The Loss of Soil Parent Material: Detecting and Measuring the Erosion of Saprolite
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Location
2.2. Sampling and Analyzing Soil and Saprolite
2.3. UAV-SfM Experimental Set-Up and Flights
2.3.1. Image Acquisition
2.3.2. SfM Point Cloud Generation
2.3.3. Classification of Vegetation in SfM Point Cloud
2.3.4. Erosion Measurements Using SfM Photogrammetry
3. Results
3.1. Rates of Saprolite Erosion
3.2. Characterization of Soil and Saprolite
4. Discussion
4.1. Susceptibility of Saprolite to Erosion
4.2. Comparing Saprolite Erosion with Soil Formation Rates
4.3. Ecosystem Service Delivery by Saprolite
4.4. Contributions and Emerging Developments from This Research
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wuepper, D.; Borrelli, P.; Finger, R. Countries and the global rate of soil erosion. Nat. Sustain. 2019, 3, 51–55. [Google Scholar] [CrossRef]
- Montgomery, D.R. Soil erosion and agricultural sustainability. Proc. Natl. Acad. Sci. USA 2007, 104, 13268–13272. [Google Scholar] [CrossRef] [PubMed]
- Evans, D.L.; Quinton, J.N.; Davies, J.A.C.; Zhao, J.; Govers, G. Soil lifespans and how they can be extended by land use and management change. Environ. Res. Lett. 2020, 15, 0940b2. [Google Scholar] [CrossRef]
- Dixon, J.L.; Heimsath, A.M.; Amundson, R. The critical role of climate and saprolite weathering in landscape evolution. Earth Surf. Process. Landf. 2009, 34, 1507–1521. [Google Scholar] [CrossRef]
- Evans, D.L.; Quinton, J.N.; Tye, A.M.; Rodés, Á.; Davies, J.A.C.; Mudd, S.M.; Quine, T.A. Arable soil formation and erosion: A hillslope-based cosmogenic nuclide study in the United Kingdom. SOIL 2019, 5, 253–263. [Google Scholar] [CrossRef]
- Lebedeva, M.; Fletcher, R.; Balashov, V.; Brantley, S. A reactive diffusion model describing transformation of bedrock to saprolite. Chem. Geol. 2007, 244, 624–645. [Google Scholar] [CrossRef]
- Evans, D.; Quinton, J.; Tye, A.; Rodés, Á.; Rushton, J.; Davies, J.; Mudd, S. How the composition of sandstone matrices affects rates of soil formation. Geoderma 2021, 401, 115337. [Google Scholar] [CrossRef]
- Scholten, T. Hydrology and erodibility of the soils and saprolite cover of the Swaziland Middleveld. Soil Technol. 1997, 11, 247–262. [Google Scholar] [CrossRef]
- Lidmar-Bergstrom, K. Relief and saprolites through time on the Baltic Shield. Geomorphology 1995, 12, 45–61. [Google Scholar] [CrossRef]
- Portenga, E.W.; Bierman, P.R. Understanding Earth’s eroding surface with 10Be. GSA Today 2011, 21, 4–10. [Google Scholar] [CrossRef]
- Morais, F.; Bacellar, L.A.P.; Sobreira, F.G. Análise da erodibilidade de saprólitos de gnaisse. Rev. Bras. Ciência Solo 2004, 28, 1055–1062. [Google Scholar] [CrossRef]
- Bacellar, L.d.A.P.; Netto, A.L.C.; Lacerda, W.A. Controlling factors of gullying in the Maracujá Catchment, southeastern Brazil. Earth Surf. Process. Landforms 2005, 30, 1369–1385. [Google Scholar] [CrossRef]
- Duranel, A.; Thompson, J.R.; Burningham, H.; Durepaire, P.; Garambois, S.; Wyns, R.; Cubizolle, H. Modelling the hydrological interactions between a fissured granite aquifer and a valley mire in the Massif Central, France. Hydrol. Earth Syst. Sci. 2021, 25, 291–319. [Google Scholar] [CrossRef]
- Medeiros, G.d.O.R.; Giarolla, A.; Sampaio, G.; Marinho, M.d.A. Estimates of Annual Soil Loss Rates in the State of São Paulo, Brazil. Rev. Bras. Ciência Solo 2016, 40, e0150497. [Google Scholar] [CrossRef]
- Borrelli, P.; Robinson, D.A.; Fleischer, L.R.; Lugato, E.; Ballabio, C.; Alewell, C.; Meusburger, K.; Modugno, S.; Schütt, B.; Ferro, V.; et al. An assessment of the global impact of 21st century land use change on soil erosion. Nat. Commun. 2017, 8, 2013. [Google Scholar] [CrossRef]
- Benavidez, R.; Jackson, B.; Maxwell, D.; Norton, K. A review of the (Revised) Universal Soil Loss Equation ((R)USLE): With a view to increasing its global applicability and improving soil loss estimates. Hydrol. Earth Syst. Sci. 2018, 22, 6059–6086. [Google Scholar] [CrossRef]
- Alewell, C.; Borrelli, P.; Meusburger, K.; Panagos, P. Using the USLE: Chances, challenges and limitations of soil erosion modelling. Int. Soil Water Conserv. Res. 2019, 7, 203–225. [Google Scholar] [CrossRef]
- Hänsel, P.; Schindewolf, M.; Eltner, A.; Kaiser, A.; Schmidt, J. Feasibility of High-Resolution Soil Erosion Measurements by Means of Rainfall Simulations and SfM Photogrammetry. Hydrology 2016, 3, 38. [Google Scholar] [CrossRef]
- Cândido, B.M.; Quinton, J.N.; James, M.R.; Silva, M.L.; de Carvalho, T.S.; de Lima, W.; Beniaich, A.; Eltner, A. High-resolution monitoring of diffuse (sheet or interrill) erosion using structure-from-motion. Geoderma 2020, 375, 114477. [Google Scholar] [CrossRef]
- Meinen, B.U.; Robinson, D.T. Mapping erosion and deposition in an agricultural landscape: Optimization of UAV image acquisition schemes for SfM-MVS. Remote Sens. Environ. 2020, 239, 111666. [Google Scholar] [CrossRef]
- Alvares, C.A.; Stape, J.L.; Sentelhas, P.C.; Moraes, G.J.L.; Sparovek, G. Köppen’s climate classification map for Brazil. Meteorol. Z. 2013, 22, 711–728. [Google Scholar] [CrossRef] [PubMed]
- Buol, S.W. Saprolite-regolith taxonomy: An approximation. In Whole Regolith Pedology; Cremeens, D.L., Brown, R.B., Huddleston, J.H., Eds.; SSSA Special Publication 34; Soil Science Society of America: Madison, WI, USA, 1994; pp. 119–132. [Google Scholar]
- IUSS Working Group WRB. World Reference Base for Soil Resources. International Soil Classification System for Naming Soils and Creating Legends for Soil Maps, 4th ed.; International Union of Soil Science (IUSS): Vienna, Austria, 2022; Available online: https://www.isric.org/sites/default/files/WRB_fourth_edition_2022-12-18.pdf (accessed on 19 January 2024).
- Blake, G.R.; Hartge, K.H. Bulk density. In Methods of Soil Analysis. Part I: Physical and Mineralogical Methods, 2nd ed.; Klute, A., Ed.; American Society of Agronomy: Madison, WI, USA, 1986; pp. 363–376, (Agronomy series, 9). [Google Scholar]
- Camargo, O.A.; Moniz, A.C.; Jorge, J.A.; Valadares, J.M.A.S. Methods of Chemical and Physical Analysis of Soils at Agronomic Institute of Campinas; Agronomic Institute: Campinas, Brazil, 2009; 94p, (Technical Bulletin, 106). (In Portuguese) [Google Scholar]
- Nelson, D.W.; Sommers, L.E. Total carbon, organic carbon and organic matter. In Methods of Soil Analysis. Part 2: Chemical and Microbiological Properties, 2nd ed.; Page, A.L., Miller, R.H., Keeney, D.R., Eds.; American Society of Agronomy: Madison, WI, USA, 1982; pp. 539–580, (Agronomy series, 9). [Google Scholar]
- Batista, A.H.; Melo, V.F.; Gilkes, R. Microwave Acid Extraction to Analyze K and Mg Reserves in the Clay Fraction of Soils. Rev. Bras. Ciênc. Solo 2016, 40, e0160067. [Google Scholar] [CrossRef]
- Bielschowsky, C.; Barbosa, A.C.; Alves, L.; Junior, G.C.S. Determinação da condutividade hidráulica saturada de campo em solos com diferentes texturas utilizando o método do permeâmetro IAC. Cad. Estud. Geoambientais 2012, 3, 44–55. [Google Scholar]
- James, M.R.; Robson, S. Mitigating systematic error in topographic models derived from UAV and ground-based image networks. Earth Surf. Process. Landf. 2014, 39, 1413–1420. [Google Scholar] [CrossRef]
- James, M.R.; Robson, S. Straightforward reconstruction of 3D surfaces and topography with a camera: Accuracy and geoscience application. J. Geophys. Res. Earth Surf. 2012, 117, 03017. [Google Scholar] [CrossRef]
- Fonstad, M.A.; Dietrich, J.T.; Courville, B.C.; Jensen, J.L.; Carbonneau, P.E. Topographic structure from motion: A new development in photogrammetric measurement. Earth Surf. Process. Landf. 2013, 38, 421–430. [Google Scholar] [CrossRef]
- Agüera-Vega, F.; Carvajal-Ramírez, F.; Martínez-Carricondo, P.; Sánchez-Hermosilla López, J.; Mesas-Carrascosa, F.J.; García-Ferrer, A.; Pérez-Porras, F.J. Reconstruction of extreme topography from UAV structure from motion photogrammetry. Measurement 2018, 121, 127–138. [Google Scholar] [CrossRef]
- Cook, K.L.; Dietze, M. A simple workflow for robust low-cost UAV-derived change detection without ground control points. Earth Surf. Dyn. 2019, 7, 1009–1017. [Google Scholar] [CrossRef]
- Hendrickx, H.; De Sloover, L.; Stal, C.; Delaloye, R.; Nyssen, J.; Frankl, A. Talus slope geomorphology investigated at multiple time scales from high-resolution topographic surveys and historical aerial photographs (Sanetsch Pass, Switzerland). Earth Surf. Process. Landf. 2020, 45, 3653–3669. [Google Scholar] [CrossRef]
- de Haas, T.; Nijland, W.; McArdell, B.W.; Kalthof, M.W.M.L. Case Report: Optimization of Topographic Change Detection with UAV Structure-From-Motion Photogrammetry Through Survey Co-Alignment. Front. Remote Sens. 2021, 2, 626810. [Google Scholar] [CrossRef]
- Parente, L.; Chandler, J.H.; Dixon, N. Automated registration of SfM-MVS multitemporal datasets using terrestrial and oblique aerial images. Photogramm. Rec. 2021, 36, 12–35. [Google Scholar] [CrossRef]
- Blanch, X.; Eltner, A.; Guinau, M.; Abellan, A. Multi-Epoch and Multi-Imagery (MEMI) Photogrammetric Workflow for Enhanced Change Detection Using Time-Lapse Cameras. Remote Sens. 2021, 13, 1460. [Google Scholar] [CrossRef]
- Saponaro, M.; Agapiou, A.; Hadjimitsis, D.G.; Tarantino, E. Influence of Spatial Resolution for Vegetation Indices’ Extraction Using Visible Bands from Unmanned Aerial Vehicles’ Orthomosaics Datasets. Remote Sens. 2021, 13, 3238. [Google Scholar] [CrossRef]
- Easa, S.M.; Easa, M.S.M.; Member, A. Area of Irregular Region with Unequal Intervals. J. Surv. Eng. 1988, 114, 50–58. [Google Scholar] [CrossRef]
- Fawzy, H.E. The Accuracy of Determining the Volumes Using Close Range Photogrammetry. IOSR J. Mech. Civ. Eng. 2015, 12, 1015. [Google Scholar]
- Riebe, C.S.; Callahan, R.P.; Granke, S.B.-M.; Carr, B.J.; Hayes, J.L.; Schell, M.S.; Sklar, L.S. Anisovolumetric weathering in granitic saprolite controlled by climate and erosion rate. Geology 2021, 49, 551–555. [Google Scholar] [CrossRef]
- Panagos, P.; Christos, K.; Cristiano, B.; Ioannis, G. Seasonal monitoring of soil erosion at regional scale: An application of the G2 model in Crete focusing on agricultural land uses. Int. J. Appl. Earth Obs. Geoinf. 2014, 27, 147–155. [Google Scholar] [CrossRef]
- Castro, R.M.; Alves, W.d.S.; Marcionilio, S.M.L.d.O.; de Moura, D.M.B.; Oliveira, D.M.d.S. Soil losses related to land use and rainfall seasonality in a watershed in the Brazilian Cerrado. J. S. Am. Earth Sci. 2022, 119, 104020. [Google Scholar] [CrossRef]
- Singh, H.V.; Thompson, A.M. Effect of antecedent soil moisture content on soil critical shear stress in agricultural watersheds. Geoderma 2016, 262, 165–173. [Google Scholar] [CrossRef]
- Francisca, F.M.; Bogado, G.O. Weathering effect on the small strains elastic properties of a residual soil. Geotech. Geol. Eng. 2019, 37, 4031–4041. [Google Scholar] [CrossRef]
- Yiming, W.; Siame, T.; Bowa, V.M. Effects of Rainfall Patterns on the Stability of Upper Stack of Open Pit Slopes. Int. J. Sci. Technol. Res. 2019, 8, 51–61. [Google Scholar]
- Evans, D.L.; Rodés, A.; Tye, A. The sensitivity of cosmogenic radionuclide analysis to soil bulk density: Implications for soil formation rates. Eur. J. Soil Sci. 2020, 72, 174–182. [Google Scholar] [CrossRef]
- Heimsath, A.M.; Dietrich, W.E.; Nishiizumi, K.; Finkel, R.C. The soil production function and landscape equilibrium. Nature 1997, 388, 358–361. [Google Scholar] [CrossRef]
- Heimsath, A.M.; Dietrich, W.E.; Nishiizumi, K.; Finkel, R.C. Cosmogenic nuclides, topography and the spatial variation of soil depth. Geomorphology 1999, 27, 151–171. [Google Scholar] [CrossRef]
- Wilkinson, M.T.; Chappell, J.; Humphreys, G.S.; Fifield, K.; Smith, B.; Hesse, P.; Heimsath, A.M.; Ehlers, T.A. Soil production in heath and forest, Blue Mountains, Australia: Influence of lithology and palaeoclimate. Earth Surf. Process. Landf. 2005, 30, 923–934. [Google Scholar] [CrossRef]
- Heimsath, A.M.; Chappell, J.; Dietrich, E.W.; Nishiizumi, K.; Finkel, R.C. Late Quaternary erosion in southeastern Australia: A field example using cosmogenic nuclides. Quat. Int. 2001, 83–85, 169–185. [Google Scholar] [CrossRef]
- Heimsath, A.M.; DiBiase, R.A.; Whipple, K.X. Soil production limits and the transition to bedrock-dominated landscapes. Nat. Geosci. 2012, 5, 210–214. [Google Scholar] [CrossRef]
- Small, E.E.; Anderson, R.S.; Hancock, G.S. Estimates of the rate of regolith production using 10Be and 26Al from an alpine hillslope. Geomorphology 1999, 27, 131–150. [Google Scholar] [CrossRef]
- Yang, M.; Walling, D.E.; Tian, J.; Liu, P. Partitioning the contributions of sheet and rill erosion using Beryllium-7 and Cesium-137. Soil Sci. Soc. Am. J. 2006, 70, 1579–1590. [Google Scholar] [CrossRef]
- Hardy, R.; Quinton, J.; James, M.; Fiener, P.; Pates, J. High precision tracing of soil and sediment movement using fluorescent tracers at hillslope scale. Earth Surf. Process. Landf. 2018, 44, 1091–1099. [Google Scholar] [CrossRef]
- Moreira, A.; Fageria, N.K. Soil Chemical Attributes of Amazonas State, Brazil. Commun. Soil Sci. Plant Anal. 2009, 40, 2912–2925. [Google Scholar] [CrossRef]
- McBride, M.B. Environmental Chemistry of Soils; Oxford University Press: New York, NY, USA, 1994. [Google Scholar]
- Hayes, J.L.; Riebe, C.S.; Holbrook, W.S.; Flinchum, B.A.; Hartsough, P.C. Porosity production in weathered rock: Where volumetric strain dominates over chemical mass loss. Sci. Adv. 2019, 5, eaao0834. [Google Scholar] [CrossRef] [PubMed]
- Tye, A.M.; Kemp, S.J.; Lark, R.M.; Milodowski, A.E. The role of peri-glacial active layer development in determining soil-regolith thickness across a Triassic sandstone outcrop in the UK. Earth Surf. Process. Landf. 2012, 37, 971–983. [Google Scholar] [CrossRef]
Alignment/Reconstruction | Parameter | Setting |
---|---|---|
Point cloud alignment parameters | Accuracy | Highest |
Generic preselection | Yes | |
Reference preselection | Yes | |
Key point limit | 120,000 | |
Tie point limit | 0 | |
Filter point by mask | No | |
Dense point cloud reconstruction parameters | Quality | Medium |
Depth filtering | Mild |
Erosion (−ve) or Deposition (+ve) of Saprolite (cm3 m2) | |||
---|---|---|---|
Plot A | Plot B | Plot C | |
17 March–1 April | +0.10 | +0.08 | −0.06 |
1 April–30 April | +0.18 | +0.28 | +0.31 |
30 April–26 May | −0.15 | −0.26 | −0.07 |
26 May–17 June | −0.21 | −0.25 | −0.18 |
17 June–22 July | −0.11 | −0.14 | −0.05 |
Total erosion over the observation period | 0.05 | 0.65 | 0.37 |
Total deposition over the observation period | 0.27 | 0.36 | 0.31 |
Net erosion over the observation period | 0.20 | 0.29 | 0.05 |
Units | UT-1 | UT-2 | UT-3 | LT-1 | LT-2 | LT-3 | SAP-E1 | SAP-E2 | SAP-E3 | SAP-E4 | SAP-W1 | SAP-W2 | SAP-W3 | SAP-W4 | Median Soil | Median Saprolite | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Particle density | g/cm3 | 2.70 | 2.65 | 2.58 | 2.62 | 2.68 | 2.69 | 2.67 | 2.62 | 2.69 | 2.61 | 2.61 | 2.63 | 2.62 | 2.61 | 2.67 | 2.62 |
Total porosity | m3 m–3 | 0.53 | 0.52 | 0.48 | 0.51 | 0.57 | 0.52 | 0.49 | 0.43 | 0.55 | 0.38 | 0.48 | 0.45 | 0.46 | 0.44 | 0.52 | 0.45 |
Sand content | % | 41.60 | 50.10 | 50.80 | 46.10 | 44.10 | 41.50 | 54.60 | 54.20 | 37.70 | 47.60 | 51.80 | 49.70 | 43.80 | 52.40 | 45.10 | 50.75 |
Silt content | % | 39.20 | 36.80 | 35.40 | 36.90 | 37.90 | 39.20 | 35.30 | 33.80 | 45.20 | 43.80 | 38.00 | 39.10 | 43.20 | 37.60 | 37.40 | 38.55 |
Clay content | % | 19.20 | 13.10 | 13.80 | 17.00 | 18.00 | 19.30 | 10.10 | 12.00 | 17.10 | 8.60 | 10.20 | 11.20 | 13.00 | 10.00 | 17.50 | 10.70 |
Macropores | m3 m–3 | 0.16 | 0.17 | 0.20 | 0.15 | 0.27 | 0.05 | 0.12 | 0.14 | 0.10 | 0.05 | 0.11 | 0.15 | 0.09 | 0.10 | 0.16 | 0.11 |
Micropores | m3 m–3 | 0.37 | 0.36 | 0.28 | 0.36 | 0.30 | 0.47 | 0.37 | 0.29 | 0.45 | 0.33 | 0.37 | 0.31 | 0.37 | 0.34 | 0.36 | 0.35 |
Ksat | mm h–1 | 8.71 * | 19.02 * | 163.8 * | 173.42 * | ||||||||||||
Bulk density | m3 m–3 | 1.36 | 1.35 | 1.34 | 1.30 | 1.23 | 1.43 | 1.44 | 1.36 | 1.21 | 1.58 | 1.46 | 1.44 | 1.47 | 1.49 | 1.34 | 1.45 |
OM | g/dm3 | 16 | 18 | 18 | 18 | 12 | 19 | 6 | 2 | 2 | 2 | 4 | 2 | 3 | 2 | 18 | 2 |
pH | - | 5 | 5 | 5 | 5 | 5 | 6 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 |
CEC | mmol/dm3 | 49.6 | 67.5 | 54.4 | 37 | 45 | 38.2 | 22.5 | 13.8 | 16.1 | 12.1 | 16 | 12.9 | 16 | 13.5 | 47 | 15 |
P | mg/dm3 | 4 | 17 | 13 | 7 | 3 | 3 | 2 | 2 | 2 | 2 | 2 | 3 | 2 | 2 | 6 | 2 |
K | mmol/dm3 | 18 | 19 | 14 | 6 | 22 | 6 | 7 | 3 | 1 | 1 | 2 | 2 | 2 | 1 | 16 | 2 |
Ca | mmol/dm3 | 12 | 23 | 19 | 13 | 8 | 15 | 2 | 2 | 3 | 2 | 3 | 3 | 4 | 4 | 14 | 3 |
Mg | mmol/dm3 | 10 | 16 | 13 | 9 | 7 | 9 | 4 | 1 | 2 | 1 | 2 | 1 | 1 | 1 | 10 | 1 |
Al | mmol/dm3 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 3 | 0 | 0 | 1 | 5 | 0 | 0 |
Na | mmol/dm3 | 1 | 1 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 0 |
Aluminum | mg/kg | 12,128 | 9376 | 6479 | 10,970 | 14,064 | 12,635 | 5293 | 9300 | 14,161 | 4235 | 4230 | 5978 | 7950 | ND | 11,549 | 5978 |
Cadmium | mg/kg | 2 | <0.2 | <0.2 | <0.2 | 1 | 3 | <0.2 | <0.2 | 1 | <0.2 | <0.2 | <0.2 | <0.2 | ND | 2 | 1 |
Calcium | mg/kg | 340 | 823 | 365 | 298 | 163 | 397 | 23 | 31 | 61 | 55 | 77 | 104 | 91 | ND | 353 | 61 |
Lead | mg/kg | 25 | 16 | 11 | 17 | 27 | 10 | 27 | 13 | 21 | 14 | 14 | 9 | 15 | ND | 16 | 14 |
Copper | mg/kg | 26 | 14 | 16 | 17 | 25 | 40 | 18 | 5 | <5.0 (2) | <5.0 (2) | 6 | 13 | 5 | ND | 21 | 6 |
Chromium | mg/kg | 15 | 8 | 3 | 6 | 21 | 20 | 16 | 1 | 15 | <0.6 (2) | 6 | 1 | 2 | ND | 12 | 4 |
Iron | mg/kg | 63,187 | 30,038 | 17,047 | 30,210 | 52,069 | 283,563 | 33,400 | 6180 | 39,205 | 5344 | 20,300 | 9816 | 27,367 | ND | 41,140 | 20,300 |
Magnesium | mg/kg | 533 | 2123 | 1008 | 1135 | 2127 | 533 | 22 | 547 | 456 | 495 | 1288 | 350 | 676 | ND | 1072 | 495 |
Manganese | mg/kg | 802 | 793 | 451 | 407 | 990 | 801 | 811 | 131 | 585 | 48 | 589 | 175 | 228 | ND | 797 | 228 |
Nickel | mg/kg | 12 | 5 | <3.2 | <3.2 | 12 | <3.2 | <3.2 | <3.2 | 4 | <3.2 | <3.2 | <3.2 | <3.2 | ND | 12 | 4 |
Potassium | mg/kg | 2896 | 3021 | 1307 | 1658 | 3272 | 904 | 2893 | 604 | 4772 | 829 | 1784 | 730 | 930 | ND | 2277 | 930 |
Zinc | mg/kg | 77 | 72 | 37 | 42 | 81 | 51 | 51 | 19 | 76 | 25 | 34 | 18 | 27 | ND | 62 | 27 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Evans, D.L.; Cândido, B.; Coelho, R.M.; De Maria, I.C.; de Moraes, J.F.L.; Eltner, A.; Martins, L.L.; Cantarella, H. The Loss of Soil Parent Material: Detecting and Measuring the Erosion of Saprolite. Soil Syst. 2024, 8, 43. https://doi.org/10.3390/soilsystems8020043
Evans DL, Cândido B, Coelho RM, De Maria IC, de Moraes JFL, Eltner A, Martins LL, Cantarella H. The Loss of Soil Parent Material: Detecting and Measuring the Erosion of Saprolite. Soil Systems. 2024; 8(2):43. https://doi.org/10.3390/soilsystems8020043
Chicago/Turabian StyleEvans, Daniel L., Bernardo Cândido, Ricardo M. Coelho, Isabella C. De Maria, Jener F. L. de Moraes, Anette Eltner, Letícia L. Martins, and Heitor Cantarella. 2024. "The Loss of Soil Parent Material: Detecting and Measuring the Erosion of Saprolite" Soil Systems 8, no. 2: 43. https://doi.org/10.3390/soilsystems8020043