Strategies and Public Policies for Soil and Water Conservation and Food Production in Brazil
Abstract
:1. Introduction
2. Healthy Soil for Healthy Food and People
3. Factors Influencing Soil Degradation and the Need to Take Care of the Soil
4. Strategies and Public Policies for Soil and Water Conservation and Food Production
5. Summary and Outlook
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Karlen, D.L.; Rice, C.W. Soil degradation: Will humankind ever learn? Sustainability 2015, 7, 12490–12501. [Google Scholar] [CrossRef]
- Rempelos, L.; Baranski, M.; Wang, J.; Adams, T.N.; Adebusuyi, K.; Beckman, J.J.; Brockbank, C.J.; Douglas, B.S.; Feng, T.; Greenway, J.D.; et al. Integrated soil and crop management in organic agriculture: A logical framework to ensure food quality and human health? Agronomy 2021, 11, 2494. [Google Scholar] [CrossRef]
- Projeto MapBiomas—Mapeamento Anual de Cobertura e uso da Terra no Brasil—Coleção 7. Destaques do Mapeamento Anual de Cobertura e uso da Terra no Brasil Entre 1985 a 2021. 2022. Available online: https://mapbiomas-br-site.s3.amazonaws.com/Fact-Sheet-Colecao7.pdf (accessed on 26 February 2023).
- Projeto MapBiomas—Mapeamento Anual de Cobertura e uso da Terra do Brasil—Coleção 6. A Evolução da Pastagem nos Último 36 anos. Destaques do Mapeamento Anual e Qualidade de Pastagens no Brasil Entre 1985 a 2020. 2021. Available online: https://brasil.mapbiomas.org/wp-content/uploads/sites/4/2023/12/Fact_Sheet_PASTAGEM_13.10.2021.pdf (accessed on 24 February 2023).
- PENSSAN—Rede Brasileira de Pesquisa em Soberania e Segurança Alimentar e Nutricional. National Survey of Food Insecurity in the Context the COVID-19 Pandemic in Brazil. 2021. Available online: https://olheparaafome.com.br/VIGISAN_AF_National_Survey_of_Food_Insecurity.pdf (accessed on 24 February 2023).
- CNA—Confederação da Agricultura e Pecuária do Brasil. Panorama do Agro. 2021. Available online: https://cnabrasil.org.br/cna/panorama-do-agro#:~:text=Em%202015%2C%20de%20acordo%20com,trabalhadores%20brasileiros%20eram%20do%20ag (accessed on 24 February 2023).
- FAO; FIDA; OPS; PMA; UNICEF. América Latina y el Caribe—Panorama Regional de la Seguridad Alimentaria y la Nutrición 2023; Estadísticas y Tendencias: Santiago, Chile, 2023. [Google Scholar] [CrossRef]
- IBGE—Instituto Brasileiro de Geografia e Estatística. Mapa Brasil Climas—Escala 1:5.000.000. 1978. Available online: https://geoftp.ibge.gov.br/informacoes_ambientais/climatologia/mapas/brasil/Map_BR_clima_2002.pdf (accessed on 26 February 2023).
- Santos, H.G.; Jacomine, P.K.T.; Anjos, L.H.; Oliveira, V.A.; Lumbreras, J.F.; Coelho, M.R.; Almeida, J.A.; Araujo Filho, J.C.; Oliveira, J.B.; Cunha, T.J.F. Sistema Brasileiro de Classificação de Solos; Embrapa: Brasília, Brasil, 2018; Available online: https://ainfo.cnptia.embrapa.br/digital/bitstream/item/199517/1/SiBCS-2018-ISBN-9788570358004.pdf (accessed on 29 November 2021).
- Brasil. Lei no 8.080, de 19 de Setembro de 1990. Dispõe Sobre as Condições para a Promoção, Proteção e Recuperação da Saúde, a Organização e o Funcionamento dos Serviços Correspondentes e dá Outras Providências. 1990. Available online: https://www.planalto.gov.br/ccivil_03/leis/l8080.htm (accessed on 17 March 2024).
- Brasil. Lei no 11.947, de 16 de Junho de 2009. Dispõe Sobre o Atendimento da Alimentação Escolar e do Programa Dinheiro Direto na Escola aos Alunos da Educação Básica; Altera as Leis nos 10.880, de 9 de Junho de 2004, 11.273, de 6 de Fevereiro de 2006, 11.507, de 20 de Julho de 2007; Revoga Dispositivos da Medida Provisória no 2.178-36, de 24 de Agosto de 2001, e a Lei no 8.913, de 12 de Julho de 1994; e dá Outras Providências. 2009. Available online: https://www.planalto.gov.br/ccivil_03/_ato2007-2010/2009/lei/l11947.htm (accessed on 17 March 2024).
- Brasil. Decreto no 11.820, de 12 de dezembro de 2023. Institui a Política Nacional de Abastecimento Alimentar e dispõe Sobre o Plano Nacional de Abastecimento Alimentar. 2023. Available online: https://www.planalto.gov.br/ccivil_03/_ato2023-2026/2023/decreto/D11820.htm (accessed on 17 March 2024).
- Brasil. Ministério da Saúde. Secretaria de Atenção à Saúde. Departamento de Atenção Básica. Política Nacional de Alimentação e Nutrição. Ministério da Saúde, Secretaria de Atenção à Saúde. Departamento de Atenção Básica. 1. ed.; 1. reimpr.—Brasília: Ministério da Saúde, 2013. 84p. : il. Available online: https://bvsms.saude.gov.br/bvs/publicacoes/politica_nacional_alimentacao_nutricao.pdf (accessed on 17 March 2024).
- Aranha, A.V. Fome Zero: Uma história brasileira. Brasília, DF: Ministério do Desenvolvimento Social e Combate à Fome, Assessoria Fome Zero, v.1. 2010; 190p. Available online: https://www.mds.gov.br/webarquivos/publicacao/Fome%20Zero%20Vol1.pdf (accessed on 17 March 2024).
- Brasil. Decreto no 11.679, de 31 de Agosto de 2023. Institui o Plano Brasil Sem Fome. 2023. Available online: http://www.in.gov.br/web/dou/-/decreto-n-11.679-de-31-de-agosto-de-2023-507011398 (accessed on 17 March 2024).
- Brasil. Lei no 11.346, de 15 de Setembro de 2006. Cria o Sistema Nacional de Segurança Alimentar e Nutricional—SISAN com Vistas em Assegurar o Direito Humano à Alimentação Adequada e dá Outras Providências. 2006. Available online: https://www.planalto.gov.br/ccivil_03/_Ato2004-2006/2006/Lei/L11346.htm (accessed on 17 March 2024).
- Belik, W.; Silva, J.G.; Takagi, M. Políticas de combate à fome no Brasil. São Paulo Em Perspect. 2001, 15, 119–129. [Google Scholar] [CrossRef]
- Brasil Lei no 12.651, de 25 de maio de 2012. Dispõe Sobre a Proteção da Vegetação Nativa; Altera as Leis nºs 6.938, de 31 de Agosto de 1981, 9.393, de 19 de Dezembro de 1996, e 11.428, de 22 de Dezembro de 2006; revoga as Leis nºs 4.771, de 15 de Setembro de 1965, e 7.754, de 14 de abril de 1989, e a Medida Provisória nº 2.166-67, de 24 de agosto de 2001; e dá Outras Providências. Available online: https://www.planalto.gov.br/ccivil_03/_ato2011-2014/2012/lei/l12651.htm (accessed on 17 March 2024).
- Brevik, E.C.; Slaughter, L.; Singh, B.R.; Steffan, J.J.; Collier, D.; Barnhart, P.; Pereira, P. Soil and human health: Current status and future needs. Air Soil Water Res. 2020, 13, 1–23. [Google Scholar] [CrossRef]
- Oliver, M.A.; Gregory, P.J. Soil, food security and human health: A review. Eur. J. Soil Sci. 2015, 66, 257–276. [Google Scholar] [CrossRef]
- WHO—World Health Organization. Nature, Biodiversity and Health: An Overview of Interconnections. Copenhagen: WHO Regional Office for Europe. 2021. Available online: https://www.who.int/europe/publications/i/item/9789289055581 (accessed on 19 February 2023).
- FAO—Food and Agriculture Organization of the United Nations. Soils for Nutrition: State of the Art. Rome. 2022. Available online: https://www.fao.org/documents/card/en?details=cc0900en (accessed on 20 February 2023).
- Janzen, H.H.; Janzen, D.W.; Gregorich, E.G. The ‘soil health’ metaphor: Illuminating or illusory? Soil Biol. Biochem. 2021, 159, 108167. [Google Scholar] [CrossRef]
- Friedrichsen, C.N.; Hagen-Zakarison, S.; Friesen, M.L.; McFarland, C.R.; Tao, H.; Wulfhorst, J.D. Soil health and well-being: Redefining soil health based upon a plurality of values. Soil Secur. 2021, 2, 100004. [Google Scholar] [CrossRef]
- Lehmann, J.; Bossio, D.A.; Kögel-Knabner, I.; Rillig, M.C. The concept and future prospects of soil health. Nat. Rev. Earth Environ. 2020, 1, 544–553. [Google Scholar] [CrossRef] [PubMed]
- Intergovernmental Technical Panel on Soil—ITPS; Food and Agriculture Organization of the United Nations. Towards a Definition of Soil Health. Soil Letters 1. 2020. Available online: https://www.fao.org/3/cb1110en/cb1110en.pdf (accessed on 17 March 2024).
- Karlen, D.L.; Veum, K.S.; Sudduth, K.A.; Obrycki, J.F.; Nunes, M.R. Soil health assessment: Past accomplishments, current activities, and future opportunities. Soil Tillage Res. 2019, 195, 104365. [Google Scholar] [CrossRef]
- Liu, Y.; Wu, K.; Zhao, R. Bibliometric analysis of research on soil health from 1999 to 2018. J. Soils Sediments 2020, 20, 1513–1525. [Google Scholar] [CrossRef]
- White, P.J.; Broadley, M.R. Biofortifying crops with essential mineral elements. Trends Plant Sci. 2005, 10, 586–593. [Google Scholar] [CrossRef]
- FAO—Food and Agriculture Organization of the United Nations. Soil the Foundation of Nutrition. 2023. Available online: https://www.linkedin.com/pulse/soil-foundation-nutrition-andrew-harley-phd (accessed on 19 February 2023).
- Das, B.S.; Wani, S.P.; Benbi, D.K.; Muddu, S.; Bhattacharyya, T.; Mandal, B.; Santra, P.; Chakraborty, D.; Bhattacharyya, R.; Basak, N.; et al. Soil health and its relationship with food security and human health to meet the sustainable development goals in India. Soil Secur. 2022, 8, 100071. [Google Scholar] [CrossRef]
- Steffan, J.J.; Brevika, E.C.; Burgessa, L.C.; Cerdà, A. The effect of soil on human health: An overview. Eur. J. Soil Sci. 2018, 69, 159–171. [Google Scholar] [CrossRef] [PubMed]
- Gonçalves Junior, A.C.; Nacke, H.; Schwantes, D.; Coelho, G.F. Heavy metal contamination in brazilian agricultural soils due to application of fertilizers. In Environmental Risk Assessment of Soil Contamination; Hernandez-Soriano, M.C., Ed.; IntechOpen: London, UK, 2014. [Google Scholar] [CrossRef]
- Gregory, P.J.; Wahbi, A.; Adu-Gyamfi, J.; Heiling, M.; Gruber, R.; Joy, E.J.M.; Broadley, M.R. Approaches to reduce zinc and iron deficits in food systems. Glob. Food Secur. 2017, 15, 1–10. [Google Scholar] [CrossRef]
- Kachinski, W.D.; Vidigal, J.C.B.; Ávila, F.W. Zinco no solo, na planta e a saúde humana: Uma revisão. Res. Soc. Dev. 2020, 9, e827973544. [Google Scholar] [CrossRef]
- Prado, R.B.; Benites, V.M.; Polidoro, J.C.; Gonçalves, C.E.; Alexey, B.; Naumov, A.B. Mapping Soil Fertility at Different Scales to Support Sustainable Brazilian Agriculture. J. Biol. Biomol. Agric. Food Biotechnol. Eng. 2012, 6, 137–154. Available online: https://ainfo.cnptia.embrapa.br/digital/bitstream/item/132577/1/Mapping-Soil-Fertility-at-Different-Scales-to-Support-Sustainable-Brazilian-Agriculture.pdf (accessed on 24 February 2023).
- Barański, M.; Średnicka-Tober, D.; Volakakis, N.; Seal, C.; Sanderson, R.; Stewart, G.B.; Benbrook, C.; Biavati, B.; Markellou, E.; Giotis, C.; et al. Higher antioxidant and lower cadmium concentrations and lower incidence of pesticide residues in organically grown crops: A systematic literature review and meta-analyses. Br. J. Nutr. 2014, 112, 794–811. [Google Scholar] [CrossRef]
- FAO—Food and Agriculture Organization of the United Nations. International Year of Soil Conference. 2015. Available online: http://www.fao.org/soils-2015/events/detail/en/c/338738/ (accessed on 30 August 2021).
- Suzuki, L.E.A.S.; Reichert, J.M.; Reinert, D.J.; Lima, C.L.R. Degree of compactness and mechanical properties of a subtropical Alfisol with eucalyptus, native forest, and grazed pasture. For. Sci. 2015, 61, 716–722. [Google Scholar] [CrossRef]
- Suzuki, L.E.A.S.; Reinert, D.J.; Alves, M.C.; Reichert, J.M. Medium-term no-tillage, additional compaction, and chiseling as affecting clayey subtropical soil physical properties and yield of corn, soybean and wheat crops. Sustainability 2022, 14, 9717. [Google Scholar] [CrossRef]
- Silva, P.L.F. Compactação e seus efeitos sobre o funcionamento do solo e a absorção de nutrientes pelas plantas: Uma revisão bibliográfica. Meio Ambiente 2021, 3, 24–33. [Google Scholar] [CrossRef]
- Reichert, J.M.; Suzuki, L.E.A.S.; Reinert, D.J.; Horn, R.; Håkansson, I. Reference bulk density and critical degree-of-compactness for no-till crop production in subtropical highly weathered soils. Soil Tillage Res. 2009, 102, 242–254. [Google Scholar] [CrossRef]
- Suzuki, L.E.A.S.; Reichert, J.M.; Reinert, D.J. Degree of compactness, soil physical properties and yield of soybean in six soils under no-tillage. Soil Res. 2013, 51, 311–321. [Google Scholar] [CrossRef]
- Nunes, M.R.; Pauletto, E.A.; Denardin, J.E.; Suzuki, L.E.A.S.; van Es, H.M. Dynamic changes in compressive properties and crop response after chisel tillage in a highly weathered soil. Soil Tillage Res. 2019, 186, 183–190. [Google Scholar] [CrossRef]
- Horn, R. Aggregates strength of differently structured soils and its alteration with external stress application. In Sealing, Crusting and Harsetting Soils: Productivity and Conservation; So, B.H., Ed.; Australian Society of Soil Science: Canberra, Australia, 1995; pp. 177–182. [Google Scholar]
- Hamza, M.A.; Anderson, W.K. Soil compaction in cropping systems. A review of the nature, causes and possible solutions. Soil Tillage Res. 2005, 82, 121–145. [Google Scholar] [CrossRef]
- Botta, G.F.; Antille, D.L.; Nardon, G.F.; Rivero, D.; Bienvenido, F.; Contessotto, E.E.; Ezquerra-Canalejo, A.; Ressia, J.M. Zero and controlled traffic improved soil physical conditions and soybean yield under no-tillage. Soil Tillage Res. 2022, 215, 105235. [Google Scholar] [CrossRef]
- Shaheb, M.R.; Venkatesh, R.; Shearer, S.A. A review on the effect of soil compaction and its management for sustainable crop production. J. Biosyst. Eng. 2021, 46, 417–439. [Google Scholar] [CrossRef]
- Keller, T.; Sandina, M.; Colombia, T.; Horn, R.; Or, D. Historical increase in agricultural machinery weights enhanced soil stress levels and adversely affected soil functioning. Soil Tillage Res. 2019, 194, 104293. [Google Scholar] [CrossRef]
- Yang, D.; Kanae, S.; Oki, T.; Koike, T.; Musiake, K. Global potential soil erosion with reference to land use and climate changes. Hydrol. Process. 2003, 17, 2913–2928. [Google Scholar] [CrossRef]
- Jie, Y.; Haijin, Z.; Xiaoan, C.; Le, S. Effects of tillage practices on nutrient loss and soybean growth in red-soil slope farmland. Int. Soil Water Conserv. Res. 2013, 1, 49–55. [Google Scholar] [CrossRef]
- Wolstenholme, B.N.; Moore-Gordon, C.; Ansermino, S.D. Some pros and cons of mulching avocado orchards. S. Afr. Avocado Grow. Assoc. Yearb. 1996, 19, 87–91. Available online: https://www.semanticscholar.org/paper/Some-Pros-and-Cons-of-Mulching-Avocado-Orchards-Wolstenholme-Moore-Gordon/b0b8f36eabfdc59a214d7f8e6937cda7a054705a (accessed on 24 February 2023).
- Atucha, A.; Merwin, I.A.; Brown, M.G.; Gardiazabal, F.; Mena, F.; Adriazola, C.; Lehmann, J. Soil erosion, runoff and nutrient losses in an avocado (Persea americana Mill) hillside orchard under different groundcover management systems. Plant Soil 2013, 368, 393–406. [Google Scholar] [CrossRef]
- Keesstra, S.; Pereira, P.; Novara, A.; Brevik, E.C.; Azorin-Molina, C.; Parras-Alcántara, L.; Jordán, A.; Cerdà, A. Effects of soil management techniques on soil water erosion in apricot orchards. Sci. Total Environ. 2016, 551–552, 357–366. [Google Scholar] [CrossRef] [PubMed]
- Suzuki, L.E.A.S.; Reisser Júnior, C.; Miola, E.C.C.; Rostirolla, P.; Scherer, V.S.; Terra, V.S.S.; Pauletto, E.A. Efeito do manejo e da irrigação localizada sobre os atributos físicos e hídricos de um Argissolo cultivado com pessegueiro. Pesqui. Agropecuária Gaúcha 2021, 27, 127–147. [Google Scholar] [CrossRef]
- Suzuki, L.E.A.S.; Amaral, R.d.L.d.; Almeida, W.R.d.S.; Ramos, M.F.; Nunes, M.R. Oat straw mulching reduces interril erosion and nutrient losses caused by runoff in a newly planted peach orchard. Soil Syst. 2023, 7, 8. [Google Scholar] [CrossRef]
- Baumhardt, R.L.; Stewart, B.A.; Sainju, U.M. North american soil degradation: Processes, practices, and mitigating strategies. Sustainability 2015, 7, 2936–2960. [Google Scholar] [CrossRef]
- Schick, J.; Bertol, I.; Balbinot Júnior, A.A.; Batistela, O. Erosão hídrica em cambissolo húmico alumínico submetido a diferentes sistemas de preparo e cultivo do solo: II. Perdas de nutrientes e carbono orgânico. R. Bras. Ciênc. Solo 2000, 24, 437–447. [Google Scholar] [CrossRef]
- Suzuki, L.E.A.S.; Bordin, S.S.; Matieski, T.; Rostirolla, P.; Strieder, G.; Nunes, M.R. Soil and nutrient losses by runoff from farmlands in Southern Brazil. Rev. De Ciências Agroambientais 2021, 19, 1–15. Available online: https://periodicos.unemat.br/index.php/rcaa/article/view/4967 (accessed on 24 February 2023).
- Minella, L.P.G.; MERTEN, G.H.; CLARKE, R.T. Método fingerprinting para identificação de fontes de sedimentos em bacia rural. Rev. Bras. Eng. Agrícola Ambient. 2009, 13, 633–638. [Google Scholar] [CrossRef]
- Nascimento, R.C. Fluxo de Th e identificação de sedimentos na bacia hidrográfica do rio Ipojuca. Tese (Doutorado). Universidade Federal Rural de Pernambuco, Programa de Pós Graduação em Ciência do Solo, Recife. 2021. 125p. Available online: http://www.tede2.ufrpe.br:8080/tede2/handle/tede2/8845 (accessed on 22 March 2024).
- Martínez-Casasnovas, J.A.; Ramos, M.C. The cost of soil erosion in vineyard fields in the Penedès-Anoia Region (NE Spain). Catena 2006, 68, 194–199. [Google Scholar] [CrossRef]
- Onesimus, S.; Kimaro, D.; Kasenge, V.; Isabirye, M.; Makhosi, P. Soil and nutrient losses in banana-based cropping systems of the Mount Elgon hillsides of Uganda: Economic implications. Int. J. Agric. Sci. 2012, 2, 256–262. [Google Scholar]
- Alfsen, K.H.; De Franco, M.A.; Glomsrød, S.; Johnsen, T. The cost of soil erosion in Nicarágua. Ecol. Econ. 1996, 16, 129–145. [Google Scholar] [CrossRef]
- Telles, T.S.; Guimarães, M.F.; Dechen, S.C.F. The costs of soil erosion. R. Bras. Ciênc. Solo 2011, 35, 287–298. [Google Scholar] [CrossRef]
- Lourençato, L.F.; Favaretto, N.; Hansel, F.A.; Scheer, A.P.; Luz Junior, L.F.L.; Souza, L.C.P.; Dieckow, J.; Buch, A.C. Effects on water quality of pesticide use in farmland under intensive soil management in Southern Brazil. Int. J. Plant Soils Sci. 2015, 5, 155–166. [Google Scholar] [CrossRef]
- Chaves, L.C.G.; Lopes, F.B.; Maia, A.R.S.; Meireles, A.C.M.; Andrade, E.M. Water quality and anthropogenic impact in the watersheds of service reservoirs in the Brazilian semi-arid region. Rev. Ciência Agronômica 2019, 50, 223–233. [Google Scholar] [CrossRef]
- Teixeira, M.C.; Santos, A.C.; Fernandes, C.S.; Ng, J.C. Arsenic contamination assessment in Brazil—Past, present and future concerns: A historical and critical review. Sci. Total Environ. 2020, 730, 138217. [Google Scholar] [CrossRef]
- Nascimento, R.C.; Maia, A.J.; Silva, Y.J.A.B.; Amorim, F.F.; Nascimento, C.W.A.; Tiecher, T.; Evrard, O.; Collins, A.L.; Biondi, C.M.; Silva, Y.J.A.B. Sediment source apportionment using geochemical composite signatures in a large and polluted river system with a semiarid-coastal interface, Brazil. Catena 2023, 220, 106710. [Google Scholar] [CrossRef]
- Dorici, M.; Costa, C.W.; Moraes, M.C.P.; Piga, F.G.; Lorandi, R.; Lollo, J.A.; Moschini, L.E. Accelerated erosion in a watershed in the southeastern region of Brazil. Environ. Earth Sci. 2016, 75, 1301. [Google Scholar] [CrossRef]
- Lense, G.H.E.; Servidoni, L.E.; Parreiras, T.C.; Santana, D.B.; Bolleli, T.M.; Ayer, J.E.B.; Spalevic, V.; Mincato, R.L. Modeling of soil loss by water erosion in the Tietê River Hydrographic Basin, São Paulo, Brazil. Semin. Ciênc. Agrár. 2022, 43, 1403–1422. [Google Scholar] [CrossRef]
- Corrêa, M.G.; Barbosa, S.C.; dos Santos, G.B.; Collares, G.L.; Primel, E.G. Assessment of Pesticides in the Chasqueiro Irrigation District, Southern Brazil, an Agricultural Area of International Importance. Water Air Soil Pollut. 2022, 233, 517. [Google Scholar] [CrossRef]
- Panis, C.; Candiotto, L.Z.P.; Gaboardi, S.C.; Gurzenda, S.; Cruz, J.; Castro, M.; Lemos, B. Widespread pesticide contamination of drinking water and impact on cancer risk in Brazil. Environ. Int. 2022, 165, 107321. [Google Scholar] [CrossRef]
- Azeredo Morgado, M.G.; Passos, C.J.S.; Garnier, J.; Lima, L.A.; Mendes, R.A.; Samson-Brais, E.; Lucotte, M. Large-scale agriculture and environmental pollution of ground and surface water and sediment by pesticides in the Brazilian Amazon: The case of the Santarém region. Water Air Soil Pollut. 2023, 234, 150. [Google Scholar] [CrossRef]
- Damiani, S.; Montalvão, M.T.L.; Mendes, R.A.; Costa, A.C.G.; Passos, C.J.S. Water and sediment pesticide contamination on indigenous lands surrounded by oil palm plantations in the Brazilian Amazon. Heliyon 2023, 9, e19920. [Google Scholar] [CrossRef] [PubMed]
- Ziliotto, M.; Kulmann-Leal, B.; Roitman, A.; Bogo Chies, J.A.; Ellwanger, J.H. Pesticide pollution in the Brazilian Pampa: Detrimental impacts on ecosystems and human health in a neglected biome. Pollutants 2023, 3, 280–292. [Google Scholar] [CrossRef]
- Heathcote, A.J.; Filstruo, C.T.; Downing, J.A. Watershed sediment losses to lakes accelerating despite agricultural soil conservation efforts. PLoS ONE 2013, 8, e53554. [Google Scholar] [CrossRef]
- Lal, R. Soil degradation as a reason for inadequate human nutrition. Food Secur. 2009, 1, 45–57. [Google Scholar] [CrossRef]
- Tahat, M.M.; Alananbeh, K.M.; Othman, Y.A.; Leskovar, D.I. Soil health and sustainable agriculture. Sustainability 2020, 12, 4859. [Google Scholar] [CrossRef]
- Montgomery, D.R.; Biklé, A. Soil health and nutrient density: Beyond organic vs. conventional farming. Front. Sustain. Food Syst. 2021, 5, 699147. [Google Scholar] [CrossRef]
- Nunes, M.R.; Van Es, H.M.; Schindelbeck, R.; Ristow, A.J.; Ryan, M. No-till and cropping system diversification improve soil health and crop yield. Geoderma 2018, 328, 30–43. [Google Scholar] [CrossRef]
- Montgomery, D.R.; Biklé, A.; Archuleta, R.; Brown, P.; Jordan, J. Soil health and nutrient density: Preliminary comparison of regenerative and conventional farming. PeerJ 2022, 10, e12848. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, J.; Liu, D.; Li, Z.; Zhang, G.; Tao, Y.; Xie, J.; Pan, J.; Chen, F. Straw mulching reduces the harmful effects of extreme hydrological and temperature conditions in citrus orchards. PLoS ONE 2014, 9, e87094. [Google Scholar] [CrossRef]
- Bakshi, P.; Wali, V.K.; Iqbal, M.; Jasrotia, A.; Kour, K.; Ahmed, R.; Bakshi, M. Sustainable fruit production by soil moisture conservation with different mulches: A review. Afr. J. Agric. Res. 2015, 10, 4718–4729. [Google Scholar] [CrossRef]
- Lordan, J.; Pascual, M.; Villar, J.M.; Fonseca, F.; Papió, J.; Montilla, V.; Rufat, J. Use of organic mulch to enhance water-use efficiency and peach production under limiting soil conditions in a three-year-old orchard. Span. J. Agric. Res. 2015, 13, e0904. [Google Scholar] [CrossRef]
- Vicente-Vicente, J.L.; Gómez-Muñoz, B.; Hinojosa-Centeno, M.B.; Smith, P.; Garcia-Ruiz, R. Carbon saturation and assessment of soil organic carbon fractions in Mediterranean rainfed olive orchards under plant cover management. Agric. Ecosyst. Environ. 2017, 245, 135–146. [Google Scholar] [CrossRef]
- Nunes, M.R.; Karlen, D.L.; Veum, K.S.; Moorman, T.B.; Cambardella, C.A. Biological soil health indicators respond to tillage intensity: A US meta-analysis. Geoderma 2020, 369, 114335. [Google Scholar] [CrossRef]
- Rubio, V.; Sawchick, J.; van Es, H. Soil health benefits from sequence intensification, fertilization, and no-tillage in annual cropping systems. Soil Secur. 2022, 9, 100074. [Google Scholar] [CrossRef]
- Baldwin-Kordick, R.; De, M.; Lopez, M.D.; Liebman, M.; Lauter, N.; Marino, J.; McDaniel, M.D. Comprehensive impacts of diversified cropping on soil health and sustainability. Agroecol. Sustain. Food Syst. 2022, 46, 331–363. [Google Scholar] [CrossRef]
- Upadhaya, B.; Kishor, K.; Kumar, V.; Kumar, N.; Kumar, S.; Yadav, V.K.; Kumar, R.; Gaber, A.; Laing, A.M.; Brestic, M.; et al. Diversification of rice-based cropping system for improving system productivity and soil health in eastern gangetic plains of India. Agronomy 2022, 12, 2393. [Google Scholar] [CrossRef]
- Al-Siaede, R. Using Landscape analysis techniques to prevent silt accumulation in the reservoir of the Dwerige weir project and developing River basin, Missan, South Eastern IRAQ. Iraqi J. Sci. 2022, 63, 3031–3039. [Google Scholar] [CrossRef]
- Giambastiani, Y.; Biancofiore, G.; Mancini, M.; Di Giorgio, A.; Riccardo Giusti, R.; Cecchi, S.; Gardin, L.; Errico, A. Modelling the effect of keyline practice on soil erosion control. Land 2023, 12, 100. [Google Scholar] [CrossRef]
- Rodrigo-Comino, J.; Seeger, M.; Iserloh, T.; González, J.M.S.; Ruiz-Sinoga, J.D.; Ries, J.B. Rainfall-simulated quantification of initial soil erosion processes in sloping and poorly maintained terraced vineyards—Key issues for sustainable management systems. Sci. Total Environ. 2019, 660, 1047–1057. [Google Scholar] [CrossRef]
- Socci, P.; Errico, A.; Castelli, G.; Penna, D.; Preti, F. Terracing: From agriculture to multiple ecosystem services. Oxf. Res. Encycl. Environ. Sci. 2019. [Google Scholar] [CrossRef]
- Pijl, A.; Reuter, L.E.H.; Quarella, E.; Vogel, T.A.; Tarolli, P. GIS-based soil erosion modelling under various steep-slope vineyard practices. Catena 2020, 193, 104604. [Google Scholar] [CrossRef]
- Pijl, A.; Wang, W.; Straffelini, E.; Tarolli, P. Soil and water conservation in terraced and non-terraced cultivations: An extensive comparison of 50 vineyards. Land Degrad. Dev. 2022, 33, 596–610. [Google Scholar] [CrossRef]
- Rutebuka, J.; Uwimanzi, A.M.; Nkundwakazi, O.; Kagabo, D.M.; Mbonigaba, J.J.M.; Vermeir, P.; Verdoodt, A. Effectiveness of terracing techniques for controlling soil erosion by water in Rwanda. J. Environ. Manag. 2021, 277, 111369. [Google Scholar] [CrossRef] [PubMed]
- Sociedade Brasileira de Ciência do Solo-SBCS; Núcleo Regional Sul-NRS; Comissão de Química e Fertilidade do Solo-CQFS. Manual de Adubação e Calagem para os Estados do Rio Grande do Sul e Santa Catarina. 2016. 376p. Available online: http://www.sbcs-nrs.org.br/docs/Manual_de_Calagem_e_Adubacao_para_os_Estados_do_RS_e_de_SC-2016.pdf (accessed on 7 August 2022).
- Alzamel, N.M.; Taha, E.M.M.; Bakr, A.A.A.; Loutfy, N. Effect of organic and inorganic fertilizers on soil properties, growth yield, and physiochemical properties of sunflower seeds and oils. Sustainability 2022, 14, 12928. [Google Scholar] [CrossRef]
- Gurmu, G. Soil organic matter and its role in soil health and crop productivity improvement. Acad. Res. J. Agric. Sci. Res. 2019, 7, 475–483. [Google Scholar] [CrossRef]
- Voltr, V.; Menšík, L.; Hlisnikovský, L.; Hruška, M.; Pokorný, E.; Pospíšilová, L. The soil organic matter in connection with soil properties and soil inputs. Agronomy 2021, 11, 779. [Google Scholar] [CrossRef]
- Shah, A.N.; Tanveer, M.; Shahzad, B.; Yang, G.; Fahad, S.; Ali, S.; Bukhari, M.A.; Tung, S.A.; Hafeez, A.; Souliyanonh, B. Soil compaction effects on soil health and cropproductivity: An overview. Environ. Sci. Pollut. Res. Int. 2017, 24, 10056–10067. [Google Scholar] [CrossRef]
- Suzuki, L.E.A.S.; Reinert, D.J.; Fenner, P.T.; Secco, D.; Reichert, J.M. Prevention of additional compaction in eucalyptus and pasture land uses, considering soil moisture and bulk density. J. S. Am. Earth Sci. 2022, 120, 104113. [Google Scholar] [CrossRef]
- Suzuki, L.E.A.S.; Reinert, D.J.; Secco, D.; Fenner, P.T.; Reichert, J.M. Soil structure under forest and pasture land-uses affecting compressive behavior and air permeability in a subtropical soil. Soil Syst. 2022, 6, 98. [Google Scholar] [CrossRef]
- Jat, M.; Dohling, P.N.K.; Ahuja, A.; Singh, J. Effect of pesticides on soil ecosystem services and processes. Indian J. Entomol. 2022, 84, 981–990. [Google Scholar] [CrossRef]
- Suzuki, L.E.A.S.; Almeida, W.R.S.; Amaral, R.L.; Ramos, M.F.; Rehbein, M.O.; Kunde, R.B. Capacidade de uso e aptidão agrícola das terras de propriedades rurais localizadas na bacia hidrográfica do Arroio Pelotas. ForScience 2021, 9, e00873. [Google Scholar] [CrossRef]
- Martins, W.A.; Martins, L.L.; Maria, I.C.D.; Moraes, J.F.L.; Pedro Júnior, M.J. Reduction of sediment yield by riparian vegetation recovery at distinct levels of soil erosion in a tropical watershed. Ciência Agrotecnologia 2021, 45, e028220. [Google Scholar] [CrossRef]
- Horn, R. Time dependence of soil mechanical properties and pore functions for arable soils. Soil Sci. Soc. Am. J. 2004, 68, 1131–1137. [Google Scholar] [CrossRef]
- Dechen, S.L.F.; Lombardi Neto, F.; Castro, O.M. Gramíneas e leguminosas e seus restos culturais no controle da erosão em Latossolo Roxo. R. Bras. Ci. Solo 1981, 5, 133–137. [Google Scholar]
- Amado, T.J.C.; Matos, A.T.; Torres, L. Flutuação de temperatura e umidade do solo sob preparo convencional e em faixas na cultura da cebola. Pesq. Agropec. Bras. 1990, 25, 625–631. [Google Scholar]
- Guadagnin, J.C.; Bertol, I.; Cassol, P.C.; Amaral, A.J. Perdas de solo, água e nitrogênio por erosão hídrica em diferentes sistemas de manejo. R. Bras. Ci. Solo 2005, 29, 277–286. [Google Scholar] [CrossRef]
- Holz, D.J.; Williard, K.W.J.; Edwards, P.J.; Schoonover, J.E. Soil erosion in humid regions: A review. J. Contemp. Water Res. Educ. 2015, 154, 48–59. [Google Scholar] [CrossRef]
- Ramos, M.M.; Díaz, J.D.G.; Rivas, A.I.M.; Gómez, M.U.; Hernández, B.J.V.; García, P.R.; Asencio, C. Factors that influence soil hydric erosion in a temperate forest. Rev. Mex. De Cienc. For. 2020, 11, 51–71. [Google Scholar] [CrossRef]
- Peng, L.; Tang, C.; Zhang, X.; Duan, J.; Yang, L.; Liu, S. Quantifying the effects of root and soil properties on soil detachment capacity in agricultural land use of Southern China. Forests 2022, 13, 1788. [Google Scholar] [CrossRef]
- Ramos, M.F.; Almeida, W.R.S.; Amaral, R.L.; Suzuki, L.E.A.S. Degree of compactness and soil quality of peach orchards with different production ages. Soil Tillage Res. 2022, 219, 105324. [Google Scholar] [CrossRef]
- IBGE—Instituto Brasileiro de Geografia e Estatística. Censo Agropecuário 2017. 2017. Available online: https://sidra.ibge.gov.br/pesquisa/censo-agropecuario/censo-agropecuario-2017/resultados-definitivos#caracteristicas-estabelecimentos.html (accessed on 24 February 2023).
- Majolo, F.; Rempel, C. Impact of the use of pesticides by rural workers in Brazil. RBCIAMB 2018, 50, 1–25. [Google Scholar] [CrossRef]
- Silva, F.H.K.P.; Antunes, L.F.S.; Vaz, A.F.S.; Silva, M.S.R.A. Agrotóxicos no Brasil: Uma compreensão do cenário atual de utilização e das propriedades do solo que atuam na dinâmica e retenção destas moléculas. Res. Soc. Dev. 2022, 11, e7911931614. [Google Scholar] [CrossRef]
- FAO—Food and Agriculture Organization of the United Nations. Voluntary Guidelines for Sustainable Soil Management; Food and Agriculture Organization of the United Nations: Rome, Italy, 2017; 16p, Available online: http://www.fao.org/3/bl813e/bl813e.pdf (accessed on 9 July 2021).
- Silva, A.M.M.; Araújo, V.L.V.P.; Cardoso, E.J.B.N. Revisiting the past to understand the present and future of soil health in Brazil. Front. Soil Sci. 2023, 3, 1172436. [Google Scholar] [CrossRef]
- Lin, L.; Yang, H.; Xu, X. Effects of water pollution on human health and disease heterogeneity: A review. Front. Environ. Sci. 2022, 10, 880246. [Google Scholar] [CrossRef]
- Palma, D.C.A.; Laurencetti, C. Agrotóxicos em água e alimentos: Risco à saúde humana. Rev. Uniara 2011, 14, 7–21. [Google Scholar] [CrossRef]
- Mello, K.; Taniwaki, R.H.; Paula, F.R.; Valente, R.A.; Randhir, T.O.; Macedo, D.R.; Leal, C.G.; Rodrigues, C.B.; Hughes, R.M. Multiscale land use impacts on water quality: Assessment, planning, and future perspectives in Brazil. J. Environ. Manag. 2020, 270, 110879. [Google Scholar] [CrossRef] [PubMed]
- Nunes, A.; Schmitz, C.; Moura, S.; Maraschin, M. The use of pesticides in Brazil and the risks linked to human health. Braz. J. Dev. 2021, 7, 37885–37904. [Google Scholar] [CrossRef]
- FAO—Food and Agriculture Organization of the United Nations. Organic Agriculture. 2023. Available online: https://www.fao.org/organicag/oa-faq/oa-faq5%20/en/ (accessed on 19 February 2023).
- STOA—Science and Technology Options Assessment; EPRS—European Parliamentary Research Service; Scientific Foresight Unit. Human health implications of organic food and organic agriculture. 2016. 82p. Available online: https://www.europarl.europa.eu/RegData/etudes/STUD/2016/581922/EPRS_STU(2016)581922_EN.pdf (accessed on 19 February 2023).
- Münzel, T.; Hahad, O.; Daiber, A.; Landrigan, P.J. Soil and water pollution and human health: What should cardiologists worry about? Cardiovasc. Res. 2022, 119, 440–449. [Google Scholar] [CrossRef]
- Thakur, R.; Verma, S.; Gupta, S.; Negi, G.; Bhardwaj, P. Role of soil health in plant disease management: A review. Agric. Rev. 2022, 43, 70–76. [Google Scholar] [CrossRef]
- Owino, V.; Kumwenda, C.; Ekesa, B.; Parker, M.E.; Ewoldt, L.; Roos, N.; Lee, W.T.; Tome, D. The impact of climate change on food systems, diet quality, nutrition, and health outcomes: A narrative review. Front. Clim. 2022, 4, 941842. [Google Scholar] [CrossRef]
- Pino, V.; McBratney, A.; O’Brien, E.; Singh, K.; Pozza, L. Citizen science & soil connectivity: Where are we? Soil Secur. 2022, 9, 100073. [Google Scholar] [CrossRef]
Strategies | Source |
---|---|
Agroecology or organic farming | [2,37,79,80] |
No-tillage systems | [40,79,81,82] |
Cover crops or mulching | [56,82,83,84,85,86,87,88] |
Cropping system diversification | [81,87,89,90] |
Keyline arrangement | [91,92] |
Terracing such as dry-stone wall or earth bank terraces | [93,94,95,96,97] |
Fertilization according to the soil analyses | [98] |
Organic fertilizers | [79,99] |
Increase soil organic matter | [39,55,100,101] |
Avoid soil compaction | [40,102,103,104] |
Avoid the use of pesticides | [37,105] |
Consider the capacity of use and agricultural aptitude of land | [106] |
Maintain the areas of permanent preservation and riparian vegetation | [107] |
Practices | * Absolute Number | % |
---|---|---|
Level planting | 480,428 | 7.8 |
Crop rotation | 946,607 | 15.3 |
Fallow or soil resting | 699,180 | 11.3 |
Protection and/or conservation of slopes | 204,246 | 3.3 |
Recovery of riparia forest | 122,507 | 2.0 |
Reforestation to protect river nascent | 116,962 | 1.9 |
Stabilization of gully | 39,629 | 0.6 |
Forest management | 88,730 | 1.4 |
Other | 1,245,991 | 20.2 |
None | 2,224,000 | 36.1 |
Fertilization Practices | Absolute Number | % |
---|---|---|
Made fertilization | 2,144,693 | 42.3 |
Made chemical fertilization | 1,015,429 | 20.0 |
Made organic fertilization | 590,834 | 11.6 |
Made chemical and organic fertilization | 538,430 | 10.6 |
Did not make fertilization | 290,2873 | 57.2 |
Generally does not make fertilization | 2,626,577 | 51.8 |
Generally makes fertilization | 276,296 | 5.4 |
Public Policies | Subject | Source |
---|---|---|
Law n° 4504, 30 November 1964 | Provides the land statute and adopts other provisions | https://www.planalto.gov.br/ccivil_03/leis/l4504.htm (accessed on 23 February 2023) |
Law n° 6225, 14 July 1975 | Provides the discrimination, by the Ministry of Agriculture, of regions based on the mandatory execution of soil protection and erosion combatting plans and adopts other provisions | https://www.planalto.gov.br/ccivil_03/leis/l6225.htm (accessed on 23 February 2023) |
Law n° 6938, 31 August 1981 | Establishes the National Environmental Policy, its purposes, and formulation mechanisms, and adopts other provisions | https://www.planalto.gov.br/ccivil_03/leis/l6938.htm (accessed on 23 February 2023) |
Decree n° 94,076, 5 March 1987 | Establishes the National Program for Watersheds and adopts other provisions | https://www.planalto.gov.br/ccivil_03/decreto/1980-1989/1985-1987/d94076.htm#:~:text=DECRETO%20No%2094.076%2C%20DE,Hidrogr%C3%A1ficas%2C%20e%20d%C3%A1%20outras%20provid%C3%AAncias (accessed on 23 February 2023) |
Constitution of the Federative Republic of Brazil, 1988 | Constitution of the Federative Republic of Brazil | https://www.planalto.gov.br/ccivil_03/constituicao/constituicao.htm (accessed on 23 February 2023) |
Law n° 8171, 17 January 1991 | Provides information about the agricultural policy | https://www.planalto.gov.br/ccivil_03/leis/l8171.htm (accessed on 23 February 2023) |
Law no 10,831, 23 December 2003 | Provides organic agriculture policies and adopts other provisions | https://www.planalto.gov.br/ccivil_03/leis/2003/l10.831.htm (accessed on 23 February 2023) |
Resolution no 420, 28 December 2009 | Provides guiding criteria and values for soil quality regarding the presence of chemical substances and establishes guidelines for the environmental management of areas contaminated by these substances as a result of anthropogenic activities | https://www.legisweb.com.br/legislacao/?id=111046 (accessed on 23 February 2023) |
Law n° 12,389, 3 March 2011 | Provides the establishment of the national agricultural limestone day | http://www.planalto.gov.br/ccivil_03/_ato2011-2014/2011/lei/L12389.htm#:~:text=LEI%20N%C2%BA%2012.389%2C%20DE%203,Art (accessed on 23 February 2023) |
Law no 12,651, 25 May 2012 | Provides guidelines for the protection of native vegetation | https://www.planalto.gov.br/ccivil_03/_ato2011-2014/2012/lei/l12651.htm (accessed on 23 February 2023) |
Decree n° 7794, 20 August 2012 | Establishes the national policy on agroecology and organic production | https://www.planalto.gov.br/ccivil_03/_ato2011-2014/2012/decreto/d7794.htm#:~:text=DECRETO%20N%C2%BA%207.794%2C%20DE%2020,vista%20o%20disposto%20no%20art (accessed on 23 February 2023) |
Decree n° 9414, 19 June 2018 | Establishes the national program for the survey and interpretation of soils in Brazil | https://www.planalto.gov.br/ccivil_03/_ato2015-2018/2018/decreto/d9414.htm (accessed on 23 February 2023) |
National Program for the Survey and Interpretation of Soils in Brazil (PronaSolos) | Investigation, documentation, inventory, and interpretation of data of Brazilian soils | http://pronasolos.agenciazetta.ufla.br/ (accessed on 23 February 2023) |
ABC Plan—Low Carbon Emission Agriculture | Responsible for the organization and planning of actions to be carried out for the adoption of sustainable production technologies, selected with the objective of responding to commitments to reduce greenhouse gas emissions in the agricultural sector | https://www.gov.br/agricultura/pt-br/assuntos/sustentabilidade/plano-abc/plano-abc-agricultura-de-baixa-emissao-de-carbono (accessed on 23 February 2023) |
National Program for Watersheds and Soil Conservation in Agriculture | Seeks to promote development in an integrated and sustainable way; with the rational use of natural resources, food production and the generation of jobs and income in rural areas are increased | https://www.gov.br/agricultura/pt-br/assuntos/sustentabilidade/plano-abc/programas-e-orientacoes (accessed on 23 February 2023) |
Law n° 6115, 23 November 1992 (Mato Grosso state) | Provides guidelines for the conservation and preservation of soil resources and adopts other provisions | https://leisestaduais.com.br/mt/lei-ordinaria-n-6115-1992-mato-grosso-dispoe-sobre-conservacao-e-preservacao-do-recurso-solo-e-adota-outras-providencias (accessed on 23 February 2023) |
Law n° 12,596, 30 July 1997 (Minas Gerais state) | Provides guidelines for the occupation, use, management, and conservation of agricultural soil | https://agenciapeixevivo.org.br/wp-content/uploads/2010/02/images_arquivos_legislacaoambiental_AGRICULTURA_lei-estadual-n-12.596-1997.pdf (accessed on 23 February 2023) |
Law n° 6171, 4 July 1988 (São Paulo state) | Provides guidelines for the use, conservation, and preservation of agricultural soil | https://www.defesa.agricultura.sp.gov.br/legislacoes/lei-n-6171-de-04-07-1988,321.html (accessed on 23 February 2023) |
São Paulo state program of use, conservation, and preservation of agricultural soil (São Paulo state) | Inspection of the use, conservation, and preservation of agricultural soil, aiming to monitor agricultural areas in the São Paulo state with the aim of minimizing existing erosion processes | https://www.defesa.agricultura.sp.gov.br/www/programas/?/conservacao-e-preservacao-do-solo/programa-estadual-de-uso-conservacao-e-preservacao-do-solo-agricola/&cod=28 (accessed on 23 February 2023) |
Law n° 8014, 14 December 1984 (Paraná state) | Establishes the preservation of agricultural soil and adopts other measures | https://leisestaduais.com.br/pr/lei-ordinaria-n-8014-1984-parana-dispoe-sobre-a-preservacao-do-solo-agricola-e-adota-outras-providencias (accessed on 23 February 2023) |
Resolution no 172, 03 September 2010 (Paraná state) | Establishes criteria for allocating terraces in the no-tillage system, according to technical guidelines from the Instituto Agronômico do Paraná-IAPAR | https://www.legisweb.com.br/legislacao/?id=144503 (accessed on 23 February 2023) |
Decree n° 4966, 29 August 2016 (Paraná state) | Establishes the integrated soil and water conservation program in Paraná state and takes other measures | https://www.legisweb.com.br/legislacao/?id=327957#:~:text=Institui%20o%20Programa%20Integrado%20de,que%20lhe%20confere%20o%20art (accessed on 23 February 2023) |
Law n° 9474, 20 December 1991 (Rio Grande do Sul state) | Establishes the preservation of agricultural soil and adopts other measures | https://ww3.al.rs.gov.br/filerepository/repLegis/arquivos/09.474.pdf (accessed on 23 February 2023) |
Law n° 11,194, 13 July 1998 (Rio Grande do Sul state) | Establishes the Agricultural Green Seal in the Rio Grande do Sul state and adopts other measures | https://ww3.al.rs.gov.br/filerepository/repLegis/arquivos/11.194.pdf (accessed on 23 February 2023) |
Law n° 11,520, 3 August 2000 (Rio Grande do Sul state) | Establishes the state environmental code of the Rio Grande do Sul state and adopts other measures | https://www.sema.rs.gov.br/upload/arquivos/201611/28093051-codigo-estadual-do-meio-ambiente.pdf (accessed on 23 February 2023) |
Decree n° 52,751, 4 December 2015 (Rio Grande do Sul state) | Establish the soil and water conservation policy in the Rio Grande do Sul state | https://www.soloeagua.rs.gov.br/upload/arquivos/201805/03090934-decreto-politica-estadual-solo-e-agua-dec-52-751-de-04-de-dezembro-de-2015.pdf (accessed on 23 February 2023) |
State program of soil and water conservation (Rio Grande do Sul state) | Provides guidelines to conserve the soil and water for better crop production | https://www.soloeagua.rs.gov.br/inicial (accessed on 23 February 2023) |
Public Policies Necessary for Soil and Water Conservation and Food Production |
---|
Whoever contaminates should pay and whoever preserves should have economic benefits |
Enforce the environmental cost on the agricultural user of agrochemicals |
Agrochemical industries should pay for environmental and human health damage |
Whoever produces food free of agrochemicals should have an economic benefit, while the commodities should be taxed |
Ensure access for all people and at an accessible cost to food free of agrochemicals |
Offer incentives to farmers that protect or improve soil health |
Offer payment for environmental services associated with soil health |
Offer incentives to adopt agroecology or organic farming and diversification of crops, instead monocrop practices |
Offer incentives to plant food (legumes, vegetables, fruits, grains, and others) instead commodities |
Use unproductive land in rural settlements to produce food |
Recover degraded land to produce food |
Ensure fair and equal access to healthy food |
Develop strategies, courses, and incentives for food reuse |
Develop strategies to reduce food loss during transport and storage |
Develop programs encouraging the use of soil and water conservation practices at the watershed level |
Provide incentives to the younger generation of farmers to continue producing food |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Suzuki, L.E.A.S.; Casalinho, H.D.; Milani, I.C.B. Strategies and Public Policies for Soil and Water Conservation and Food Production in Brazil. Soil Syst. 2024, 8, 45. https://doi.org/10.3390/soilsystems8020045
Suzuki LEAS, Casalinho HD, Milani ICB. Strategies and Public Policies for Soil and Water Conservation and Food Production in Brazil. Soil Systems. 2024; 8(2):45. https://doi.org/10.3390/soilsystems8020045
Chicago/Turabian StyleSuzuki, Luis Eduardo Akiyoshi Sanches, Helvio Debli Casalinho, and Idel Cristiana Bigliardi Milani. 2024. "Strategies and Public Policies for Soil and Water Conservation and Food Production in Brazil" Soil Systems 8, no. 2: 45. https://doi.org/10.3390/soilsystems8020045