Nosocomial Pathogens: An In-Depth Analysis of the Vectorial Potential of Cockroaches
Abstract
:1. Introduction
2. Brief Overview of Nosocomial Infections
3. Evidence for the Role of Cockroaches in Human Infections
4. Cockroaches and Nosocomial Pathogens
5. Cockroaches and Antibiotic Resistance
6. Conclusions and Further Research
Funding
Acknowledgments
Conflicts of Interest
References
- Cornwell, P.B. The Cockroach; Hutchinson: London, UK, 1968; Volume 1. [Google Scholar]
- Roth, L.M.; Willis, E.R. The Biotic Associations of Cockroaches; The Smithsonian Institution: Washington, DC, USA, 1960; Volume 141, p. 470. [Google Scholar]
- Gliniewicz, A.; Sawicka, B.; Czajka, E. Occurrence of insect pests in hospitals in Poland. Przegl. Epidemiol. 2003, 57, 329–334. [Google Scholar] [PubMed]
- Uçkay, I.; Sax, H.; Longet-Di Pietro, S.; Baur, H.; Boulc’h, M.F.; Akakpo, C.; Chevrolet, J.C.; Pittet, D. Cockroaches (Ectobius vittiventris) in an intensive care unit, Switzerland. Emerg. Infect. Dis. 2009, 15, 496–497. [Google Scholar] [CrossRef] [PubMed]
- Burke, J.P. Infection control: A problem for patient safety. N. Engl. J. Med. 2003, 348, 651–656. [Google Scholar] [CrossRef] [PubMed]
- Bates, D.W.; Larizgoitia, I.; Prasopa-Plaizier, N.; Jha, A.K. Global priorities for patient safety research. BMJ 2009, 338, b1775. [Google Scholar] [CrossRef] [PubMed]
- Pittet, D.; Donaldson, L. Clean Care is Safer Care: A worldwide priority. Lancet 2005, 336, 1246–1247. [Google Scholar] [CrossRef]
- Report on the Endemic Burden of Healthcare-Associated Infection Worldwide; World Health Organization: Geneva, Switzerland, 2011; Available online: http://apps.who.int/iris/bitstream/10665/80135/1/9789241501507_eng.pdf (accessed on 18 October 2016).
- Nejad, S.B.; Syed, S.B.; Ellis, B.; Pittet, D. Health-care-associated infection in Africa: A systematic review. Bull. World Health Organ. 2011, 89, 757–765. [Google Scholar] [CrossRef]
- Allegranzi, B.; Bagheri Nejad, S.; Combescure, C.; Graafmans, W.; Attar, H.; Donaldson, L.; Pittet, D. Burden of endemic health-care-associated infection in developing countries: Systematic review and meta-analysis. Lancet 2011, 377, 228–241. [Google Scholar] [CrossRef]
- Trilla, A. Epidemiology of nosocomial infections in adult intensive care units. Intensive Care Med. 1994, 20 (Suppl. 3), S1–S4. [Google Scholar] [CrossRef] [PubMed]
- Eggimann, P.; Pittet, D. Infection control in the ICU. Chest 2001, 120, 2059–2093. [Google Scholar] [CrossRef]
- Zhanel, G.G.; DeCorby, M.; Laing, N.; Weshnoweski, B.; Vashisht, R.; Tailor, F.; Nichol, K.A.; Wierzbowski, A.; Baudry, P.J.; Karlowsky, J.A.; et al. Antimicrobial-resistant pathogens in intensive care units in Canada: Results of the Canadian National Intensive Care Unit (CAN-ICU) study, 2005–2006. Antimicrob. Agents Chemother. 2008, 52, 1430–1437. [Google Scholar] [CrossRef]
- Becker, K.; Heilmann, C.; Peters, G. Coagulase-Negative Staphylococci. Clin. Microbiol. Rev. 2014, 27, 870–926. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Weber, D.J.; Rutala, W.A. The emerging nosocomial pathogens Cryptosporidium, Escherichia coli O157:H7, Helicobacter pylori, and hepatitis C: Epidemiology, environmental survival, efficacy of disinfection, and control measures. Infect. Control Hosp. Epidemiol. 2001, 22, 306–315. [Google Scholar] [CrossRef] [PubMed]
- Mbithi, J.N.; Springthorpe, V.S.; Sattar, S.A. Effect of relative humidity and air temperature on survival of hepatitis A virus on environmental surfaces. Applied Environ. Microbiol. 1991, 57, 1394–1399. [Google Scholar]
- Kramer, A.; Schwebke, I.; Kampf, G. How long do nosocomial pathogens persist on inanimate surfaces? A systematic review. BMC Infect. Dis. 2006, 6, 130. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ayukekbong, J.A.; Ntemgwa, M.; Atabe, A.N. The threat of antimicrobial resistance in developing countries: Causes and control strategies. Antimicrob. Resist. Infect. Control. 2017, 6, 47. [Google Scholar] [CrossRef] [PubMed]
- Codjoe, F.S.; Donkor, E.S. Carbapenem Resistance: A Review. Med. Sci. 2017, 6, 1. [Google Scholar] [CrossRef]
- Labi, A.K.; Obeng-Nkrumah, N.; Addison, N.; Donkor, E.S. Salmonella blood stream infections in a tertiary care setting in Ghana. BMC Infect. Dis. 2015, 15, 263. [Google Scholar] [CrossRef]
- Emily, R.M.; Sydnor, T.M.P. Hospital epidemiology and infection control in acute-care settings. Clin. Microbiol. Rev. 2011, 24, 141–173. [Google Scholar]
- Klevens, R.M.; Morrison, M.A.; Nadle, J.; Petit, S.; Gershman, K.; Ray, S.; Harrison, L.H.; Lynfield, R.; Dumyati, G.; Townes, J.M.; et al. Active Bacterial Core surveillance (ABCs) MRSA Investigators. Invasive methicillin-resistant Staphylococcus aureus infections in the United States. JAMA 2007, 298, 1763–1771. [Google Scholar] [CrossRef] [PubMed]
- Elixhauser, A.; Steiner, C. Infections with Methicillin-Resistant Staphylococcus aureus (MRSA) in U.S. Hospitals, 1993–2005: Statistical Brief #35; Agency for Health Care Policy and Research: Rockville, MD, USA, 2007.
- De Kraker, M.E.; Wolkewitz, M.; Davey, P.G.; Koller, W.; Berger, J.; Nagler, J.; Icket, C.; Kalenic, S.; Horvatic, J.; Seifert, H.; et al. Clinical impact of antimicrobial resistance in European hospitals: Excess mortality and length of hospital stay related to methicillin-resistant Staphylococcus aureus bloodstream infections. Antimicrob. Agents Chemother. 2011, 55, 1598–1605. [Google Scholar] [CrossRef]
- Durai, R.; Ng, P.C.; Hoque, H. Methicillin-resistant Staphylococcus aureus: An update. AORN J. 2010, 91, 599–606. [Google Scholar] [CrossRef] [PubMed]
- Boyce, J.M. Are the epidemiology and microbiology of methicillin-resistant Staphylococcus aureus changing? JAMA 1998, 279, 623–624. [Google Scholar] [CrossRef] [PubMed]
- Lindenmayer, J.M.; Schoenfeld, S.; O’Grady, R.; Carney, J.K. Methicillin-resistant Staphylococcus aureus in a high school wrestling team and the surrounding community. Arch. Intern. Med. 1998, 158, 895–899. [Google Scholar] [CrossRef] [PubMed]
- Akram, J.; Glatt, A. True community-acquired methicillin-resistant Staphylococcus aureus bacteremia. Infect. Control Hosp. Epidemiol. 1998, 19, 106–107. [Google Scholar] [CrossRef] [PubMed]
- Popovich, K.J.; Weinstein, R.A.; Hota, B. Are community associated methicillin resistant Staphylococcus aureus (MRSA) strains replacing traditional nosocomial MRSA strains? Clin. Infect. Dis. 2008, 46, 787–794. [Google Scholar] [CrossRef] [PubMed]
- Bassetti, M.; Nicco, E.; Mikulska, M. Why is community-associated MRSA spreading across the world and how will it change clinical practice? Int. J. Antimicrob. Agents 2009, 34, 15–19. [Google Scholar] [CrossRef]
- Feil, E.J.; Nickerson, E.K.; Chantratita, N.; Wuthiekanun, V.; Srisomang, P.; Cousins, R.; Pan, W.; Zhang, G.; Xu, B.; Day, N.P.J. Rapid detection of the pandemic methicillin-resistant Staphylococcus aureus clone ST 239, a dominant strain in Asian hospitals. J. Clin. Microbiol. 2008, 46, 1520–1522. [Google Scholar] [CrossRef] [PubMed]
- Abdulgader, S.M.; Shittu, A.O.; Nicol, M.P.; Kaba, M. Molecular epidemiology of Methicillin-resistant Staphylococcus aureus in Africa: A systematic review. Front. Microbiol. 2015, 6, 348. [Google Scholar] [CrossRef] [PubMed]
- Roberts, R.B.; Chung, M.; de Lencastre, H.; Hargrave, J.; Tomasz, A.; Nicolau, D.P.; John, J.F., Jr.; Korzeniowski, O.; Tri-State MRSA Collaborative Study Group. Distribution of methicillin-resistant Staphylococcus aureus clones among health care facilities in Connecticut, New Jersey, and Pennsylvania. Microb. Drug Resist. 2000, 6, 245–251. [Google Scholar] [CrossRef] [PubMed]
- Pardos de la Gandara, M.; Curry, M.; Berger, J.; Burstein, D.; Della-Latta, P.; Kopetz, V.; Quale, J.; Spitzer, E.; Tan, R.; Urban, C.; et al. MRSA Causing Infections in Hospitals in Greater Metropolitan New York: Major Shift in the Dominant Clonal Type between 1996 and 2014. PLoS ONE 2016, 11, e0156924. [Google Scholar] [CrossRef] [PubMed]
- Denis, O.; Deplano, A.; Nonhoff, C.; De Ryck, R.; de Mendonça, R.; Rottiers, S.; Vanhoof, R.; Struelens, M.J. National surveillance of methicillin-resistant Staphylococcus aureus in Belgian hospitals indicates rapid diversification of epidemic clones. Antimicrob. Agents Chemother. 2004, 48, 3625–3629. [Google Scholar] [CrossRef] [PubMed]
- Strommenger, B.; Cuny, C.; Werner, G.; Witte, W. Obvious lack of association between dynamics of epidemic methicillin-resistant Staphylococcus aureus in Central Europe and agr specificity groups. Eur. J. Clin. Microbiol. Infect. Dis. 2004, 23, 15–19. [Google Scholar] [PubMed]
- Melter, O.; Urbaskova, P.; Jakubu, V.; Macková, B.; Zemlicková, H.; Czech participants in EARSS. Emergence of EMRSA-15 clone in hospitals throughout the Czech Republic. Euro Surveill. 2006, 11, E060803–E060806. [Google Scholar] [CrossRef] [PubMed]
- Conceiçao, T.; Aires-de-Sousa, M.; Fuzi, M.; Toth, A.; Paszti, J.; Ungvári, E.; van Leeuwen, W.B.; van Belkum, A.; Grundmann, H.; de Lencastre, H. Replacement of methicillin-resistant Staphylococcus aureus clones in Hungary over time: A 10-year surveillance study. Clin. Microbiol. Infect. 2007, 13, 971–979. [Google Scholar] [CrossRef] [PubMed]
- Perez-Roth, E.; Lorenza-Diaz, F.; Batista, N.; Moreno, A.; Mendez-Alvarez, S. Tracking methicillin-resistant Staphylococcus aureus clones during a 5-year period (1998 to 2002) in a Spanish hospital. J. Clin. Microbiol. 2004, 42, 4649–4656. [Google Scholar] [CrossRef] [PubMed]
- Aires-de-Sousa, M.; Correia, B.; de Lencastre, H. The Multilaboratory Project Collaborators (2008) Changing patterns in frequency of recovery of five methicillin-resistant Staphylococcus aureus clones in Portuguese hospitals: Surveillance over a 16-year period. J. Clin. Microbiol. 2008, 46, 2912–2917. [Google Scholar] [CrossRef] [PubMed]
- Laurent, F.; Lelièvre, H.; Cornu, M.; Vandenesch, F.; Carret, G.; Etienne, J.; Flandrois, J.P. Fitness and competitive growth advantage of new gentamicin-susceptible MRSA clones spreading in French hospitals. J. Antimicrob. Chemother. 2001, 47, 277–283. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Knight, G.M.; Budd, E.L.; Whitney, L.; Thornley, A.; Al-Ghusein, H.; Planche, T.; Lindsay, J.A. Shift in dominant hospital-associated methicillin-resistant Staphylococcus aureus (HA-MRSA) clones over time. J. Antimicrob. Chemother. 2012, 67, 2514–2522. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hsu, L.Y.; Harris, S.R.; Chlebowicz, M.A.; Lindsay, J.A.; Koh, T.H.; Krishnan, P.; Tan, T.Y.; Hon, P.Y.; Grubb, W.B.; Bentley, S.D.; et al. Evolutionary dynamics of methicillin-resistant Staphylococcus aureus within a healthcare system. Genome Biol. 2015, 16, 81. [Google Scholar] [CrossRef] [PubMed]
- DeLeo, F.R.; Chambers, H.F. Reemergence of antibiotic-resistant Staphylococcus aureus in the genomics era. J. Clin. Investig. 2009, 119, 2464–2474. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Centers for Disease Control and Prevention. Public health focus: Surveillance, prevention and control of nosocomial infections. Morb. Mortal. Wkly. Rep. (MMWR) 1992, 41, 783–787. [Google Scholar]
- National Audit Office. Reducing Healthcare Associated Infections in Hospitals in England. HC 560 Session 2008–2009. London: The Stationery Office. 2009. Available online: http://www.nao.org.uk/publications/0809/reducing_healthcare_associated.aspx (accessed on 30 September 2018).
- Esatoglu, A.E.; Agirbas, I.; Onder, O.R.; Celik, Y. Additional cost of hospital-acquired infection to the patient: A case study in Turkey. Health Serv. Manag. Res. 2006, 19, 137–143. [Google Scholar] [CrossRef] [PubMed]
- Kasatpibal, N.; Thongpiyapoom, S.; Narong, M.; Suwalak, N.; Jamulitrat, S. Extra charge and extra length of postoperative stay attributable to surgical site infection in six selected operations. J. Med. Assoc. Thail. 2005, 88, 1083–1091. [Google Scholar]
- Tarshis, I.B. The cockroach—A new suspect in the spread of infectious hepatitis. Am. J. Trop. Med. Hyg. 1962, 11, 705–711. [Google Scholar] [CrossRef] [PubMed]
- Kopanic, R.J., Jr.; Sheldon, B.W.; Wright, C.G. Cockroaches as vectors of salmonella: Laboratory and field trials. J. Food Protect. 1994, 57, 125–132. [Google Scholar] [CrossRef]
- Imamura, S.; Kita, M.; Yamaoka, Y.; Yamamoto, T.; Ishimaru, A.; Konishi, H.; Wakabayashi, N.; Mitsufuji, S.; Okanoue, T.; Imanishi, J. Vector potential of cockroaches for Helicobacter pylori infection. Am. J. Gastroenterol. 2003, 98, 1500–1503. [Google Scholar] [CrossRef] [PubMed]
- Fotedar, R.; Nayar, E.; Samantray, J.C.; Shriniwas Banerjee, U.; Dogra, V.; Kumar, A. Cockroaches as vectors of pathogenic bacteria. J. Commun. Dis. 1989, 21, 318–322. [Google Scholar] [PubMed]
- Tachbele, E.; Erku, W.; Gebre-Michael, T.; Ashenafi, M. Cockroach-associated food-borne bacterial pathogens from some hospitals and restaurants in Addis Ababa, Ethiopia: Distribution and antibiograms. J. Rural Trop. Public Health 2006, 5, 34–41. [Google Scholar]
- Oothuman, P.; Jeffery, J.; Aziz, A.H.; Abu Bakar, E.; Jegathesan, M. Bacterial pathogens isolated from cockroaches trapped from paediatric wards in peninsular Malaysia. Trans. R. Soc. Trop. Med. Hyg. 1989, 83, 133–135. [Google Scholar] [CrossRef]
- Le Guyader, A.; Rivault, C.; Chaperon, J. Microbial organisms carried by brown banded cockroaches in relation to their spatial distribution in a hospital. Epidemiol. Infect. 1989, 102, 485–492. [Google Scholar] [CrossRef] [PubMed]
- Fotedar, R.; Shriniwas, U.B.; Verma, A. Cockroaches (Blattella germanica) as carriers of microorganisms of medical importance in hospitals. Epidemiol. Infect. 1991, 107, 181–187. [Google Scholar] [CrossRef] [PubMed]
- Moges, F.; Eshetie, S.; Endris, M.; Huruy, K.; Muluye, D.; Feleke, T.; G/Silassie, F.; Ayalew, G.; Nagappan, R. Cockroaches as a Source of High Bacterial Pathogens with Multidrug Resistant Strains in Gondar Town, Ethiopia. Biomed. Res. Int. 2016, 2016, 2825056. [Google Scholar] [CrossRef] [PubMed]
- Salehzadeh, A.; Tavacol, P.; Mahjub, H. Bacterial, fungal and parasitic contamination of cockroaches in public hospitals of Hamadan, Iran. J. Vector Borne Dis. 2007, 44, 105–110. [Google Scholar] [PubMed]
- Naher, A.; Afroz, S.; Hamid, S. Cockroach associated foodborne pathogens: Distribution and antibiogram. Bangladesh Med. Res. Counc. Bull. 2018, 44, 30–38. [Google Scholar] [CrossRef]
- Menasria, T.; Moussa, F.; El-Hamza, S.; Tine, S.; Megri, R.; Chenchouni, H. Bacterial load of German cockroach (Blattella germanica) found in hospital environment. Pathog. Glob. Health 2014, 108, 141–147. [Google Scholar] [CrossRef] [PubMed]
- Tetteh-Quarcoo, P.B.; Donkor, E.S.; Attah, S.K.; Duedu, K.O.; Afutu, E.; Boamah, I.; Olu-Taiwo, M.; Anim-Baidoo, I.; Ayeh-Kumi, P.F. Microbial carriage of cockroaches at a tertiary care hospital in Ghana. Environ. Health Insights 2013, 7, 59–66. [Google Scholar] [CrossRef] [PubMed]
- Tilahun, B.; Worku, B.; Tachbele, E.; Terefe, S.; Kloos, H.; Legesse, W. High load of multi-drug resistant nosocomial neonatal pathogens carried by cockroaches in a neonatal intensive care unit at Tikur Anbessa specialized hospital, Addis Ababa, Ethiopia. Antimicrob. Resist. Infect. Control 2012, 1, 12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Becker-Dreps, S.; Bucardo, F.; Vilchez, S.; Zambrana, L.E.; Liu, L.; Weber, D.J.; Peña, R.; Barclay, L.; Vinjé, J.; Hudgens, M.G.; et al. Etiology of childhood diarrhea following rotavirus vaccine introduction: A prospective, population-based study in Nicaragua. Pediatr. Infect. Dis. J. 2014, 33, 1156–1163. [Google Scholar] [CrossRef] [PubMed]
- Revelas, A. Acute gastroenteritis among children in the developing world. S. Afr. J. Epidemiol. Infect. 2012, 27, 156–162. [Google Scholar] [CrossRef] [Green Version]
- Elliott, E.J. Acute gastroenteritis in children. BMJ Open 2007, 334, 35–40. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- World Health Organization Rotavirus Vaccines. WHO position paper—January 2013. Wkly. Epidemiol. Rec. 2013, 88, 49–64. [Google Scholar]
- Damanka, S.; Adiku, T.K.; Armah, G.E.; Rodrigues, O.; Donkor, E.S.; Nortey, D.; Asmah, R. Rotavirus Infection in Children with Diarrhea at Korle-Bu Teaching Hospital, Ghana. Jpn. J. Infect. Dis. 2016, 69, 331–334. [Google Scholar] [CrossRef] [PubMed]
- Fischer, T.K.; Bresee, J.S.; Glass, R.I. Rotavirus vaccines and the prevention of hospital-acquired diarrhea in children. Vaccine 2004, 22, S49–S54. [Google Scholar] [CrossRef] [PubMed]
- Clark, H.F.; Offit, P.A.; Glass, R.I.; Ward, R.L. Rotavirus vaccines. In Vaccines, 4th ed.; Plotkin, S., Orenstein, W., Offit, P., Eds.; Elsevier: Philadelphia, PA, USA, 2013; pp. 1327–1345. [Google Scholar]
- Aygun, G.; Yilmaz, M.; Yasar, H.; Aslan, M.; Polat, E.; Midilli, K.; Ozturk, R.; Altas, K. Parasites in nosocomial diarrhea: Are they underestimated? J. Hosp. Infect. 2005, 60, 283–285. [Google Scholar] [CrossRef] [PubMed]
- Sandokji, A.M.; Murshid, K.R.; El-Badry, A.A.; Ali-Ali, K.H.; Halaby, S.A. Infectious nosocomial diarrhea in the surgical wards: Role of parasites and microbes imply stool analysis. J. Taibah Univ. Med. Sci. 2009, 4, 73–81. [Google Scholar]
- Góralska, K.; Kurnatowski, P. Parasites as etiological factors of nosocomial infections. Ann. Parasitol. 2013, 59, 3–11. [Google Scholar] [PubMed]
- Perlroth, J.; Choi, B.; Spellberg, B. Nosocomial fungal infections: Epidemiology, diagnosis, and treatment. Med. Mycol. 2007, 45, 321–346. [Google Scholar] [CrossRef] [PubMed]
- Delaloye, J.; Calandra, T. Invasive candidiasis as a cause of sepsis in the critically ill patient. Virulence 2014, 5, 161–169. [Google Scholar] [CrossRef] [PubMed]
- ALMarjani, M.F.; Abdulra, R.A.; Zahraa, A.K.; Reyam, I.D.; Khiaria, J.T. Cockroaches (Periplaneta americana): Reservoirs of metallo Β lactamase and extended spectrum Β-lactamaseproducing bacteria in medical city hospital in Baghdad, Iraq. Pak. J. Biotechnol. 2017, 14, 317–321. [Google Scholar]
- Obeng-Nkrumah, N.; Labi, A.; Blankson, H.; Awuah-Mensah, G.; Oduro-Mensah, D.; Anum, J.; Teye, J.; Kwashie, S.; Bako, E.; Ayeh-Kumi, P.F.; et al. Household cockroaches carry CTX-M-15, OXA-48 and NDM-1, and share beta-lactam resistance determinants with humans. bioRxiv 2018. [Google Scholar] [CrossRef]
- Loucif, L.; Gacemi-Kirane, D.; Cherak, Z.; Chamlal, N.; Grainat, N.; Rolain, J.M. First Report of German Cockroaches (Blattella germanica) as Reservoirs of CTX-M-15 Extended-Spectrum-β-Lactamase- and OXA-48 Carbapenemase-Producing Enterobacteriaceae in Batna University Hospital, Algeria. Antimicrob. Agents Chemother. 2016, 60, 6377–6380. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, S.; Atkins, H.; Duce, I.; Khan, N.A. Cockroach and locust: physicians’ answer to infectious diseases. Int. J. Antimicrob. Agents 2011, 37, 279–280. [Google Scholar] [CrossRef] [PubMed]
- Cotton, M.F.; Wasserman, E.; Pieper, C.H.; Theron, D.C.; van Tubbergh, D.; Campbell, G.; Fang, F.C.; Barnes, AJ. Invasive disease due to extended spectrum beta-lactamase-producing Klebsiella pneumoniae in a neonatal unit: The possible role of cockroaches. J. Hosp. Infect. 2000, 44, 13–17. [Google Scholar] [CrossRef] [PubMed]
- Potter, M.F. The perfect storm: An extension view on bed bugs. Am. Entomol. 2006, 52, 102–104. [Google Scholar] [CrossRef]
- Goddard, J. Public Health Entomology; CRC Press: Boca Raton, FL, USA, 2012. [Google Scholar]
- Fakoorziba, M.R.; Eghbal FHassanzadeh, J.; Moemenbellah-Fard, M.D. Cockroaches (Periplaneta americana and Blattella germanica) as potential vectors of the pathogenic bacteria found in nosocomial infections. Ann. Trop. Med. Parasitol. 2010, 104, 521–528. [Google Scholar] [CrossRef] [PubMed]
- El-Sherbini, G.T.; El-Sherbini, E.T. The role of cockroaches and flies in mechanical transmission of medical important parasites. J. Entomol. Nematol. 2011, 3, 98–104. [Google Scholar]
Study | Country | N | Organisms Isolated |
---|---|---|---|
Fotedar et al. [52] | India | 96 | Pseudomonas aeruginosa, Staphylococcus aureus, Streptococcus faecalis, Micrococcus spp. |
Tachbele et al. [53] | Ethiopia | 600 | Salmonella spp., Shigella flexneri, Escherichia coli O157, Staphylococcus aureus and Bacillus cereus. |
Oothuman et al. [54] | Malaysia | 104 | Shigella boydii, Shigella dysenteriae, Salmonella Typhimurium, Klebseilla oxytoca, Klebsiella ozaena, Serratia marcescens. |
Guyader et al. [55] | France | 532 | Citrobacter freundii, Enterobacter cloacae, Klebsiella oxytoca, Klebsiella pneumoniae, Enterobacter agglomerans, Escherichia adecarboxylata, Serratia marcescens, Serratia liquefaciens, Acinetobacter spp., Pseudomonas fluorescens, Pseudomonas putida, Pseudomonas aeruginosa, Escherichia coli, Staphylococcus aureus. |
Fotedar et al. [56] | India | 279 | Bacteria: Klebsiella spp., Escherichia coli, Enterobacter spp., Pseudomonas aeruginosa, Proteus spp., Staphylococcus aureus, Streptococcus epidermidis, Streptococcus faecalis, Streptococcus viridans, Micrococcus, Bacillus spp. Parasites: Endolimax nana, Entamoeba coli, Entamoeba histolytica. Fungi: Candida spp., Rhizopus spp. Mucor spp., Alternaria spp. Aspergillus niger, Aspergillus flavus, Aspergillus spp. |
Moges et al. [57] | Ethiopia | 60 | Klebsiella pneumoniae, Escherichia coli, Citrobacter spp., Salmonella spp., Enterobacter spp. Shigella spp., Providencia spp., Serratia spp., Proteus spp., Staphylococcus aureus, Escherichia coli. |
Salehzadeh et al. [58] | Iran | 133 | Bacteria: Enterobacter spp., Klebsiella spp., Enterococcus spp., Staphylococcus spp., Escherichia coli, Streptococcus spp., Pseudomonas spp. Shigella spp, Haemophilus and group A beta-hemolytic Streptococcus spp. Fungi: Candida spp., Mucor spp., Rhizopus spp., Penicillium spp., Aspergillus fumigans. Aspergillus niger. |
Naher et al. [59] | Bangladesh | Escherichia coli, Pseudomonas aeruginosa, Salmonella spp., Shigella spp., Klebsiella spp., Proteus spp., Staphylococcus aureus. | |
Mensaria et al. [60] | Algeria | Citrobacter freundii, Enterobacter cloacae, Serratia marcescens, Klebsiella pneumoniae, Pantoea spp., Enterobacter aerogenes, Enterobacter spp. | |
Tetteh-Quarcoo et al. [61] | Ghana | 61 | Bacteria: Klebsiella pneumoniae, Escherichia coli, Proteus vulgaris, Citrobacter ferundii, Enterobacter cloacae, Enterococcus faecalis, Pseudomonas aeruginosa, Klebsiella oxytoca. Parasites: Ancylostoma duodenale, Hymenolepis nana, Taenia spp. Viruses: Rotavirus. |
Tilahun et al. [62] | Ethiopia | 400 | Klebsiella oxytoca, Klebsiella pneumoniae, Klebsiella ozaenae, Citrobacter spp., Citrobacter diversus, Enterobacter cloacae, Pseudomonas aeruginosa, Enterobacter aeruginosa, Providencia rettgeri, Salmonella spp., Streptococcus spp. Staphylococcus aureus, Escherichia coli, Acinetobacter spp. and Shigella flexneri |
© 2019 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Donkor, E.S. Nosocomial Pathogens: An In-Depth Analysis of the Vectorial Potential of Cockroaches. Trop. Med. Infect. Dis. 2019, 4, 14. https://doi.org/10.3390/tropicalmed4010014
Donkor ES. Nosocomial Pathogens: An In-Depth Analysis of the Vectorial Potential of Cockroaches. Tropical Medicine and Infectious Disease. 2019; 4(1):14. https://doi.org/10.3390/tropicalmed4010014
Chicago/Turabian StyleDonkor, Eric S. 2019. "Nosocomial Pathogens: An In-Depth Analysis of the Vectorial Potential of Cockroaches" Tropical Medicine and Infectious Disease 4, no. 1: 14. https://doi.org/10.3390/tropicalmed4010014
APA StyleDonkor, E. S. (2019). Nosocomial Pathogens: An In-Depth Analysis of the Vectorial Potential of Cockroaches. Tropical Medicine and Infectious Disease, 4(1), 14. https://doi.org/10.3390/tropicalmed4010014