A Multiparametric Method Improves the Serological Characterization of Inflammatory Bowel Diseases: Preliminary Results from a Multicenter Eastern Europe Study
Abstract
:1. Introduction
2. Methods
2.1. Patients
2.2. Laboratory Analysis
2.3. Statistical Analysis
3. Results
3.1. Patients’ Features
3.2. Results of the Serological Analyses
3.3. Comparative Analysis of Specificity and Sensitivity
3.4. Clinical Relevance of PABs in Patients with CD
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lamb, C.A.; Kennedy, N.A.; Raine, T.; Hendy, P.A.; Smith, P.J.; Limdi, J.K.; Hayee, H.; Lomer, M.C.E.; Parkes, G.C.; Selinger, C.; et al. British Society of Gastroenterology consensus guidelines on the management of inflammatory bowel disease in adults. Gut 2019, 68 (Suppl. S3), s1–s106. [Google Scholar] [CrossRef]
- Kovacs, M.; Lakatos, P.L.; Papp, M.; Jacobsen, S.; Nemes, E.; Polgar, M.; Solyom, E.; Bodi, P.; Horvath, A.; Muller, K.E.; et al. Pancreatic autoantibodies and autoantibodies against goblet cells in pediatric patients with inflammatory bowel disease. J. Pediatr. Gastroenterol. Nutr. 2012, 55, 429–435. [Google Scholar] [CrossRef] [PubMed]
- Papp, M.; Altorjay, I.; Lakos, G.; Tumpek, J.; Sipka, S.; Dinya, T.; Palatka, K.; Veres, G.; Udvardy, M.; Lakatos, P.L. Evaluation of the combined application of ethanol-fixed and formaldehyde-fixed neutrophil substrates for identifying atypical perinuclear antineutrophil cytoplasmic antibodies in inflammatory bowel disease. Clin. Vaccine Immunol. CVI 2009, 16, 464–470. [Google Scholar] [CrossRef] [PubMed]
- Stöcker, W.; Otte, M.; Ulrich, S.; Normann, D.; Stöcker, K.; Jantschek, G. Autoantibodies against the exocrine pancreas and against intestinal goblet cells in the diagnosis of Crohn’s disease and ulcerative colitis. Dtsch. Med. Wochenschr. 1984, 109, 1963–1969. [Google Scholar] [CrossRef] [PubMed]
- Stöcker, W.; Otte, M.; Ulrich, S.; Normann, D.; Finkbeiner, H.; Stöcker, K.; Jantschek, G.; Scriba, P.C. Autoimmunity to pancreatic juice in Crohn’s disease. Results of an autoantibody screening in patients with chronic inflammatory bowel disease. Scand. J. Gastroenterol. Suppl. 1987, 139, 41–52. [Google Scholar] [CrossRef]
- Conrad, K.; Schmechta, H.; Klafki, A.; Lobeck, G.; Uhlig, H.H.; Gerdi, S.; Henker, J. Serological differentiation of inflammatory bowel diseases. Eur. J. Gastroenterol. Hepatol. 2002, 14, 129–135. [Google Scholar] [CrossRef] [PubMed]
- Koutroubakis, I.E.; Drygiannakis, D.; Karmiris, K.; Drygiannakis, I.; Makreas, S.; Kouroumalis, E.A. Pancreatic autoantibodies in Greek patients with inflammatory bowel disease. Dig. Dis. Sci. 2005, 50, 2330–2334. [Google Scholar] [CrossRef] [PubMed]
- Joossens, S.; Vermeire, S.; Van Steen, K.; Godefridis, G.; Claessens, G.; Pierik, M.; Vlietinck, R.; Aerts, R.; Rutgeerts, P.; Bossuyt, X. Pancreatic autoantibodies in inflammatory bowel disease. Inflamm. Bowel Dis. 2004, 10, 771–777. [Google Scholar] [CrossRef] [PubMed]
- Seibold, F.; Weber, P.; Jenss, H.; Wiedmann, K.H. Antibodies to a trypsin sensitive pancreatic antigen in chronic inflammatory bowel disease: Specific markers for a subgroup of patients with Crohn’s disease. Gut 1991, 32, 1192–1197. [Google Scholar] [CrossRef]
- Folwaczny, C.; Noehl, N.; Endres, S.P.; Loeschke, K.; Fricke, H. Antineutrophil and pancreatic autoantibodies in first-degree relatives of patients with inflammatory bowel disease. Scand. J. Gastroenterol. 1998, 33, 523–528. [Google Scholar]
- Desplat-Jégo, S.; Johanet, C.; Escande, A.; Goetz, J.; Fabien, N.; Olsson, N.; Ballot, E.; Sarles, J.; Baudon, J.J.; Grimaud, J.C.; et al. Update on Anti-Saccharomyces cerevisiae antibodies, anti-nuclear associated anti-neutrophil antibodies and antibodies to exocrine pancreas detected by indirect immunofluorescence as biomarkers in chronic inflammatory bowel diseases: Results of a multicenter study. World J. Gastroenterol. 2007, 13, 2312–2318. [Google Scholar]
- Demirsoy, H.; Ozdil, K.; Ersoy, O.; Kesici, B.; Karaca, C.; Alkim, C.; Akbayir, N.; Erdem, L.K.; Onuk, M.D.; Beyzadeoglu, H.T. Anti-pancreatic antibody in Turkish patients with inflammatory bowel disease and first-degree relatives. World J. Gastroenterol. 2010, 16, 5732–5738. [Google Scholar] [CrossRef] [PubMed]
- Lakatos, P.L.; Altorjay, I.; Szamosi, T.; Palatka, K.; Vitalis, Z.; Tumpek, J.; Sipka, S.; Udvardy, M.; Dinya, T.; Lakatos, L.; et al. Pancreatic autoantibodies are associated with reactivity to microbial antibodies, penetrating disease behavior, perianal disease, and extraintestinal manifestations, but not with NOD2/CARD15 or TLR4 genotype in a Hungarian IBD cohort. Inflamm. Bowel Dis. 2009, 15, 365–374. [Google Scholar] [CrossRef] [PubMed]
- Klebl, F.H.; Bataille, F.; Huy, C.; Hofstädter, F.; Schölmerich, J.; Rogler, G. Association of antibodies to exocrine pancreas with subtypes of Crohn’s disease. Eur. J. Gastroenterol. Hepatol. 2005, 17, 73–77. [Google Scholar] [CrossRef] [PubMed]
- Homsak, E.; Micetić-Turk, D.; Bozic, B. Autoantibodies pANCA, GAB and PAB in inflammatory bowel disease: Prevalence, characteristics and diagnostic value. Wiener klinische Wochenschrift. 2010, 122 (Suppl. S2), 19–25. [Google Scholar] [CrossRef] [PubMed]
- Lawrance, I.C.; Hall, A.; Leong, R.; Pearce, C.; Murray, K. A comparative study of goblet cell and pancreatic exocine autoantibodies combined with ASCA and pANCA in Chinese and Caucasian patients with IBD. Inflamm. Bowel Dis. 2005, 11, 890–897. [Google Scholar] [CrossRef]
- Roggenbuck, D.; Reinhold, D.; Wex, T.; Goihl, A.; von Arnim, U.; Malfertheiner, P.; Büttner, T.; Porstmann, T.; Porstmann, S.; Liedvogel, B.; et al. Autoantibodies to GP2, the major zymogen granule membrane glycoprotein, are new markers in Crohn’s disease. Clin. Chim. Acta Int. J. Clin. Chem. 2011, 412, 718–724. [Google Scholar] [CrossRef]
- Komorowski, L.; Teegen, B.; Probst, C.; Aulinger-Stöcker, K.; Sina, C.; Fellermann, K.; Stöcker, W. Autoantibodies against exocrine pancreas in Crohn’s disease are directed against two antigens: The glycoproteins CUZD1 and GP2. J. Crohn’s Colitis 2013, 7, 780–790. [Google Scholar] [CrossRef]
- Schoepfer, A.M.; Schaffer, T.; Mueller, S.; Flogerzi, B.; Vassella, E.; Seibold-Schmid, B.; Seibold, F. Phenotypic associations of Crohn’s disease with antibodies to flagellins A4-Fla2 and Fla-X, ASCA, p-ANCA, PAB, and NOD2 mutations in a Swiss Cohort. Inflamm. Bowel Dis. 2009, 15, 1358–1367. [Google Scholar] [CrossRef]
- Goischke, E.M.; Zilly, W. Clinical importance of organ-specific antibodies in ulcerative colitis and Crohn disease. Z. Gastroenterol. 1992, 30, 319–324. [Google Scholar] [PubMed]
- Barthet, M.; Hastier, P.; Bernard, J.P.; Bordes, G.; Frederick, J.; Allio, S.; Mambrini, P.; Saint-Paul, M.C.; Delmont, J.P.; Salducci, J.; et al. Chronic pancreatitis and inflammatory bowel disease: True or coincidental association? Am. J. Gastroenterol. 1999, 94, 2141–2148. [Google Scholar] [CrossRef] [PubMed]
- Spiess, S.E.; Braun, M.; Vogelzang, R.L.; Craig, R.M. Crohn’s disease of the duodenum complicated by pancreatitis and common bile duct obstruction. Am. J. Gastroenterol. 1992, 87, 1033–1036. [Google Scholar] [PubMed]
- Roggenbuck, D.; Hausdorf, G.; Martinez-Gamboa, L.; Reinhold, D.; Büttner, T.; Jungblut, P.R.; Porstmann, T.; Laass, M.W.; Henker, J.; Büning, C.; et al. Identification of GP2, the major zymogen granule membrane glycoprotein, as the autoantigen of pancreatic antibodies in Crohn’s disease. Gut 2009, 58, 1620–1628. [Google Scholar] [CrossRef] [PubMed]
- Liaskos, C.; Rigopoulou, E.I.; Orfanidou, T.; Bogdanos, D.P.; Papandreou, C.N. CUZD1 and anti-CUZD1 antibodies as markers of cancer and inflammatory bowel diseases. Clin. Dev. Immunol. 2013, 2013, 968041. [Google Scholar] [CrossRef] [PubMed]
- Hase, K.; Kawano, K.; Nochi, T.; Pontes, G.S.; Fukuda, S.; Ebisawa, M.; Kadokura, K.; Tobe, T.; Fujimura, Y.; Kawano, S.; et al. Uptake through glycoprotein 2 of FimH(+) bacteria by M cells initiates mucosal immune response. Nature 2009, 462, 226–230. [Google Scholar] [CrossRef] [PubMed]
- Ohno, H.; Hase, K. Glycoprotein 2 (GP2): Grabbing the FimH bacteria into M cells for mucosal immunity. Gut Microbes. 2010, 1, 407–410. [Google Scholar] [CrossRef]
- Terahara, K.; Yoshida, M.; Igarashi, O.; Nochi, T.; Pontes, G.S.; Hase, K.; Ohno, H.; Kurokawa, S.; Mejima, M.; Takayama, N.; et al. Comprehensive gene expression profiling of Peyer’s patch M cells, villous M-like cells, and intestinal epithelial cells. J. Immunol. 2008, 180, 7840–7846. [Google Scholar] [CrossRef]
- Roggenbuck, D.; Reinhold, D.; Schierack, P.; Bogdanos, D.P.; Conrad, K.; Laass, M.W. Crohn’s disease specific pancreatic antibodies: Clinical and pathophysiological challenges. Clin. Chem. Lab. Med. 2014, 52, 483–494. [Google Scholar] [CrossRef]
- Roggenbuck, D.; Reinhold, D.; Werner, L.; Schierack, P.; Bogdanos, D.P.; Conrad, K. Glycoprotein 2 antibodies in Crohn’s disease. Adv. Clin. Chem. 2013, 60, 187–208. [Google Scholar]
- Pavlidis, P.; Romanidou, O.; Roggenbuck, D.; Mytilinaiou, M.G.; Al-Sulttan, F.; Liaskos, C.; Smyk, D.S.; Koutsoumpas, A.L.; Rigopoulou, E.I.; Conrad, K.; et al. Ileal inflammation may trigger the development of GP2-specific pancreatic autoantibodies in patients with Crohn’s disease. Clin. Dev. Immunol. 2012, 2012, 640835. [Google Scholar] [CrossRef]
- Pavlidis, P.; Shums, Z.; Koutsoumpas, A.L.; Milo, J.; Papp, M.; Umemura, T.; Lakatos, P.L.; Smyk, D.S.; Bogdanos, D.P.; Forbes, A.; et al. Diagnostic clinical significance of Crohn’s disease-specific anti-MZGP2 pancreatic antibodies by a novel ELISA. Clin. Chim. Acta Int. J. Clin. Chem. 2015, 441, 176–181. [Google Scholar] [CrossRef]
- Bogdanos, D.P.; Roggenbuck, D.; Reinhold, D.; Wex, T.; Pavlidis, P.; von Arnim, U.; Malfertheiner, P.; Forbes, A.; Conrad, K.; Laass, M.W. Pancreatic-specific autoantibodies to glycoprotein 2 mirror disease location and behaviour in younger patients with Crohn’s disease. BMC Gastroenterol. 2012, 12, 102. [Google Scholar] [CrossRef]
- Op De Beéck, K.; Vermeire, S.; Rutgeerts, P.; Bossuyt, X. Antibodies to GP2, the major zymogen granule membrane glycoprotein, in inflammatory bowel diseases. Gut 2012, 61, 162–164. [Google Scholar] [CrossRef]
- Silverberg, M.S.; Satsangi, J.; Ahmad, T.; Arnott, I.D.R.; Bernstein, C.N.; Brant, S.R.; Caprilli, R.; Colombel, J.-F.; Gasche, C.; Geboes, K.; et al. Toward an Integrated Clinical, Molecular and Serological Classification of Inflammatory Bowel Disease: Report of a Working Party of the 2005 Montreal World Congress of Gastroenterology. Can J. Gastroenterol. 2005, 19 (Suppl. A), 5A–36A. [Google Scholar] [CrossRef]
- Teegen, B.; Niemann, S.; Probst, C.; Schlumberger, W.; Stöcker, W.; Komorowski, L. DNA-bound lactoferrin is the major target for antineutrophil perinuclear cytoplasmic antibodies in ulcerative colitis. Ann. N. Y. Acad. Sci. 2009, 1173, 161–165. [Google Scholar] [CrossRef]
- Michaels, M.A.; Jendrek, S.T.; Korf, T.; Nitzsche, T.; Teegen, B.; Komorowski, L.; Derer, S.; Schröder, T.; Baer, F.; Lehnert, H.; et al. Pancreatic Autoantibodies Against CUZD1 and GP2 Are Associated with Distinct Clinical Phenotypes of Crohn’s Disease. Inflamm. Bowel Dis. 2015, 21, 2864–2872. [Google Scholar] [CrossRef]
- Papp, M.; Sipeki, N.; Tornai, T.; Altorjay, I.; Norman, G.L.; Shums, Z.; Roggenbuck, D.; Fechner, K.; Stöcker, W.; Antal-Szalmas, P.; et al. Rediscovery of the Anti-Pancreatic Antibodies and Evaluation of their Prognostic Value in a Prospective Clinical Cohort of Crohn’s Patients: The Importance of Specific Target Antigens [GP2 and CUZD1]. J. Crohn’s Colitis 2015, 9, 659–668. [Google Scholar] [CrossRef]
- Röber, N.; Noß, L.; Goihl, A.; Reinhold, D.; Jahn, J.; de Laffolie, J.; Johannes, W.; Flemming, G.M.; Roggenbuck, D.; Conrad, K.; et al. Autoantibodies Against Glycoprotein 2 Isoforms in Pediatric Patients with Inflammatory Bowel Disease. Inflamm. Bowel Dis. 2017, 23, 1624–1636. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Wu, Z.; Luo, J.; Ding, X.; Hu, C.; Li, P.; Deng, C.; Zhang, F.; Qian, J.; Li, Y. Diagnostic Potential of Zymogen Granule Glycoprotein 2 Antibodies as Serologic Biomarkers in Chinese Patients With Crohn Disease. Medicine 2015, 94, e1654. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Luo, J.; Wu, Z.; Roggenbuck, D.; Schierack, P.; Reinhold, D.; Li, J.; Zeng, X.; Zhang, F.; Qian, J.; et al. Antibodies against glycoprotein 2 display diagnostic advantages over ASCA in distinguishing CD from intestinal tuberculosis and intestinal Behçet’s disease. Clin. Transl. Gastroenterol. 2018, 9, e133. [Google Scholar] [CrossRef] [PubMed]
- Degenhardt, F.; Dirmeier, A.; Lopez, R.; Lang, S.; Kunst, C.; Roggenbuck, D.; Reinhold, D.; Szymczak, S.; Rogler, G.; Klebl, F.; et al. Serologic Anti-GP2 Antibodies Are Associated with Genetic Polymorphisms, Fibrostenosis, and Need for Surgical Resection in Crohn’s Disease. Inflamm. Bowel Dis. 2016, 22, 2648–2657. [Google Scholar] [CrossRef]
- Pavlidis, P.; Komorowski, L.; Teegen, B.; Liaskos, C.; Koutsoumpas, A.L.; Smyk, D.S.; Perricone, C.; Mytilinaiou, M.G.; Stocker, W.; Forbes, A.; et al. Diagnostic and clinical significance of Crohn’s disease-specific pancreatic anti-GP2 and anti-CUZD1 antibodies. Clin. Chem. Lab. Med. 2016, 54, 249–256. [Google Scholar] [CrossRef] [PubMed]
- Cummings, D.; Cruise, M.; Lopez, R.; Roggenbuck, D.; Jairath, V.; Wang, Y.; Shen, B.; Rieder, F. Loss of tolerance to glycoprotein 2 isoforms 1 and 4 is associated with Crohn’s disease of the pouch. Aliment. Pharmacol. Ther. 2018, 48, 1251–1259. [Google Scholar] [CrossRef] [PubMed]
- Lalkhen, A.G.; McCluskey, A. Clinical tests: Sensitivity and specificity. Contin. Educ. Anaesth. Crit. Care Pain. 2008, 8, 221–223. [Google Scholar] [CrossRef]
- Power, M.; Fell, G.; Wright, M. Principles for high-quality, high-value testing. Evid. Based Med. 2013, 18, 5–10. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Li, C.; Zhao, X.; Lv, C.; He, Q.; Lei, S.; Guo, Y.; Zhi, F. Anti-Saccharomyces cerevisiae antibodies associate with phenotypes and higher risk for surgery in Crohn’s disease: A meta-analysis. Dig. Dis. Sci. 2012, 57, 2944–2954. [Google Scholar] [CrossRef] [PubMed]
- Deng, C.; Li, W.; Li, J.; Zhang, S.; Li, Y. Diagnostic value of the antiglycoprotein-2 antibody for Crohn’s disease: A PRISMA-compliant systematic review and meta-analysis. BMJ Open 2017, 7, e014843. [Google Scholar] [CrossRef]
- Gkiouras, K.; Grammatikopoulou, M.G.; Theodoridis, X.; Pagkalidou, E.; Chatzikyriakou, E.; Apostolidou, A.G.; Rigopoulou, E.; Sakkas, L.; Bogdanos, D.P. Diagnostic and clinical significance of antigen-specific pancreatic antibodies in inflammatory bowel diseases: A meta-analysis. World J. Gastroenterol. 2020, 26, 246–265. [Google Scholar] [CrossRef]
- Maaser, C.; Sturm, A.; Vavricka, S.R.; Kucharzik, T.; Fiorino, G.; Annese, V.; Calabrese, E.; Baumgart, D.C.; Bettenworth, D.; Nunes, P.B.; et al. ECCO-ESGAR Guideline for Diagnostic Assessment in IBD Part 1: Initial diagnosis, monitoring of known IBD, detection of complications. J. Crohn’s Colitis 2019, 13, 144–164. [Google Scholar] [CrossRef]
- Kovacs, G.; Sipeki, N.; Suga, B.; Tornai, T.; Fechner, K.; Norman, G.L.; Shums, Z.; Antal-Szalmas, P.; Papp, M. Significance of serological markers in the disease course of ulcerative colitis in a prospective clinical cohort of patients. PLoS ONE 2018, 13, e0194166. [Google Scholar] [CrossRef]
CD—UD (57) | CD—RI (23) | CD—BE (20) | UC—UD (23) | UC—BE (33) | BD (20) | |
---|---|---|---|---|---|---|
Sex (% female) | 25 (43.8%) | 7 (30.4%) | 10 (50%) | 10 (43.5%) | 17 (51.5%) | 7 (35%) |
Mean age (years) | 45.5 ± 14.1 | 43 ± 14.5 | 47.7 ± 15.4 | 51 ± 15.6 | 55 ± 12,3 | 42.7 ± 13.5 |
Biologic therapy | 41 (71.9%) | 10 (43.4%) | 3 (15%) | 10 (43.4%) | 0 (0%) | |
Extra-intestinal manifestations | 21 (36.8%) | 12 (52.2%) | 0 (0%) | 10 (43.4%) | 0 (0%) | |
Previous surgery | 26 (45.6%) | 12 (52.2%) | 8 (40%) | |||
Age at dx <40 years | 43 (75.4%) | 7 (30.4%) | 7 (35%) | |||
Smoking | 22 (38.6%) | 9 (39.1%) | 14 (70%) | 16 (69.6%) | 2 (6.1%) | |
Colonic disease | 41 (71.9%) | 16 (69.6%) | 11 (55%) | 23 (100%) | 33 (100%) | |
Perianal disease | 40 (70.2%) | 5 (21.7%) | 1 (5%) | |||
Deep ulcers | 17 (29.8%) | 10 (43.4%) | 7 (35%) | 3 (13%) | 9 (27.3%) | |
Stricturing/penetrating disease | 22 (38.6%) | 17 (73.9%) | 9 (45%) |
CD (n = 100) | UC (n = 56) | p | BD (n = 20) | ||||
---|---|---|---|---|---|---|---|
N | N | CD vs. UC | N | ||||
PAB (IgG and/or IgA) | 24 | 24.0% | 0 | 0.0% | 0.000 | 0 | 0.0% |
Anti-CUDZ1 (IgG and/or IgA) | 17 | 17.0% | 0 | 0.0% | 0.001 | 0 | 0.0% |
Anti-CUDZ1 IgG | 15 | 15.0% | 0 | 0.0% | 0.002 | 0 | 0.0% |
Anti-CUDZ1 IgA | 10 | 10.0% | 0 | 0.0% | 0.014 | 0 | 0.0% |
Anti-GP2 (IgG and/or IgA) | 11 | 11.0% | 0 | 0.0% | 0.010 | 0 | 0.0% |
Anti-GP2 IgG | 9 | 9.0% | 0 | 0.0% | 0.021 | 0 | 0.0% |
Anti-GP2 IgA | 6 | 6.0% | 0 | 0.0% | 0.062 | 0 | 0.0% |
ASCA (IgG and/or IgA) | 78 | 78.0% | 16 | 28.6% | 0.000 | 4 | 20.0% |
ASCA IgG | 70 | 70.0% | 11 | 19.6% | 0.000 | 0 | 0.0% |
ASCA IgA | 68 | 68.0% | 7 | 12.5% | 0.000 | 4 | 20.0% |
GAB (IgG and/or IgA) | 8 | 8.0% | 28 | 50.0% | 0.000 | 0 | 0.0% |
GAB IgG | 8 | 8.0% | 28 | 50.0% | 0.000 | 0 | 0.0% |
GAB IgA | 1 | 1.0% | 6 | 10.7% | 0.005 | 0 | 0.0% |
Anti-LFS (IgG and/or IgA) | 25 | 25.0% | 36 | 64.3% | 0.000 | 0 | 0.0% |
Anti-LFS IgG | 18 | 18.0% | 32 | 57.1% | 0.000 | 0 | 0.0% |
Anti-LFS IgA | 13 | 13.0% | 15 | 26.8% | 0.031 | 0 | 0.0% |
Sensitivity (%) | Specificity (%) | PPV (%) | NPV (%) | LR+ | LR− | |
---|---|---|---|---|---|---|
CD vs. UC | ||||||
PAB (IgG and/or IgA) | 24 | 100 | 100 | 42.4 | - | 0.76 |
Anti-CUDZ1 (IgG and/or IgA) | 17 | 100 | 100 | 40.3 | - | 0.83 |
Anti-CUDZ1 IgG | 15 | 100 | 100 | 39.7 | - | 0.85 |
Anti-CUDZ1 IgA | 10 | 100 | 100 | 38.4 | - | 0.90 |
Anti-GP2 (IgG and/or IgA) | 11 | 100 | 100 | 38.6 | - | 0.89 |
Anti-GP2 IgG | 9 | 100 | 100 | 38.1 | - | 0.91 |
Anti-GP2 IgA | 6 | 100 | 100 | 37.3 | - | 0.94 |
ASCA (IgG and/or IgA) | 78 | 71.4 | 83 | 64.5 | 2.73 | 0.31 |
ASCA IgG | 70 | 80.4 | 86.4 | 60 | 3.56 | 0.37 |
ASCA IgA | 68 | 87.5 | 90.7 | 60.5 | 2.69 | 0.37 |
UC vs. CD | ||||||
GAB (IgG and/or IgA) | 50 | 92 | 77.8 | 76.7 | 6.25 | 0.54 |
GAB IgG | 50 | 92 | 77.8 | 76.7 | 6.25 | 0.54 |
GAB IgA | 10.7 | 99 | 85.7 | 66.4 | 10.7 | 0.91 |
Anti-LFS (IgG and/or IgA) | 64.3 | 75 | 59 | 78.9 | 2.57 | 0.48 |
Anti-LFS IgG | 57.1 | 82 | 64 | 77.4 | 3.17 | 0.52 |
Anti-LFS IgA | 26.8 | 87 | 53.6 | 68 | 2.06 | 0.84 |
PAB-Positive | PAB-Negative | ||||
---|---|---|---|---|---|
N | N | p | |||
Gender | |||||
Female | 8 | 33.3% | 34 | 44.7% | 0.35 |
Smoking | 10 | 41.7% | 33 | 43.4% | 0.88 |
Age at diagnosis | |||||
>40 | 3 | 12.5% | 16 | 21.1% | 0.20 |
16–40 | 19 | 79.2% | 45 | 59.2% | |
<16 | 2 | 8.3% | 15 | 19.8% | |
Clinical characteristics | |||||
Perianal disease | 8 | 33.3% | 21 | 27.6% | 0.59 |
Deep mucosal lesions | 14 | 58.3% | 19 | 25.0% | 0.002 |
Colon involvement | 21 | 87.5% | 46 | 60.5% | 0.014 |
Disease behavior | |||||
None | 12 | 50.0% | 40 | 52.6% | 0.56 |
Stricturing | 6 | 25.0% | 24 | 31.6% | |
Penetrating | 6 | 25.0% | 12 | 15.8% | |
Extensive involvement | 10 | 41.7% | 18 | 23.7% | 0.09 |
Previous surgery | 11 | 45.8% | 35 | 46.1% | 0.99 |
Biologics | 19 | 79.2% | 35 | 46.1% | 0.005 |
Extra intestinal manifestations | 13 | 54.2% | 33 | 43.4% | 0.36 |
Other autoantibodies | |||||
ASCA (positive) | 18 | 75.0% | 60 | 79.0% | 0.68 |
GAB (positive) | 1 | 4.2% | 7 | 9.2% | 0.43 |
Anti-LFS granulocytes (positive) | 9 | 37.5% | 16 | 21.1% | 0.11 |
Severe disease |
PAB (Multivariate) | CUZD1 (Multivariate) | GP2 (Multivariate) | ||||
---|---|---|---|---|---|---|
OR | 95%CI | OR | 95%CI | OR | 95%CI | |
Deep mucosal lesions | 3.67 | 1.29–10.46 | 3.54 | 1.08–11.63 | 3.07 | 0.74–12.63 |
Colon involvement | 3.83 | 0.98–14.92 | 3.19 | 0.64–15.87 | 5.19 | 0.60–45.43 |
Therapy with biologics | 2.90 | 0.80–10.50 | 2.92 | 0.64–13.33 | 3.32 | 0.52–21.18 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Panic, N.; Marino, M.; Hauser, G.; Jacobsen, S.; Curcio, F.; Meroi, F.; Cifù, A.; Castagnaviz, E.; Pistis, C.; Terrosu, G.; et al. A Multiparametric Method Improves the Serological Characterization of Inflammatory Bowel Diseases: Preliminary Results from a Multicenter Eastern Europe Study. Gastrointest. Disord. 2024, 6, 152-163. https://doi.org/10.3390/gidisord6010011
Panic N, Marino M, Hauser G, Jacobsen S, Curcio F, Meroi F, Cifù A, Castagnaviz E, Pistis C, Terrosu G, et al. A Multiparametric Method Improves the Serological Characterization of Inflammatory Bowel Diseases: Preliminary Results from a Multicenter Eastern Europe Study. Gastrointestinal Disorders. 2024; 6(1):152-163. https://doi.org/10.3390/gidisord6010011
Chicago/Turabian StylePanic, Nikola, Marco Marino, Goran Hauser, Silvia Jacobsen, Francesco Curcio, Francesco Meroi, Adriana Cifù, Eleonora Castagnaviz, Cinzia Pistis, Giovanni Terrosu, and et al. 2024. "A Multiparametric Method Improves the Serological Characterization of Inflammatory Bowel Diseases: Preliminary Results from a Multicenter Eastern Europe Study" Gastrointestinal Disorders 6, no. 1: 152-163. https://doi.org/10.3390/gidisord6010011