherwise discarded fishing gear (ALDFG) as part of marine litter at the seafloor of the Baltic Sea—Characterization, quantification, polymer composition and possible impact. Mar. Pollut. Bull. 2023, 194, 115348. [Google Scholar] [CrossRef]
- Kaandorp, M.L.A.; Lobelle, D.; Kehl, C.; Dijkstra, H.A.; van Sebille, E. Global mass of buoyant marine plastics dominated by large long-lived debris. Nat. Geosci. 2023, 16, 689–694. [Google Scholar] [CrossRef]
- Eriksen, M.; Lebreton, L.C.M.; Carson, H.S.; Thiel, M.; Moore, C.J.; Borerro, J.C.; Galgani, F.; Ryan, P.G.; Reisser, J. Plastic Pollution in the World’s Oceans: More than 5 Trillion Plastic Pieces Weighing over 250,000 Tons Afloat at Sea. PLoS ONE 2014, 9, e111913. [Google Scholar] [CrossRef] [PubMed]
- Pietrelli, L.; Poeta, G.; Battisti, C.; Sighicelli, M. Characterization of plastic beach debris finalized to its removal: A proposal for a recycling scheme. Environ. Sci. Pollut. Res. 2017, 24, 16536–16542. [Google Scholar] [CrossRef] [PubMed]
- Kikaki, K.; Kakogeorgiou, I.; Mikeli, P.; Raitsos, D.E.; Karantzalos, K. MARIDA: A benchmark for Marine Debris detection from Sentinel-2 remote sensing data. PLoS ONE 2022, 17, e0262247. [Google Scholar] [CrossRef] [PubMed]
- Booth, H.; Ma, W.L.; Karakus, O. High-precision density mapping of marine debris and floating plastics via satellite imagery. Sci. Rep. 2023, 13, 12. [Google Scholar] [CrossRef]
- Kylili, K.; Kyriakides, I.; Artusi, A.; Hadjistassou, C. Identifying floating plastic marine debris using a deep learning approach. Environ. Sci. Pollut. Res. 2019, 26, 17091–17099. [Google Scholar] [CrossRef] [PubMed]
- Kylili, K.; Artusi, A.; Hadjistassou, C. A new paradigm for estimating the prevalence of plastic litter in the marine environment. Mar. Pollut. Bull. 2021, 173, 113127. [Google Scholar] [CrossRef] [PubMed]
- Technology Development for Monitoring Marine Microplastic Pollution. Available online: https://www.jamstec.go.jp/microplastic/e/#project (accessed on 26 March 2024).
- Plastic-i—Revolutionising Ocean Monitoring. Available online: https://www.plastic-i.com/ (accessed on 26 March 2024).
- Ponis, S.; Plakas, G.; Aretoulaki, E.; Tzanetou, D. Tackling Marine Plastic Littering by Utilizing Internet of Things and Gamifying Citizen Engagement. In IntelliSys 2022: Intelligent Systems and Applications; Springer: Cham, Switzerland, 2023; Volume 542, pp. 367–375. [Google Scholar] [CrossRef]
- Merlino, S.; Calabro, V.; Giannelli, C.; Marini, L.; Pagliai, M.; Sacco, L.; Bianucci, M. The Smart Drifter Cluster: Monitoring Sea Currents and Marine Litter Transport Using Consumer IoT Technologies. Sensors 2023, 23, 5467. [Google Scholar] [CrossRef] [PubMed]
- Plakas, G.; Ponis, S.T.; Agalianos, K.; Aretoulaki, E. Reverse Logistics of End-of-Life Plastics Using Industrial IoT and LPWAN Technologies—A Proposed Solution for the Bottled Water Industry. Procedia Manuf. 2020, 51, 1680–1687. [Google Scholar] [CrossRef]
- Villarrubia-Gómez, P.; Cornell, S.E.; Fabres, J. Marine plastic pollution as a planetary boundary threat—The drifting piece in the sustainability puzzle. Mar. Policy 2018, 96, 213–220. [Google Scholar] [CrossRef]
- Yu, R.S.; Singh, S. Microplastic Pollution: Threats and Impacts on Global Marine Ecosystems. Sustainability 2023, 15, 13252. [Google Scholar] [CrossRef]
- Börger, T.; Hattam, C.; Burdon, D.; Atkins, J.P.; Austen, M.C. Valuing conservation benefits of an offshore marine protected area. Ecol. Econ. 2014, 108, 229–241. [Google Scholar] [CrossRef]
- Wu, P.F.; Lin, S.Y.; Cao, G.D.; Wu, J.B.; Jin, H.B.; Wang, C.; Wong, M.H.; Yang, Z.; Cai, Z.W. Absorption, distribution, metabolism, excretion and toxicity of microplastics in the human body and health implications. J. Hazard. Mater. 2022, 437, 129361. [Google Scholar] [CrossRef] [PubMed]
- Yuan, Z.H.; Nag, R.; Cummins, E. Human health concerns regarding microplastics in the aquatic environment- From marine to food systems. Sci. Total Environ. 2022, 823, 53730. [Google Scholar] [CrossRef] [PubMed]
- Tavelli, R.; Callens, M.; Grootaert, C.; Abdallah, M.F.; Rajkovic, A. Foodborne pathogens in the plastisphere: Can microplastics in the food chain threaten microbial food safety? Trends Food Sci. Technol. 2022, 129, 1–10. [Google Scholar] [CrossRef]
- Jiménez-Arroyo, C.; Tamargo, A.; Molinero, N.; Moreno-Arribas, M.V. The gut microbiota, a key to understanding the health implications of micro(nano)plastics and their biodegradation. Microb. Biotechnol. 2023, 16, 34–53. [Google Scholar] [CrossRef] [PubMed]
- Busch, M.; Bredeck, G.; Kämpfer, A.A.M.; Schins, R.P.F. Investigations of acute effects of polystyrene and polyvinyl chloride micro- and nanoplastics in an advanced in vitro triple culture model of the healthy and inflamed intestine. Environ. Res. 2021, 193, 10536. [Google Scholar] [CrossRef]
- Kumar, R.; Manna, C.; Padha, S.; Verma, A.; Sharma, P.; Dhar, A.; Ghosh, A.; Bhattacharya, P. Micro(nano)plastics pollution and human health: How plastics can induce carcinogenesis to humans? Chemosphere 2022, 298, 134267. [Google Scholar] [CrossRef] [PubMed]
- Barhoumi, B.; Sander, S.G.; Tolosa, I. A review on per- and polyfluorinated alkyl substances (PFASs) in microplastic and food-contact materials. Environ. Res. 2022, 206, 12595. [Google Scholar] [CrossRef]
- Oliveira, M.; Almeida, M.; Miguel, I. A micro(nano)plastic boomerang tale: A never ending story? TrAC Trends Anal. Chem. 2019, 112, 196–200. [Google Scholar] [CrossRef]
- Alkan, N.; Alkan, A. Chemicals associated with plastics and their ecological risks. In Marine Litter in the Black Sea; Aytan, U., Pogojeva, M., Simeonova, A., Eds.; Turkish Marine Research Foundation Publication; Turkish Marine Research Foundation-Tudav: Istanbul, Turkey, 2020; Volume 56, pp. 326–343. [Google Scholar]
- Schmidt, N.; Castro-Jiménez, J.; Fauvelle, V.; Ourgaud, M.; Sempéré, R. Occurrence of organic plastic additives in surface waters of the Rhone River (France). Environ. Pollut. 2020, 257, 13637. [Google Scholar] [CrossRef]
- Net, S.; Sempéré, R.; Delmont, A.; Paluselli, A.; Ouddane, B. Occurrence, Fate, Behavior and Ecotoxicological State of Phthalates in Different Environmental Matrices. Environ. Sci. Technol. 2015, 49, 4019–4035. [Google Scholar] [CrossRef] [PubMed]
- Paluselli, A.; Fauvelle, V.; Galgani, F.; Sempéré, R. Phthalate Release from Plastic Fragments and Degradation in Seawater. Environ. Sci. Technol. 2019, 53, 166–175. [Google Scholar] [CrossRef] [PubMed]
- Björnsdotter, M.K.; Jonker, W.; Legradi, J.; Kool, J.; Ballesteros-Gómez, A. Bisphenol A alternatives in thermal paper from the Netherlands, Spain, Sweden and Norway. Screening and potential toxicity. Sci. Total Environ. 2017, 601, 210–221. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, R.G. Maternal bisphenol A alters fetal endocrine system: Thyroid adipokine dysfunction. Food Chem. Toxicol. 2016, 95, 168–174. [Google Scholar] [CrossRef]
- Meeker, J.D.; Sathyanarayana, S.; Swan, S.H. Phthalates and other additives in plastics: Human exposure and associated health outcomes. Philos. Trans. R. Soc. B-Biol. Sci. 2009, 364, 2097–2113. [Google Scholar] [CrossRef]
- Lundebye, A.-K.; Lusher, A.L.; Bank, M.S. Marine Microplastics and Seafood: Implications for Food Security. In Microplastic in the Environment: Pattern and Process; Bank, M.S., Ed.; Springer International Publishing: Cham, Switzerland, 2022; pp. 131–153. [Google Scholar]
- Banerjee, A.; Billey, L.O.; McGarvey, A.M.; Shelver, W.L. Effects of polystyrene micro/nanoplastics on liver cells based on particle size, surface functionalization, concentration and exposure period. Sci. Total Environ. 2022, 836, 155621. [Google Scholar] [CrossRef]
- Liu, S.J.; Liu, X.Y.; Guo, J.L.; Yang, R.R.; Wang, H.W.; Sun, Y.Y.; Chen, B.; Dong, R.H. The Association between Microplastics and Microbiota in Placentas and Meconium: The First Evidence in Humans. Environ. Sci. Technol. 2022, 57, 17774–17785. [Google Scholar] [CrossRef]
- Mortensen, N.P.; Johnson, L.M.; Grieger, K.D.; Ambroso, J.L.; Fennell, T.R. Biological interactions between nanomaterials and placental development and function following oral exposure. Reprod. Toxicol. 2019, 90, 150–165. [Google Scholar] [CrossRef]
- Beaumont, N.J.; Aanesen, M.; Austen, M.C.; Börger, T.; Clark, J.R.; Cole, M.; Hooper, T.; Lindeque, P.K.; Pasco, C.; Wyles, K.J. Global ecological, social and economic impacts of marine plastic. Mar. Pollut. Bull. 2019, 142, 189–195. [Google Scholar] [CrossRef]
- Grelaud, M.; Ziveri, P. The generation of marine litter in Mediterranean island beaches as an effect of tourism and its mitigation. Sci. Rep. 2020, 10, 20326. [Google Scholar] [CrossRef]
- Wyles, K.J.; Pahl, S.; Thomas, K.; Thompson, R.C. Factors That Can Undermine the Psychological Benefits of Coastal Environments: Exploring the Effect of Tidal State, Presence, and Type of Litter. Environ. Behav. 2016, 48, 1095–1126. [Google Scholar] [CrossRef]
- Papathanasopoulou, E.; White, M.P.; Hattam, C.; Lannin, A.; Harvey, A.; Spencer, A. Valuing the health benefits of physical activities in the marine environment and their importance for marine spatial planning. Mar. Policy 2016, 63, 144–152. [Google Scholar] [CrossRef]
- Terzi, Y.; Seyhan, K. Marine plastics in the fishing grounds in the Black Sea. In Marine Litter in the Black Sea; Aytan, U., Pogojeva, M., Simeonova, A., Eds.; Turkish Marine Research Foundation Publication; Turkish Marine Research Foundation-Tudav: Istanbul, Turkey, 2020; Volume 56, pp. 151–160. [Google Scholar]
- Van Acoleyen, M.; Laureysens, I.; Lambert, S.; Raport, L.; Van Sluis, C.; Kater, B.; Van Onselen, E.; Veiga, J.; Ferreira, M. Marine Litter Study to Support the Establishment of an Initial Quantitative Headline Reduction Target; Publications Office: Luxembourg, 2014. [Google Scholar]
- Eryasar, A.R.; Özbilgin, H.; Gücü, A.C.; Sakman, S. Marine debris in bottom trawl catches and their effects on the selectivity grids in the north eastern Mediterranean. Mar. Pollut. Bull. 2014, 81, 80–84. [Google Scholar] [CrossRef]
- Eugen, A.; Radu, G.; George, T.; Cristea, M.; Nenciu, M. The Situation of Marine Litter Collected during Demersal Surveys in 2012 in The Romanian Black Sea Area. Cercet. Mar. 2013, 43, 350–357. [Google Scholar]
- Radu, G.; Eugen, A.; Golumbeanu, M.; Raykov, V.; Yankova, M.; Panayotova, M.; Shlyahov, V. State of the main Black Sea commercial fish species correlated with the ecological conditions and fishing effort. J. Environ. Prot. Ecol. 2011, 12, 549–557. [Google Scholar]
- United Nations Environmental Programme. Negative Impacts of Marine Litter in the NOWPAP Region: Case Studies. Available online: https://wedocs.unep.org/handle/20.500.11822/26217 (accessed on 22 November 2023).
- Thompson, R.C.; Moore, C.J.; vom Saal, F.S.; Swan, S.H. Plastics, the environment and human health: Current consensus and future trends. Philos. Trans. R. Soc. B-Biol. Sci. 2009, 364, 2153–2166. [Google Scholar] [CrossRef]
- Mason, V.G.; Skov, M.W.; Hiddink, J.G.; Walton, M. Microplastics alter multiple biological processes of marine benthic fauna. Sci. Total Environ. 2022, 845, 157362. [Google Scholar] [CrossRef]
- Bhuyan, M.S. Effects of Microplastics on Fish and in Human Health. Front. Environ. Sci. 2022, 10, 827289. [Google Scholar] [CrossRef]
- Shang, Y.Y.; Wang, X.H.; Chang, X.Q.; Sokolova, I.M.; Wei, S.S.; Liu, W.; Fang, J.K.H.; Hu, M.H.; Huang, W.; Wang, Y.J. The Effect of Microplastics on the Bioenergetics of the Mussel Mytilus coruscus Assessed by Cellular Energy Allocation Approach. Front. Mar. Sci. 2021, 8, 754789. [Google Scholar] [CrossRef]
- Wootton, N.; Sarakinis, K.; Varea, R.; Reis-Santos, P.; Gillanders, B.M. Microplastic in oysters: A review of global trends and comparison to southern Australia. Chemosphere 2022, 307, 136065. [Google Scholar] [CrossRef] [PubMed]
- Watts, A.J.R.; Lewis, C.; Goodhead, R.M.; Beckett, S.J.; Moger, J.; Tyler, C.R.; Galloway, T.S. Uptake and Retention of Microplastics by the Shore Crab Carcinus maenas. Environ. Sci. Technol. 2014, 48, 8823–8830. [Google Scholar] [CrossRef] [PubMed]
- Batel, A.; Linti, F.; Scherer, M.; Erdinger, L.; Braunbeck, T. Transfer of benzo a pyrene from microplastics to Artemia nauplii and further to zebrafish via a trophic food web experiment: CYP1A induction and visual tracking of persistent organic pollutants. Environ. Toxicol. Chem. 2016, 35, 1656–1666. [Google Scholar] [CrossRef] [PubMed]
- Ward, J.E.; Zhao, S.Y.; Holohan, B.A.; Mladinich, K.M.; Griffin, T.W.; Wozniak, J.; Shumway, S.E. Selective Ingestion and Egestion of Plastic Particles by the Blue Mussel (Mytilus edulis) and Eastern Oyster (Crassostrea virginica): Implications for Using Bivalves as Bioindicators of Microplastic Pollution. Environ. Sci. Technol. 2019, 53, 8776–8784. [Google Scholar] [CrossRef] [PubMed]
- Cole, M.; Coppock, R.; Lindeque, P.K.; Altin, D.; Reed, S.; Pond, D.W.; Sorensen, L.; Galloway, T.S.; Booth, A.M. Effects of Nylon Microplastic on Feeding, Lipid Accumulation, and Moulting in a Coldwater Copepod. Environ. Sci. Technol. 2019, 53, 7075–7082. [Google Scholar] [CrossRef] [PubMed]
- Wright, S.L.; Thompson, R.C.; Galloway, T.S. The physical impacts of microplastics on marine organisms: A review. Environ. Pollut. 2013, 178, 483–492. [Google Scholar] [CrossRef]
- Frydkjær, C.K.; Iversen, N.; Roslev, P. Ingestion and Egestion of Microplastics by the Cladoceran Daphnia magna: Effects of Regular and Irregular Shaped Plastic and Sorbed Phenanthrene. Bull. Environ. Contam. Toxicol. 2017, 99, 655–661. [Google Scholar] [CrossRef] [PubMed]
- Pittura, L.; Avio, C.G.; Giuliani, M.E.; d’Errico, G.; Keiter, S.H.; Cormier, B.; Gorbi, S.; Regoli, F. Microplastics as Vehicles of Environmental PAHs to Marine Organisms: Combined Chemical and Physical Hazards to the Mediterranean Mussels, Mytilus galloprovincialis. Front. Mar. Sci. 2018, 5, 103. [Google Scholar] [CrossRef]
- Lu, Y.F.; Zhang, Y.; Deng, Y.F.; Jiang, W.; Zhao, Y.P.; Geng, J.J.; Ding, L.L.; Ren, H.Q. Uptake and Accumulation of Polystyrene Microplastics in Zebrafish (Danio rerio) and Toxic Effects in Liver. Environ. Sci. Technol. 2016, 50, 4054–4060. [Google Scholar] [CrossRef]
- Brennecke, D.; Ferreira, E.C.; Costa, T.M.M.; Appel, D.; da Gama, B.A.P.; Lenz, M. Ingested microplastics (>100 μm) are translocated to organs of the tropical fiddler crab Uca rapax. Mar. Pollut. Bull. 2015, 96, 491–495. [Google Scholar] [CrossRef]
- Galloway, T.S.; Cole, M.; Lewis, C. Interactions of microplastic debris throughout the marine ecosystem. Nat. Ecol. Evol. 2017, 1, 0116. [Google Scholar] [CrossRef]
- Della Torre, C.; Bergami, E.; Salvati, A.; Faleri, C.; Cirino, P.; Dawson, K.A.; Corsi, I. Accumulation and Embryotoxicity of Polystyrene Nanoparticles at Early Stage of Development of Sea Urchin Embryos Paracentrotus lividus. Environ. Sci. Technol. 2014, 48, 12302–12311. [Google Scholar] [CrossRef]
- Rehse, S.; Kloas, W.; Zarfl, C. Short-term exposure with high concentrations of pristine microplastic particles leads to immobilisation of Daphnia magna. Chemosphere 2016, 153, 91–99. [Google Scholar] [CrossRef]
- Tosetto, L.; Brown, C.; Williamson, J.E. Microplastics on beaches: Ingestion and behavioural consequences for beachhoppers. Mar. Biol. 2016, 163, 13. [Google Scholar] [CrossRef]
- Chen, Q.Q.; Gundlach, M.; Yang, S.Y.; Jiang, J.; Velki, M.; Yin, D.Q.; Hollert, H. Quantitative investigation of the mechanisms of microplastics and nanoplastics toward zebrafish larvae locomotor activity. Sci. Total Environ. 2017, 584, 1022–1031. [Google Scholar] [CrossRef]
- Coppock, R.L.; Galloway, T.S.; Cole, M.; Fileman, E.S.; Queirós, A.M.; Lindeque, P.K. Microplastics alter feeding selectivity and faecal density in the copepod, Calanus helgolandicus. Sci. Total Environ. 2019, 687, 780–789. [Google Scholar] [CrossRef]
- Uzun, P.; Farazande, S.; Guven, B. Mathematical modeling of microplastic abundance, distribution, and transport in water environments: A review. Chemosphere 2022, 288, 132517. [Google Scholar] [CrossRef]
- Meaza, I.; Toyoda, J.H.; Wise, J.P. Microplastics in Sea Turtles, Marine Mammals and Humans: A One Environmental Health Perspective. Front. Environ. Sci. 2021, 8, 575614. [Google Scholar] [CrossRef]
- Aanesen, M.; Armstrong, C.; Czajkowski, M.; Falk-Petersen, J.; Hanley, N.; Navrud, S. Willingness to pay for unfamiliar public goods: Preserving cold-water coral in Norway. Ecol. Econ. 2015, 112, 53–67. [Google Scholar] [CrossRef]
- Zolotova, N.; Kosyreva, A.; Dzhalilova, D.; Fokichev, N.; Makarova, O. Harmful effects of the microplastic pollution on animal health: A literature review. PeerJ 2022, 10, e13503. [Google Scholar] [CrossRef]
- Reuters. Plastic Bags Found Clogging Stomach of Dead Whale in Norway. Available online: https://www.reuters.com/article/idUSKBN15I2EH/ (accessed on 25 November 2023).
- Kirstein, I.V.; Kirmizi, S.; Wichels, A.; Garin-Fernandez, A.; Erler, R.; Löder, M.; Gerdts, G. Dangerous hitchhikers? Evidence for potentially pathogenic Vibrio spp. on microplastic particles. Mar. Environ. Res. 2016, 120, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Lamb, J.B.; Willis, B.L.; Fiorenza, E.A.; Couch, C.S.; Howard, R.; Rader, D.N.; True, J.D.; Kelly, L.A.; Ahmad, A.; Jompa, J.; et al. Plastic waste associated with disease on coral reefs. Science 2018, 359, 460–462. [Google Scholar] [CrossRef] [PubMed]
- Barnes, D.K.A.; Milner, P. Drifting plastic and its consequences for sessile organism dispersal in the Atlantic Ocean. Mar. Biol. 2005, 146, 815–825. [Google Scholar] [CrossRef]
- Cao, Y.R.; Lin, H.J.; Zhang, K.; Xu, S.P.; Yan, M.; Leung, K.M.Y.; Lam, P.K.S. Microplastics: A major source of phthalate esters in aquatic environments. J. Hazard. Mater. 2022, 432, 128731. [Google Scholar] [CrossRef] [PubMed]
- InNoPlastic—Innovative Approaches towards Prevention, Removal and Reuse of Marine Plastic Litter. Available online: https://www.innoplastic.eu/ (accessed on 27 March 2024).
- Stapleton, M.J.; Ansari, A.J.; Ahmed, A.; Hai, F.I. Change in the chemical, mechanical and physical properties of plastics due to UVA degradation in different water matrices: A study on the recyclability of littered plastics. Environ. Pollut. 2023, 334, 22226. [Google Scholar] [CrossRef] [PubMed]
- Ferrari, F.; Corcione, C.E.; Montagna, F.; Maffezzoli, A. 3D Printing of Polymer Waste for Improving People’s Awareness about Marine Litter. Polymers 2020, 12, 1738. [Google Scholar] [CrossRef]
- Bertelsen, I.M.G.; Ottosen, L.M. Recycling of Waste Polyethylene Fishing Nets as Fibre Reinforcement in Gypsum-based Materials. Fibers Polym. 2022, 23, 164–174. [Google Scholar] [CrossRef]
- Lee, D.H.; Kim, H.T.; Kim, J.D.; Kim, J.H.; Kim, S.K.; Lee, J.M. Evaluation of the compression behavior of recycled marine plastic waste-reinforced concrete. Funct. Compos. Struct. 2020, 2, 035008. [Google Scholar] [CrossRef]
- Shaw, E.J.; Turner, A. Recycled electronic plastic and marine litter. Sci. Total Environ. 2019, 694, 133644. [Google Scholar] [CrossRef]
- Koziol, A.; Paso, K.G.; Kuciel, S. Properties and Recyclability of Abandoned Fishing Net-Based Plastic Debris. Catalysts 2022, 12, 948. [Google Scholar] [CrossRef]
- Pae, J.; Kim, M.O.; Han, T.H.; Moon, J. Tomographic microstructural investigation of waste fishing net-reinforced high performance cementitious composites. J. Build. Eng. 2022, 56, 104829. [Google Scholar] [CrossRef]
- Cañado, N.; Lizundia, E.; Akizu-Gardoki, O.; Minguez, R.; Lekube, B.; Arrillaga, A.; Iturrondobeitia, M. 3D printing to enable the reuse of marine plastic waste with reduced environmental impacts. J. Ind. Ecol. 2022, 26, 2092–2107. [Google Scholar] [CrossRef]
- Faussone, G.C.; Cecchi, T. Chemical Recycling of Plastic Marine Litter: First Analytical Characterization of The Pyrolysis Oil and of Its Fractions and Comparison with a Commercial Marine Gasoil. Sustainability 2022, 14, 235. [Google Scholar] [CrossRef]
- Kusenberg, M.; Eschenbacher, A.; Djokic, M.R.; Zayoud, A.; Ragaert, K.; De Meester, S.; Van Geem, K.M. Opportunities and challenges for the application of post-consumer plastic waste pyrolysis oils as steam cracker feedstocks: To decontaminate or not to decontaminate? Waste Manag. 2022, 138, 83–115. [Google Scholar] [CrossRef]
- Veksha, A.; Ahamed, A.; Wu, X.Y.; Liang, L.; Chan, W.P.; Giannis, A.; Lisak, G. Technical and environmental assessment of laboratory scale approach for sustainable management of marine plastic litter. J. Hazard. Mater. 2022, 421, 126717. [Google Scholar] [CrossRef] [PubMed]
- ISO 5164:2014; Petroleum Products. Determination of Knock Characteristics of Motor Fuels. Research Method. International Organization for Standardization: Geneva, Switzerland. Available online: https://www.iso.org/standard/61716.html (accessed on 20 February 2024).
- ISO 5163:2014; Petroleum Products. Determination of Knock Characteristics of Motor and Aviation Fuels. Motor Method. International Organization for Standardization: Geneva, Switzerland. Available online: https://www.iso.org/standard/61715.html (accessed on 20 February 2024).
- ISO 8217:2017; Petroleum Products. Fuels (Class F). Specifications of Marine Fuels. International Organization for Standardization: Geneva, Switzerland. Available online: https://www.iso.org/standard/64247.html (accessed on 20 February 2024).
- Turcanu, A.A.; Matei, E.; Rapa, M.; Predescu, A.M.; Coman, G.; Predescu, C. Biowaste Valorization Using Hydrothermal Carbonization for Potential Wastewater Treatment Applications. Water 2022, 14, 2344. [Google Scholar] [CrossRef]
- Gong, Y.; Wang, Y.; Frei, R.; Wang, B.; Zhao, C.P. Blockchain application in circular marine plastic debris management. Ind. Mark. Manag. 2022, 102, 164–176. [Google Scholar] [CrossRef]
- Caniato, M.; Cozzarini, L.; Schmid, C.; Gasparella, A. Acoustic and thermal characterization of a novel sustainable material incorporating recycled microplastic waste. Sustain. Mater. Technol. 2021, 28, e00274. [Google Scholar] [CrossRef]
- Rochman, C.M. The Story of Plastic Pollution: From the Distant Ocean Gyres to the Global Policy Stage. Oceanography 2020, 33, 60–70. [Google Scholar] [CrossRef]
- Walther, B.A.; Yen, N.; Hu, C.S. Strategies, actions, and policies by Taiwan’s ENGOs, media, and government to reduce plastic use and marine plastic pollution. Mar. Policy 2021, 126, 04391. [Google Scholar] [CrossRef]
- Ferraro, G.; Failler, P. Governing plastic pollution in the oceans: Institutional challenges and areas for action. Environ. Sci. Policy 2020, 112, 453–460. [Google Scholar] [CrossRef]
- UNEP. From Birth to Ban: A History of the Plastic Shopping Bag. Available online: https://www.unep.org/news-and-stories/story/birth-ban-history-plastic-shopping-bag (accessed on 23 November 2023).
- Macintosh, A.; Simpson, A.; Neeman, T.; Dickson, K. Plastic bag bans: Lessons from the Australian Capital Territory. Resour. Conserv. Recycl. 2020, 154, 04638. [Google Scholar] [CrossRef]
- Adam, I.; Walker, T.R.; Bezerra, J.C.; Clayton, A. Policies to reduce single-use plastic marine pollution in West Africa. Mar. Policy 2020, 116, 103928. [Google Scholar] [CrossRef]
- Rivers, N.; Shenstone-Harris, S.; Young, N. Using nudges to reduce waste? The case of Toronto’s plastic bag levy. J. Environ. Manag. 2017, 188, 153–162. [Google Scholar] [CrossRef] [PubMed]
- Lavelle-Hill, R.; Goulding, J.; Smith, G.; Clarke, D.D.; Bibby, P.A. Psychological and demographic predictors of plastic bag consumption in transaction data. J. Environ. Psychol. 2020, 72, 101473. [Google Scholar] [CrossRef]
- Calil, J.; Gutierrez-Graudins, M.; Munguia, S.; Chin, C. Neglected: Environmental Justice Impacts of Marine Litter and Plastic Pollution; United Nations Environment Programme (UNEP): Nairobi, Kenya, 2021. [Google Scholar]
- Frantzi, S.; Brouwer, R.; Watkins, E.; van Beukering, P.; Cunha, M.C.; Dijkstra, H.; Duijndam, S.; Jaziri, H.; Okoli, I.C.; Pantzar, M.; et al. Adoption and diffusion of marine litter clean-up technologies across European seas: Legal, institutional and financial drivers and barriers. Mar. Pollut. Bull. 2021, 170, 112611. [Google Scholar] [CrossRef] [PubMed]
- The Alliance of Indian Wastepickers (AIW). Available online: https://aiw.globalrec.org/about/ (accessed on 28 November 2023).
- OECD. Plastic Pollution Is Growing Relentlessly as Waste Management and Recycling Fall Short. Available online: https://www.oecd.org/environment/plastic-pollution-is-growing-relentlessly-as-waste-management-and-recycling-fall-short.htm (accessed on 23 November 2023).
- Johannes, H.P.; Kojima, M.; Iwasaki, F.; Edita, E.P. Applying the extended producer responsibility towards plastic waste in Asian developing countries for reducing marine plastic debris. Waste Manag. Res. 2021, 39, 690–702. [Google Scholar] [CrossRef] [PubMed]
- Almroth, B.C.; Eggert, H. Marine Plastic Pollution: Sources, Impacts, and Policy Issues. Rev. Environ. Econ. Policy 2019, 13, 317–326. [Google Scholar] [CrossRef]
- Wang, S. International law-making process of combating plastic pollution: Status Quo, debates and prospects. Mar. Policy 2023, 147, 105376. [Google Scholar] [CrossRef]
- Ministry of Environment, Forest and Climate Change. G20 Report on Actions Against Marine Plastic Litter; Ministry of Environment, Forest and Climate Change: New Dehli, India, 2023; p. 575. [Google Scholar]
- Larrain, M.; Billen, P.; Van Passel, S. The effect of plastic packaging recycling policy interventions as a complement to extended producer responsibility schemes: A partial equilibrium model. Waste Manag. 2022, 153, 355–366. [Google Scholar] [CrossRef]
- UNEP. Third Session (INC-3). Available online: https://www.unep.org/inc-plastic-pollution/session-3 (accessed on 23 November 2023).
- Jambeck, J.R.; Geyer, R.; Wilcox, C.; Siegler, T.R.; Perryman, M.; Andrady, A.; Narayan, R.; Law, K.L. Marine pollution. Plastic waste inputs from land into the ocean. Science 2015, 347, 768–771. [Google Scholar] [CrossRef]
- Shi, J.J.; Zhang, C.; Chen, W.Q. The expansion and shrinkage of the international trade network of plastic wastes affected by China’s waste management policies. Sustain. Prod. Consum. 2021, 25, 187–197. [Google Scholar] [CrossRef]
- Arifin, Z.; Falahudin, D.; Saito, H.; Mintarsih, T.H.; Hafizt, M.; Suteja, Y. Indonesian policy and researches toward 70% reduction of marine plastic pollution by 2025. Mar. Policy 2023, 155, 105692. [Google Scholar] [CrossRef]
- Widagdo, S.; Anggoro, S.A. Combating Ocean Debris: Marine Plastic Pollution and Waste Regulation in Indonesia. Int. J. Mar. Coast. Law 2022, 37, 458–492. [Google Scholar] [CrossRef]
- Babayemi, J.O.; Nnorom, I.C.; Osibanjo, O.; Weber, R. Ensuring sustainability in plastics use in Africa: Consumption, waste generation, and projections. Environ. Sci. Eur. 2019, 31, 20. [Google Scholar] [CrossRef]
- Shomuyiwa, D.; Ogochukwu Onukansi, F.; Ivanova, M.; Lucero-Prisno, D. The Plastic treaty: What is in it for Africa? Public Health Chall. 2023, 2, e83. [Google Scholar] [CrossRef]
- Hasan Anik, A.; Hossain, S.; Alam, M.; Binte Sultan, M.; Hasnine, M.D.T.; Rahman, M.M. Microplastics pollution: A comprehensive review on the sources, fates, effects, and potential remediation. Environ. Nanotechnol. Monit. Manag. 2021, 16, 100530. [Google Scholar] [CrossRef]
Location of Marine Plastic Litter | Sampling Period | Plastic Marine Litter Assessment | Characteristics of Marine Plastic Litter | Estimated Amounts of Collected Plastic Waste | Ref. |
---|---|---|---|---|---|
Land-based sources | |||||
Twenty beaches, Cyprus | January, March, June, and September 2021 | Marine Strategy Framework Directive (MSFD) and Ocean Conservancy protocols | 86.3% plastics (with size > 2.5 cm), from which 61.6% were single-use plastics (SUP) | 36,676 plastic items | [15] |
Thirteen beaches in Solomon Islands and Vanuatu, the South Pacific region | November 2018 and January 2019 | OSPAR guidelines | SUP, fishing related items, and polystyrene (PS) pieces, represent 75% of the recorded items | Solomon Islands: 1053 ± 1017 items of litter per 100 m Vanuatu: 974 ± 745 items of litter per 100 m | [50] |
Four beaches in the Canary Islands, Spain | 2016 and 2017 | Fourier-transform infrared (FT-IR) and Differential scanning calorimetry (DSC) analyses | 95% poly(ethylene) (PE) and 5% poly(propylene) (PP); fragments were the most predominant shape, then pellets; fragments were categorized into 78.3% PE, 17.4% PP, and 4.3% thermoplastic elastomer | - | [17] |
Fourteen beaches, Vietnamese coast | September 2020 to January 2021 | Counting and weighing of marine plastic litters in accordance with the Joint Group of Experts on the Scientific Aspects of Marine Environmental Protection (GESAMP) guideline | 83.4–99.05% plastics from all marine litter; 60% SUP; 31% fishing-related items; Clean Coast Index (CCI) of 92.6 | 20,744 items of marine plastic litter, who weighed 100,371.2 g | [13] |
Sylt and Norderney, North Sea, Norderney Germany | 22 April–15 May 2020 17 April 2020 | Near-infrared spectroscopy (NIR) | Sylt: 55% nets made of PP and high-density poly(ethylene) (HDPE), and 15 wt% 3D plastics such as fragments of boxes, caps and canisters made of PS, PP, poly(vinyl chloride) (PVC), and acrylonitrile butadiene styrene (ABS); 8 wt% rubber and elastomers; 6 wt% films consisting of PP, PVC, poly(amide) (PA), HDPE, and PS; 5 wt% foamed plastics including poly(ethylene terephthalate) (PET), PS, HDPE, and poly(urethane) (PUR) foams Norderney: 88 wt% PET, PP, HPDE, PS, and PUR from plastic bottles; 10 wt% films including PVC, HDPE, PS, PP, and ABS | Sylt: 5478 g Norderney: 4522 g | [11] |
Two marine protected areas (MPAs), Peru | January to May of 2022 | FT-IR spectroscopy | The MeP had the distribution: PP 24.1%, low-density poly(ethylene) (LDPE) 20.7%, PS 13.8%, PE 10.3%, PET, PVC, alkyd resin, and cellophane 3.4% each; MPs composition: cellulose 53.3%, PET 17.8%, alkyd resin 6.7%, poly(ether urethane) (PEU) 4.4%, PP, PA, PS, and polyacrylic 2.2% each | The Ballestas Islands: 4.19 ± 2.23 MPs/L | [18] |
Rhodos sandy beach, Greek island | Summer 2015 | Analytical balance with density kit | 91.8% PP, 3.9% PE-LD, 3.9%, PE-HD, 0.3% PVC, and 0.1% PET | - | [42] |
Seabird breeding islands located on Lord Howe Island, Australia | 2018–2020 | μ-FT-IR | 99.85% fragments; Chromatic: 70.60% white, 13.26% green, and 10.84% blue | 3265 pieces of plastic weighing a total of 783.45 g | [46] |
One seabird and two shorebird species, Yongxing Island of South China Sea | 2017 | μ-FT-IR | 92.9% MPs from the total marine plastic litter Chromatic: 91.1% blue, 5.4% dark, and 3.6% white; Morphology: 89.2% filament, 8.9% sheet, and 1.8% foam; Identification: poly(propylene)-poly(ethylene) (PP-PE) copolymer, PE, PP, PET, from which 83.9% were PP-PE | 56 items of plastic debris | [47] |
Sea-based sources | |||||
Fifty fishing operations during surf-zone trammel nets, Southern Brazil | 98.4% plastics, from which 94.5% were SUP | 1384 fragments of marine litter | [51] | ||
Proyecto Manta Pacific Mexico | May 2016 to April 2018 | µ-FT-IR-ATR | 79% from the floating plastic were MPs: 45% PP and 43% PE; 1–2 mm was the most representative class of MPs; 44% from MPs were white, 29% were colorless, and 11% were blue | 0.3 plastic items/m3 | [48] |
Lake Tahoe, Nevada by scuba divers | Six dive days from water depth < 7.6 m | ATR FT-IR | PVC, PS/EPS, PET/PEST, PE, PP, and PA6/PA66 | 83 ± 49 plastics/km | [21] |
Tide sediment, water and submerged sediment zones, Tenerife, Spain | July 2016 and June 2017 | ATR FT-IR | Tide sediment: 66% plastics; Water: 23% plastics; White and transparent plastic fragments with sizes > 1 mm; PE, PP, PS, poly(tetrafluoroethylene) (PTFE), and PVC types; Submerged sediment: 11% plastics; yellow and blue fibers with sizes < 1 mm; PP, PA and rayon types |
High tide sediment: 130.64 items/L Water samples: 23.10 items/L Low tide sediment: 6.50 items/L | [19] |
Main Findings | Limits | Solutions |
---|---|---|
|
|
|
|
| |
|
| |
|
| |
|
|
Main Findings | Limits | Solutions |
---|---|---|
|
|
|
|
|
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Râpă, M.; Cârstea, E.M.; Șăulean, A.A.; Popa, C.L.; Matei, E.; Predescu, A.M.; Predescu, C.; Donțu, S.I.; Dincă, A.G. An Overview of the Current Trends in Marine Plastic Litter Management for a Sustainable Development. Recycling 2024, 9, 30. https://doi.org/10.3390/recycling9020030
Râpă M, Cârstea EM, Șăulean AA, Popa CL, Matei E, Predescu AM, Predescu C, Donțu SI, Dincă AG. An Overview of the Current Trends in Marine Plastic Litter Management for a Sustainable Development. Recycling. 2024; 9(2):30. https://doi.org/10.3390/recycling9020030
Chicago/Turabian StyleRâpă, Maria, Elfrida M. Cârstea, Anca A. Șăulean, Cristina L. Popa, Ecaterina Matei, Andra M. Predescu, Cristian Predescu, Simona I. Donțu, and Alexandra G. Dincă. 2024. "An Overview of the Current Trends in Marine Plastic Litter Management for a Sustainable Development" Recycling 9, no. 2: 30. https://doi.org/10.3390/recycling9020030