Environmental and Economic Evaluation of Fuel Choices for Short Sea Shipping †
Abstract
:1. Introduction
2. Investigated Fuels and the Case Ship
2.1. MDO 0.1% S
2.2. LNG
2.3. LBG
2.4. The Case Ship
3. Method and Data Collection
3.1. Life Cycle Assessment
3.2. Functional Unit
3.3. Fuel Chains and Data Sources
3.3.1. MDO Route
3.3.2. LNG Route
3.3.3. LBG Route
3.4. Impact Categories and Included Primary Pollutants
4. Results
4.1. Global Warming Potential
4.2. Local Environmental Impacts
4.3. Economic Aspects
- MDO 0.1% S: 554 EUR/t (13.00 EUR/GJ)
- LNG: 389 EUR/t (8.00 EUR/GJ)
- LBG: 1080 EUR/t (22.00 EUR/GJ)
5. Discussion
5.1. Environmental Performance
5.2. Fuel Availability
5.3. Recommendations
6. Conclusions
- In terms of local environmental impacts, both gaseous fuels had clear advantages over the MDO + SCR combination, but LNG is not the solution for decarbonizing shipping.
- Achieving IMO’s ambitious GHG reduction target seems possible only with the transition towards low-carbon and zero-carbon fuels.
- Replacing fossil fuels with bio-methane produced from organic municipal waste showed 60% life cycle GHG benefits compared with marine diesel oil.
- The most significant challenge facing LBG today is fuel availability in volumes needed for shipping.
- LNG can provide a bridge technology to a lower carbon shipping. Having infrastructure already in place enables a smooth transition to LBG in the long term.
- For now, there is also a strong economic argument for LNG in shipping. Without taxation or subsidies, LBG will find it difficult to compete with the prices of fossil fuels.
- Eliminating fugitive methane emissions and methane slip will be an important technology development topic for the coming decade.
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- HELCOM; Baltic Marine Environment Protection Commission. Cleaner Exhaust Gases from Baltic Shipping—The New NECA Regulations. HELCOM 2017. Available online: http://www.helcom.fi/Lists/Publications/Baltic%20Sea%20NECA%20-%20Cleaner%20Exhaust%20Gases%20from%20Baltic%20Shipping.pdf (accessed on 28 February 2019).
- International Maritime Organization; Marine Environment Protection Committee. Designation of the Baltic Sea and the North Sea Emission Control Areas for NOx Tier III Control; MEPC 71/17/Add.1, Annex 1, Resolution MEPC.286(71); International Maritime Organization: London, UK, 2017. [Google Scholar]
- Bengtsson, S.; Andersson, K.; Fridell, E. A comparative life cycle assessment of marine fuels: Liquefied natural gas and three other fossil fuels. J. Eng. Marit. Environ. 2011, 225, 97–110. [Google Scholar] [CrossRef]
- Winnes, H.; Styhre, L.; Fridell, E. Reducing GHG emissions from ships in port areas. Res. Transp. Bus. Manag. 2015, 17, 73–82. [Google Scholar] [CrossRef] [Green Version]
- International Maritime Organization; Marine Environment Protection Committee. Initial IMO Strategy on Reduction of GHG Emissions from Ships; MEPC 72/17/Add.1, Annex 11, Resolution MEPC.304(72); International Maritime Organization: London, UK, 2018. [Google Scholar]
- Gilbert, P.; Walsh, C.; Traut, M.; Kesieme, U.; Pazouki, K.; Murphy, A. Assessment of full life-cycle air emissions of alternative shipping fuels. J. Clean. Prod. 2018, 172, 855–866. [Google Scholar] [CrossRef]
- Burel, F.; Taccani, R.; Zuliani, N. Improving sustainability of maritime transport through utilization of Liquefied Natural Gas (LNG) for propulsion. Energy 2013, 57, 412–420. [Google Scholar] [CrossRef]
- Seddiek, I.B.; Elgohary, M.M. Eco-friendly selection of ship emissions reduction strategies with emphasis on SOx and NOx emissions. Int. J. Nav. Archit. Ocean Eng. 2014, 6, 737–748. [Google Scholar] [CrossRef] [Green Version]
- Verbeek, R.; Kadijk, G.; Menscli, P.V.; Wulffers, C.; Beemt, B.; Fraga, F. Environmental and Economic Aspects of Using LNG as a Fuel for Shipping in The Netherlands; Report No. 2011-00166; The Netherlands Organisation for Applied Scientific Research: The Hague, The Netherlands, 2011. [Google Scholar]
- Woodyard, D. Pounder’s Marine Diesel Engines and Gas Turbines, 9th ed.; Butterworth-Heinemann: Oxford, UK, 2009; ISBN 978-0-7506-8984-7. [Google Scholar]
- Aakko-Saksa, P.; Lehtoranta, K. Ship Emissions in the Future—Review; VTT Research Report; No. VTT-R-00335-19; VTT Technical Research Centre of Finland: Espoo, Finland, 2019. [Google Scholar]
- Anderson, M.; Salo, K.; Fridell, E. Particle-and Gaseous Emissions from an LNG Powered Ship. Environ. Sci. Technol. 2015, 49, 12568–12575. [Google Scholar] [CrossRef] [PubMed]
- Lehtoranta, K.; Aakko-Saksa, P.; Murtonen, T.; Vesala, H.; Ntziachristos, L.; Rönkkö, T.; Karjalainen, P.; Kuittinen, N.; Timonen, H. Particulate Mass and Nonvolatile Particle Number Emissions from Marine Engines Using Low-Sulfur Fuels, Natural Gas, or Scrubbers. Environ. Sci. Technol. 2019, 53, 3315–3322. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Wu, B.; Mao, G. Research on the Performance and Emission Characteristics of the LNG-Diesel Marine Engine. J. Nat. Gas Sci. Eng. 2015, 27, 945–954. [Google Scholar] [CrossRef]
- Bengtsson, S.; Fridell, E.; Andersson, K. Fuels for short sea shipping: A comparative assessment with focus on environmental impact. J. Eng. Marit. Environ. 2014, 228, 44–54. [Google Scholar] [CrossRef]
- Myhre, G.; Shindell, D.; Bréon, F.-M.; Collins, W.; Fuglestvedt, J.; Huang, J.; Koch, D.; Lamarque, J.-F.; Lee, D.; Mendoza, B.; et al. Anthropogenic and Natural Radiative Forcing. In Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Stocker, T.F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S.K., Boschung, J., Nauels, A., Xia, Y., Bex, V., Midgley, P.M., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2013; pp. 659–740. [Google Scholar]
- Corbett, J.J.; Thomson, H.; Winebrake, J.J. Methane Emissions from Natural Gas Bunkering Operations in the Marine Sector: A Total Fuel Cycle Approach; U.S. Department of Transportation, Maritime Administration: Washington, DC, USA, 2015.
- Kollamthodi, S.; Norris, J.; Dun, C.; Brannigan, C.; Twisse, F.; Biedka, M.; Bates, J. The Role of Natural Gas and Biomethane in the Transport Sector: Final Report; Ricardo Energy & Environment: Harwell, UK, 2016. [Google Scholar]
- Lowell, D.; Wang, H.; Lutsey, N. Assessment of the Fuel Cycle Impact of Liquefied Natural Gas as Used in International Shipping; ICCT White Paper; The International Council on Clean Transportation: Washington, DC, USA, 2013. [Google Scholar]
- Bengtsson, S.; Fridell, E.; Andersson, K. Environmental assessment of two pathways the use of biofuels in shipping. Energy Policy 2012, 44, 451–463. [Google Scholar] [CrossRef]
- Brynolf, S.; Fridell, E.; Andersson, K. Environmental assessment of marine fuels: Liquefied natural gas, liquefied biogas, methanol and bio-methanol. J. Clean. Prod. 2014, 74, 86–95. [Google Scholar] [CrossRef]
- Gasser, T.; Peters, G.P.; Fuglestvedt, J.S.; Collins, W.J.; Shindell, D.T.; Ciais, P. Accounting for the climate—Carbon feedback in emission metrics. Earth Syst. Dyn. 2017, 8, 235–253. [Google Scholar] [CrossRef] [Green Version]
- IPCC. Climate Change 2007: The Physical Science Basis. Working Group I Contribution to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change; Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K.B., Tignor, M., Miller, H.L., Eds.; Cambridge University Press: Cambridge, UK, 2007; p. 996. [Google Scholar]
- Levasseur, A.; Cavalett, O.; Fuglestvedt, J.S.; Gasser, T.; Johansson, D.J.A.; Jørgensen, S.V.; Raugei, M.; Reisinger, A.; Schivley, G.; Strømman, A.; et al. Enhancing life cycle impact assessment from climate science: Review of recent findings and recommendations for application to LCA. Ecol. Indic. 2016, 71, 163–174. [Google Scholar] [CrossRef] [Green Version]
- Gillet, N.P.; Matthews, H.D. Accounting for carbon cycle feedbacks in a comparison of the global warming effects of greenhouse gases. Environ. Res. Lett. 2010, 5. [Google Scholar] [CrossRef] [Green Version]
- Spoof-Tuomi, K.; Niemi, S. Emission reduction by biogas use in short sea shipping. In Integrated Energy Solutions to Smart and Green Shipping, Proceedings of the INTENS Public Project Seminar, Espoo, Finland, 13 March 2019; Zou, G., Ed.; VTT Technical Research Centre of Finland: Espoo, Finland, 2019; pp. 18102–18106. [Google Scholar]
- DNV, GL. Assessment of Selected Alternative Fuels and Technologies; DNV GL: Oslo, Norway, 2019. [Google Scholar]
- Dominguez, J. LNG Blue Corridors—Liquefied Biomethane Experiences; The Seventh Framework Programme; Deliverable No. D3.6; European Commission: Brussels, Belgium, 2014. [Google Scholar]
- Strauch, S.; Krassowski, J.; Singhal, A. Biomethane Guide for Decision Makers—Policy Guide on Biogas Injection into the Natural Gas Grid; Project Green Gas Grids WP 2/D 2.3; Fraunhofer UMSICHT: Oberhausen, Germany, 2013. [Google Scholar]
- Life Cycle Assessment (LCA). European Commission, LIFE Programme. EU LIFE04 ENV/GR/110. Available online: http://www.ecoil.tuc.gr/LCA-2.pdf (accessed on 1 March 2019).
- International Organization for Standardization. Environmental Management—Life Cycle Assessment—Principles and Framework; ISO: Geneva, Switzerland, 2006. [Google Scholar]
- Rebitzer, G.; Ekvall, T.; Frischknecht, R.; Hunkeler, D.; Norris, G.; Rydberg, T.; Schmidt, W.-P.; Suh, S.; Weidema, B.P.; Pennington, D.W. Life cycle assessment Part 1: Framework, goal and scope definition, inventory analysis, and applications. Environ. Int. 2004, 30, 701–720. [Google Scholar] [CrossRef] [PubMed]
- Prieto, G.; Iitsuka, Y.; Yamauchi, H.; Mizuno, A.; Prieto, O.; Gay, C.R. Urea in Water-in-Oil Emulsions for Ammonia Production. Int. J. Plasma Environ. Sci. Technol. 2009, 3, 54–60. [Google Scholar]
- Willems, F. Modeling & Control of Diesel Aftertreatment Systems; TNO-TU/e-LiU Course; Linköping University: Linköping, Sweden, 2015. [Google Scholar]
- Smith, T.W.P.; Jalkanen, J.P.; Anderson, B.A.; Corbett, J.J.; Faber, J.; Hanayama, S.; O’Keeffe, E.; Parker, S.; Johansson, L.; Aldous, L.; et al. Third IMO GHG Study 2014; International Maritime Organization (IMO): London, UK, 2015. [Google Scholar]
- Brynolf, S.; Magnusson, M.; Fridell, E.; Andersson, K. Compliance possibilities for the future ECA regulations through the use of abatement technologies or change of fuels. Transp. Res. 2014, 28, 6–18. [Google Scholar] [CrossRef]
- Edwards, R.; Larivé, J.F.; Rickeard, D.; Weindorf, W. JEC Well-to-Wheels Analysis: Well-to-Wheels Analysis of Future Automotive Fuels and Powertrains in the European Context; Well-to-Tank Report Version 4.0; JRC Technical Reports; Publications Office of the European Union: Brussels, Belgium, 2013. [Google Scholar] [CrossRef]
- Berglund, M.; Börjesson, P. Assessment of energy performance in the life-cycle of biogas production. Biomass Bioenergy 2006, 30, 254–266. [Google Scholar] [CrossRef]
- Environmental Impacts Analysed and Characterisation Factors. A Study to Examine the Costs and Benefits of the ELV Directive—Final Report Annexes, Annex 5. GHK in Association with Bio Intelligence Service 2006. Available online: https://ec.europa.eu/environment/waste/pdf/study/annex5.pdf (accessed on 5 March 2019).
- Keoleian, G.A.; Spitzley, D.V. Life Cycle Based Sustainability Metrics. In Sustainability Science and Engineering—Defining Principles; Abraham, M.A., Ed.; Elsevier B.V.: Amsterdam, The Netherlands, 2006; pp. 127–160. ISBN 978-0444517128. [Google Scholar]
- Huijbregts, M.A.J.; Schöpp, W.; Verkuijlen, E.; Heijungs, R.; Reijnders, L. Spatially explicit characterization of acidifying and eutrophying air pollution in life-cycle assessment. J. Ind. Ecol. 2000, 4, 75–92. [Google Scholar] [CrossRef]
- Van Zelm, R.; Huijbregts, M.A.J.; den Hollander, H.A.; van Jaarsveld, H.A.; Sauter, F.J.; Struijs, J.; van Wijnen, H.J.; van de Meent, D. European characterization factors for human health damage of PM10 and ozone in life cycle impact assessment. Atmos. Environ. 2008, 42, 441–453. [Google Scholar] [CrossRef]
- Stenersen, D.; Thonstad, O. GHG and NOx Emissions from Gas Fueled Engines—Mapping, Verification, Reduction Technologies; SINTEF Report No. OC2017 F-108, Version 3.0; SINTEF Ocean AS: Trondheim, Norway, 2017. [Google Scholar]
- DNV, GL. LNG as Ship Fuel. Current Price Development Oil and Gas. Available online: https://www.dnvgl.com/maritime/lng/current-price-development-oil-and-gas.html (accessed on 1 March 2019).
- Mattila, T.; (Skangas, Göteborg, Sweden). Personal communication, 2018.
- Hellman, R.; (North European Oil Trade Oy NEOT, Helsinki, Finland). Personal communication, 2019.
- Campling, P.; Janssen, L.; Vanherle, K.; Cofala, J.; Heyes, C.; Sander, R. Final Report: Specific Evaluation of Emissions from Shipping including Assessment for the Establishment of Possible New Emission Control Areas in European Seas; VITO Vision on Technology: Mol, Belgium, 2013. [Google Scholar]
- Lloyd’s Register. Your Options for Emissions Compliance. Guidance for Shipowners and Operators on the Annex VI SOx and NOx Regulations; Lloyd's Register: London, UK, 2015. [Google Scholar]
- Fathom. The Ship Operator’s Guide to NOx Reduction; Macdonald, F., Rojon, I., Austin, C., Eds.; Fathom Maritime Intelligence: Windsor, UK, 2015; ISBN 978-0-9932678-8-8. [Google Scholar]
- Bachér, H.; Albrecht, P. Evaluating the Costs Arising from New Maritime Environmental Regulations; Transport Safety Agency Trafi: Helsinki, Finland, 2013; ISBN 978-952-5893-89-2. [Google Scholar]
- Kandlikar, M.; Reynolds, C.C.O.; Grieshop, A.P. A Perspective Paper on Black Carbon Mitigation as a Response to Climate Change; Copenhagen Consensus Center Report; Copenhagen Consensus Center: Copenhagen, Denmark, 2009. [Google Scholar]
- European Union. Regulation (EU) 2016/1628 of the European Parliament and of the Council of 14 September 2016 on Requirements Relating to Gaseous and Particulate Pollutant Emission Limits and Type-Approval for Internal Combustion Engines for Non-Road Mobile Machinery, Amending Regulations (EU) No 1024/2012 and (EU) No 167/2013, and Amending and Repealing Directive 97/68/EC; EU: Brussels, Belgium, 2016. [Google Scholar]
- Baresic, D.; Smith, T.; Raucci, K.; Rehmatulla, C.; Narula, N.; Rojon, I. LNG as a Marine Fuel in the EU: Market, Bunkering Infrastructure Investments and Risks in the Context of GHG Reductions; UMAS: London, UK, 2018. [Google Scholar]
- Verbeek, R.; Verbeek, M. LNG for Trucks and Ships: Fact Analysis. Review of Pollutant and GHG Emissions; TNO Report 2014 R11668; The Netherlands Organisation for Applied Scientific Research: The Hague, Netherlands, 2015. [Google Scholar]
- Gasum. About Gasum. For the Media. News. Available online: https://www.gasum.com/en/About-gasum/for-the-media/News/2018/circular-economy-cooperation-with-stora-enso-gasum-to-produce-biogas-from-waste-waters-at-nymolla-mill/ (accessed on 15 December 2018).
- Florentinus, A.; Hamelinck, C.; van der Bos, A.; Winkel, R.; Cuijpers, M. Potential of Biofuels for Shipping—Final Report; European Maritime Safety Agency (EMSA): Lisbon, Portugal, 2011. [Google Scholar]
- IRENA; IEA; REN21. Renewable Energy Policies in a Time of Transition; IRENA: Abu Dhabi, United Arab Emirates; OECD/IEA: Paris, France; REN21: Paris, France, 2018; ISBN 978-92-9260-061-7. [Google Scholar]
- International Transport Forum. Decarbonising Maritime Transport. Pathways to Zero-Carbon Shipping by 2035; Case-Specific Policy Analysis; OECD: Paris, France, 2018. [Google Scholar]
Engine output (kW) | 16,000 |
Engine type | Dual fuel (liquefied natural gas (LNG)/ liquefied biogas (LBG) + 1.4% marine diesel oil (MDO) as pilot fuel) |
Engine speed (rpm) | 750 |
Engine efficiency at maximum continuous rating (MCR) (%) | 48 |
Hours per year (h) | 4000 |
Functional unit | One year of RoPax ferry service to and from Vaasa and Umeå |
Fuel chains | Marine diesel oil (MDO) 0.1% S Liquefied natural gas (LNG) Liquefied bio-methane (LBG) |
Geographical boundaries | The sulfur emission control area (SECA) in the Baltic Sea The NOx emission control area (NECA) in the Baltic Sea (from 2021) |
System boundary | In terms of greenhouse gas (GHG) emissions, the study covers the entire fuel life cycle from the extraction of raw materials to production, distribution, and combustion in a dual-fuel marine engine. Local environmental impacts are evaluated from the termed tank-to-propeller (TTP) perspective, i.e., only the emissions released during vessel operation are taken into account. |
Included primary pollutants | GHG
|
Local pollutants
| |
Impact categories | Global warming potential (GWP100) |
Local environmental impacts
|
MDO 0.1% S | LNG | LBG | |
---|---|---|---|
Net calorific value (MJ/kg) | 42.6 | 48.6 | 49.3 |
Well-to-tank GHG-emissions: | g/MJ fuel | g/MJ fuel | g/MJ fuel |
CO2 (fossil) | 14.6 | 10.5 | 9.7 |
CH4 | 0.021 | 0.18 | 0.34 |
N2O | <0.001 | <0.001 | <0.001 |
Total in CO2-eq. | 15.3 | 16.6 | 21.3 |
MDO 0.1% S + SCR | LNG | LBG | |
Emissions to air from the fuel combustion (tank-to-propeller): | g/MJ fuel | g/MJ fuel | g/MJ fuel |
CO2 (fossil) | 75 | 56 | 1 |
CO2 (biogenic) | 0 | 0 | 54 |
CH4 | 0.0014 | 0.41 | 0.41 |
N2O | 0.0038 | 0.0022 | 0.0022 |
NOx | 0.22 | 0.17 | 0.17 |
SO2 | 0.047 | 0.00056 | 0.00058 |
PM10 | 0.022 | 0.0043 | 0.0043 |
NMVOC | 0.059 | - | - |
NH3 | 0.005 | - | - |
Emitted Substance | Characterization Factor (Years Lost Per Kg Emission) |
---|---|
NH3 | 8.3 × 10−5 |
NOx | 5.7 × 10−5 |
SOx | 5.1 × 10−5 |
PM10 | 2.6 × 10−4 |
Cost | MDO 0.1% S | LNG | LBG |
---|---|---|---|
Fuel | 2,925,000 € | 1,800,000 € | 4,950,000 € |
SCR O&M | 159,563 € | - | - |
Total | 3,084,563 € | 1,800,000 € | 4,950,000 € |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Spoof-Tuomi, K.; Niemi, S. Environmental and Economic Evaluation of Fuel Choices for Short Sea Shipping. Clean Technol. 2020, 2, 34-52. https://doi.org/10.3390/cleantechnol2010004
Spoof-Tuomi K, Niemi S. Environmental and Economic Evaluation of Fuel Choices for Short Sea Shipping. Clean Technologies. 2020; 2(1):34-52. https://doi.org/10.3390/cleantechnol2010004
Chicago/Turabian StyleSpoof-Tuomi, Kirsi, and Seppo Niemi. 2020. "Environmental and Economic Evaluation of Fuel Choices for Short Sea Shipping" Clean Technologies 2, no. 1: 34-52. https://doi.org/10.3390/cleantechnol2010004
APA StyleSpoof-Tuomi, K., & Niemi, S. (2020). Environmental and Economic Evaluation of Fuel Choices for Short Sea Shipping. Clean Technologies, 2(1), 34-52. https://doi.org/10.3390/cleantechnol2010004