Forging the Future: Strategic Approaches to Quantum AI Integration for Industry Transformation
Abstract
:1. Introduction
2. Literature Review
2.1. Industry 4.0
2.1.1. Background on Industry 4.0
2.1.2. Role of Quantum Computing and AI in the Fourth Industrial Revolution
2.1.3. Need for Change Management in Rapidly Evolving Technology Landscape
2.2. The Fusion of Quantum Computing and AI
2.2.1. Basics of Quantum Computing
2.2.2. Quantum Computing Advancements in AI
2.2.3. Potential Applications and Transformative Power of Quantum-Enhanced AI
2.3. Change Management in Industry 4.0
2.3.1. Traditional Change Management Strategies
2.3.2. Challenges Posed by the Onset of Quantum Computing and AI
2.3.3. Adapting Change Management for the Quantum AI Age
2.4. Innovation Strategies for Quantum AI Integration
2.4.1. Fostering a Culture of Continuous Learning
2.4.2. Collaborative Ecosystems and Partnerships
2.4.3. R&D Investment and Risk Mitigation
3. Research Objectives and Research Question
3.1. Research Objectives
3.2. Research Question
4. Methods
4.1. Literature Review Methods
4.2. Case Study Analysis
4.3. Analytical Framework
5. Findings and Discussion
5.1. Real-World Case Studies
5.1.1. Companies Leading in Quantum AI Innovations
5.1.2. Success Stories: Quantum AI-Driven Transformation in Enterprises
5.1.3. Lessons from Failed Implementations
5.2. Recommendations for Organizations
5.2.1. Assessing Organizational Readiness
5.2.2. Embracing a Multi-Disciplinary Approach
5.3. Future Outlook
5.3.1. Predictions on Quantum AI’s Impact in the Near Future
5.3.2. Potential Challenges and Roadblocks
5.3.3. Opportunities for Pioneers and Early Adopters
6. Limitations
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
- PRISMA 2020 Checklist
Section and Topic | Item # | Checklist Item | Location Where Item Is Reported |
Title | |||
Title | 1 | Identify the report as a systematic review. | Page 1 |
Abstract | |||
Abstract | 2 | See the PRISMA 2020 for Abstracts checklist. | Page 1, Abstract |
Introduction | |||
Rationale | 3 | Describe the rationale for the review in the context of existing knowledge. | Pages 1–2, Section 1. Introduction |
Objectives | 4 | Provide an explicit statement of the objective(s) or question(s) the review addresses. | Pages 16–17, Section 3. Research Objectives and Research Question |
Methods | |||
Eligibility criteria | 5 | Specify the inclusion and exclusion criteria for the review and how studies were grouped for the syntheses. | Pages 3–5, Section 2. Literature Review |
Information sources | 6 | Specify all databases, registers, websites, organisations, reference lists and other sources searched or consulted to identify studies. Specify the date when each source was last searched or consulted. | Pages 3–5, Section 2. Literature Review |
Search strategy | 7 | Present the full search strategies for all databases, registers and websites, including any filters and limits used. | Pages 3–5, Section 2. Literature Review |
Selection process | 8 | Specify the methods used to decide whether a study met the inclusion criteria of the review, including how many reviewers screened each record and each report retrieved, whether they worked independently, and if applicable, details of automation tools used in the process. | Pages 3–5, Section 2. Literature Review |
Data collection process | 9 | Specify the methods used to collect data from reports, including how many reviewers collected data from each report, whether they worked independently, any processes for obtaining or confirming data from study investigators, and if applicable, details of automation tools used in the process. | Pages 3–5, Section 2. Literature Review |
Data items | 10a | List and define all outcomes for which data were sought. Specify whether all results that were compatible with each outcome domain in each study were sought (e.g., for all measures, time points, analyses), and if not, the methods used to decide which results to collect. | Pages 3–5, Section 2. Literature Review |
10b | List and define all other variables for which data were sought (e.g., participant and intervention characteristics, funding sources). Describe any assumptions made about any missing or unclear information. | Pages 3–5, Section 2. Literature Review | |
Study risk of bias assessment | 11 | Specify the methods used to assess risk of bias in the included studies, including details of the tool(s) used, how many reviewers assessed each study and whether they worked independently, and if applicable, details of automation tools used in the process. | Pages 3–5, Section 2. Literature Review |
Effect measures | 12 | Specify for each outcome the effect measure(s) (e.g., risk ratio, mean difference) used in the synthesis or presentation of results. | Pages 3–5, Section 2. Literature Review |
Synthesis methods | 13a | Describe the processes used to decide which studies were eligible for each synthesis (e.g., tabulating the study intervention characteristics and comparing against the planned groups for each synthesis (item #5)). | Pages 3–5, Section 2. Literature Review |
13b | Describe any methods required to prepare the data for presentation or synthesis, such as handling of missing summary statistics, or data conversions. | Pages 3–5, Section 2. Literature Review | |
13c | Describe any methods used to tabulate or visually display results of individual studies and syntheses. | Pages 3–5, Section 2. Literature Review | |
13d | Describe any methods used to synthesize results and provide a rationale for the choice(s). If meta-analysis was performed, describe the model(s), method(s) to identify the presence and extent of statistical heterogeneity, and software package(s) used. | Pages 3–5, Section 2. Literature Review | |
13e | Describe any methods used to explore possible causes of heterogeneity among study results (e.g., subgroup analysis, meta-regression). | Pages 3–5, Section 2. Literature Review | |
13f | Describe any sensitivity analyses conducted to assess robustness of the synthesized results. | Pages 3–5, Section 2. Literature Review | |
Reporting bias assessment | 14 | Describe any methods used to assess risk of bias due to missing results in a synthesis (arising from reporting biases). | Pages 3–5, Section 2. Literature Review |
Certainty assessment | 15 | Describe any methods used to assess certainty (or confidence) in the body of evidence for an outcome. | Pages 3–5, Section 2. Literature Review |
Results | |||
Study selection | 16a | Describe the results of the search and selection process, from the number of records identified in the search to the number of studies included in the review, ideally using a flow diagram. | Page 4, Figure 1. PRISMA flow diagram for new systematic reviews. |
16b | Cite studies that might appear to meet the inclusion criteria, but which were excluded, and explain why they were excluded. | Page 3, Section 2. Literature Review Page 5, Figure 2. Visualization of literature search results before screening was performed. | |
Study characteristics | 17 | Cite each included study and present its characteristics. | Pages 18–26, Section 5. Findings and Discussion. |
Risk of bias in studies | 18 | Present assessments of risk of bias for each included study. | Page 26, Section 6. Limitations |
Results of individual studies | 19 | For all outcomes, present, for each study: (a) summary statistics for each group (where appropriate) and (b) an effect estimate and its precision (e.g., confidence/credible interval), ideally using structured tables or plots. | Pages 18–26, Section 5. Findings and Discussion. |
Results of syntheses | 20a | For each synthesis, briefly summarise the characteristics and risk of bias among contributing studies. | Pages 18–26, Section 5. Findings and Discussion. |
20b | Present results of all statistical syntheses conducted. If meta-analysis was done, present for each the summary estimate and its precision (e.g., confidence/credible interval) and measures of statistical heterogeneity. If comparing groups, describe the direction of the effect. | Not applicable. This is a qualitative research paper. | |
20c | Present results of all investigations of possible causes of heterogeneity among study results. | Not applicable. This is a qualitative research paper. | |
20d | Present results of all sensitivity analyses conducted to assess the robustness of the synthesized results. | Not applicable. This is a qualitative research paper. | |
Reporting biases | 21 | Present assessments of risk of bias due to missing results (arising from reporting biases) for each synthesis assessed. | Page 26, Section 6. Limitations |
Certainty of evidence | 22 | Present assessments of certainty (or confidence) in the body of evidence for each outcome assessed. | Pages 18–26, Section 5. Findings and Discussion. |
Discussion | |||
Discussion | 23a | Provide a general interpretation of the results in the context of other evidence. | Pages 18–26, Section 5. Findings and Discussion. |
23b | Discuss any limitations of the evidence included in the review. | Page 26, Section 6. Limitations | |
23c | Discuss any limitations of the review processes used. | Page 26, Section 6. Limitations | |
23d | Discuss implications of the results for practice, policy, and future research. | Pages 18–26, Section 5. Findings and Discussion. | |
Other Information | |||
Registration and protocol | 24a | Provide registration information for the review, including register name and registration number, or state that the review was not registered. | Not applicable. |
24b | Indicate where the review protocol can be accessed, or state that a protocol was not prepared. | Not applicable. | |
24c | Describe and explain any amendments to information provided at registration or in the protocol. | Not applicable. | |
Support | 25 | Describe sources of financial or non-financial support for the review, and the role of the funders or sponsors in the review. | Page 27, Funding section. |
Competing interests | 26 | Declare any competing interests of review authors. | Page 28, Conflicts of Interest section. |
Availability of data, code and other materials | 27 | Report which of the following are publicly available and where they can be found: template data collection forms; data extracted from included studies; data used for all analyses; analytic code; any other materials used in the review. | Not applicable. |
References
- Jyothi Ahuja, N.; Dutt, S. Implications of Quantum Science on Industry 4.0: Challenges and Opportunities. In Quantum and Blockchain for Modern Computing Systems: Vision and Advancements; Kumar, A., Gill, S.S., Abraham, A., Eds.; Lecture Notes on Data Engineering and Communications Technologies; Springer International Publishing: Cham, Switzerland, 2022; Volume 133, pp. 183–204. ISBN 978-3-031-04612-4. [Google Scholar]
- Kim, D.; Kang, J.; Kim, T.W.; Pan, Y.; Park, J.H. The Future of Quantum Information: Challenges and Vision. J. Inf. Process. Syst. 2021, 17, 151–162. [Google Scholar] [CrossRef]
- Senekane, M.; Maseli, M.; Taele, M.B. Noisy, Intermediate-Scale Quantum Computing and Industrial Revolution 4.0. In The Disruptive Fourth Industrial Revolution; Doorsamy, W., Paul, B.S., Marwala, T., Eds.; Lecture Notes in Electrical Engineering; Springer International Publishing: Cham, Switzerland, 2020; Volume 674, pp. 205–225. ISBN 978-3-030-48229-9. [Google Scholar]
- Deutsch, I.H. Harnessing the Power of the Second Quantum Revolution. PRX Quantum 2020, 1, 020101. [Google Scholar] [CrossRef]
- Awan, U.; Hannola, L.; Tandon, A.; Goyal, R.K.; Dhir, A. Quantum Computing Challenges in the Software Industry. A Fuzzy AHP-Based Approach. Inf. Softw. Technol. 2022, 147, 106896. [Google Scholar] [CrossRef]
- Sigov, A.; Ratkin, L.; Ivanov, L.A.; Xu, L.D. Emerging Enabling Technologies for Industry 4.0 and Beyond. Inf. Syst. Front. 2022. [Google Scholar] [CrossRef]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 Statement: An Updated Guideline for Reporting Systematic Reviews. BMJ 2021, 372, n71. [Google Scholar] [CrossRef]
- Schwab, K. The Fourth Industrial Revolution: What It Means, How to Respond. Available online: https://www.weforum.org/agenda/2016/01/the-fourth-industrial-revolution-what-it-means-and-how-to-respond/ (accessed on 2 October 2023).
- Kagermann, H.; Wahlster, W. Ten Years of Industrie 4.0. Sci 2022, 4, 26. [Google Scholar] [CrossRef]
- Lu, Y. Industry 4.0: A Survey on Technologies, Applications and Open Research Issues. J. Ind. Inf. Integr. 2017, 6, 1–10. [Google Scholar] [CrossRef]
- Jan, Z.; Ahamed, F.; Mayer, W.; Patel, N.; Grossmann, G.; Stumptner, M.; Kuusk, A. Artificial Intelligence for Industry 4.0: Systematic Review of Applications, Challenges, and Opportunities. Expert Syst. Appl. 2023, 216, 119456. [Google Scholar] [CrossRef]
- Roman, R.; Najera, P.; Lopez, J. Securing the Internet of Things. Computer 2011, 44, 51–58. [Google Scholar] [CrossRef]
- Brynjolfsson, E.; McAfee, A. The Second Machine Age: Work, Progress, and Prosperity in a Time of Brilliant Technologies, 1st ed.; W. W. Norton & Company: New York, NY, USA, 2014; ISBN 978-0-393-23935-5. [Google Scholar]
- Wuest, T.; Weimer, D.; Irgens, C.; Thoben, K.-D. Machine Learning in Manufacturing: Advantages, Challenges, and Applications. Prod. Manuf. Res. 2016, 4, 23–45. [Google Scholar] [CrossRef]
- Liagkou, V.; Stylios, C.; Pappa, L.; Petunin, A. Challenges and Opportunities in Industry 4.0 for Mechatronics, Artificial Intelligence and Cybernetics. Electronics 2021, 10, 2001. [Google Scholar] [CrossRef]
- Lee, J.; Lapira, E.; Bagheri, B.; Kao, H. Recent Advances and Trends in Predictive Manufacturing Systems in Big Data Environment. Manuf. Lett. 2013, 1, 38–41. [Google Scholar] [CrossRef]
- Lam, W.S.; Lam, W.H.; Lee, P.F. A Bibliometric Analysis of Digital Twin in the Supply Chain. Mathematics 2023, 11, 3350. [Google Scholar] [CrossRef]
- Preskill, J. Quantum Computing in the NISQ Era and Beyond. Quantum 2018, 2, 79. [Google Scholar] [CrossRef]
- Google AI Quantum and Collaborators; Arute, F.; Arya, K.; Babbush, R.; Bacon, D.; Bardin, J.C.; Barends, R.; Boixo, S.; Broughton, M.; Buckley, B.B.; et al. Hartree-Fock on a Superconducting Qubit Quantum Computer. Science 2020, 369, 1084–1089. [Google Scholar] [CrossRef]
- Cao, Y.; Romero, J.; Olson, J.P.; Degroote, M.; Johnson, P.D.; Kieferová, M.; Kivlichan, I.D.; Menke, T.; Peropadre, B.; Sawaya, N.P.D.; et al. Quantum Chemistry in the Age of Quantum Computing. Chem. Rev. 2019, 119, 10856–10915. [Google Scholar] [CrossRef]
- Schuld, M.; Sinayskiy, I.; Petruccione, F. An Introduction to Quantum Machine Learning. Contemp. Phys. 2015, 56, 172–185. [Google Scholar] [CrossRef]
- Woerner, S.; Egger, D.J. Quantum Risk Analysis. NPJ Quantum Inf. 2019, 5, 15. [Google Scholar] [CrossRef]
- Montanaro, A. Quantum Algorithms: An Overview. NPJ Quantum Inf. 2016, 2, 15023. [Google Scholar] [CrossRef]
- Cameron, E.; Green, M. Making Sense of Change Management: A Complete Guide to the Models, Tools and Techniques of Organizational Change, 4th ed.; Kogan Page: London, UK; Philadelphia, PA, USA, 2015; ISBN 978-0-7494-7258-0. [Google Scholar]
- Hermann, M.; Pentek, T.; Otto, B. Design Principles for Industrie 4.0 Scenarios. In Proceedings of the 2016 49th Hawaii International Conference on System Sciences (HICSS), Koloa, HI, USA, 5–8 January 2016; IEEE: Koloa, HI, USA, 2016; pp. 3928–3937. [Google Scholar]
- Kiel, D.; Müller, J.M.; Arnold, C.; Voigt, K.-I. Sustainable Industrial Value Creation: Benefits and Challenges of Industry 4.0. Int. J. Innov. Mgt. 2017, 21, 1740015. [Google Scholar] [CrossRef]
- Mladenova, I. Relation between Organizational Capacity for Change and Readiness for Change. Adm. Sci. 2022, 12, 135. [Google Scholar] [CrossRef]
- Zeller, V.; Hocken, C.; Stich, V. Acatech Industrie 4.0 Maturity Index—A Multidimensional Maturity Model. In Advances in Production Management Systems. Smart Manufacturing for Industry 4.0; Moon, I., Lee, G.M., Park, J., Kiritsis, D., Von Cieminski, G., Eds.; IFIP Advances in Information and Communication Technology; Springer International Publishing: Cham, Switzerland, 2018; Volume 536, pp. 105–113. ISBN 978-3-319-99706-3. [Google Scholar]
- García, S.G.; García, M.G. Industry 4.0 Implications in Production and Maintenance Management: An Overview. Procedia Manuf. 2019, 41, 415–422. [Google Scholar] [CrossRef]
- Gurcan, F.; Boztas, G.D.; Dalveren, G.G.M.; Derawi, M. Digital Transformation Strategies, Practices, and Trends: A Large-Scale Retrospective Study Based on Machine Learning. Sustainability 2023, 15, 7496. [Google Scholar] [CrossRef]
- Matt, C.; Hess, T.; Benlian, A. Digital Transformation Strategies. Bus. Inf. Syst. Eng. 2015, 57, 339–343. [Google Scholar] [CrossRef]
- Radermacher, A.; Walia, G.; Knudson, D. Investigating the Skill Gap between Graduating Students and Industry Expectations. In Proceedings of the Companion Proceedings of the 36th International Conference on Software Engineering, Hyderabad, India, 31 May 2014; pp. 291–300. [Google Scholar]
- Martins, E.C.; Terblanche, F. Building Organisational Culture That Stimulates Creativity and Innovation. Eur. J. Innov. Manag. 2003, 6, 64–74. [Google Scholar] [CrossRef]
- Nielsen, M.A.; Chuang, I.L. Quantum Computation and Quantum Information, 10th ed.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2010; ISBN 978-1-107-00217-3. [Google Scholar]
- Mermin, N.D. Quantum Computer Science: An Introduction, 1st ed.; Cambridge University Press: Cambridge, UK, 2007; ISBN 978-0-521-87658-2. [Google Scholar]
- Vedral, V. Introduction to Quantum Information Science; Oxford Graduate Texts; Oxford University Press: Oxford, UK, 2006; ISBN 978-0-19-921570-6. [Google Scholar]
- Horodecki, R.; Horodecki, P.; Horodecki, M.; Horodecki, K. Quantum Entanglement. Rev. Mod. Phys. 2009, 81, 865–942. [Google Scholar] [CrossRef]
- Kitaev, A.J.; Šen, A.C.; Vjalyj, M.N.; Kitaev, A.J. Classical and Quantum Computation; Graduate Studies in Mathematics; American Mathematical Society: Providence, RI, USA, 2002; ISBN 978-0-8218-3229-5. [Google Scholar]
- Shor, P.W. Polynomial-Time Algorithms for Prime Factorization and Discrete Logarithms on a Quantum Computer. SIAM J. Comput. 1997, 26, 1484–1509. [Google Scholar] [CrossRef]
- Villar, P.I.; Lombardo, F.C. Decoherence of a Solid-State Qubit by Different Noise Correlation Spectra. Phys. Lett. A 2015, 379, 246–254. [Google Scholar] [CrossRef]
- Terhal, B.M. Quantum Error Correction for Quantum Memories. Rev. Mod. Phys. 2015, 87, 307–346. [Google Scholar] [CrossRef]
- Monroe, C.R.; Schoelkopf, R.J.; Lukin, M.D. Quantum Connections. Sci. Am. 2016, 314, 50–57. [Google Scholar] [CrossRef]
- Oliver, W.D.; Welander, P.B. Materials in Superconducting Quantum Bits. MRS Bull. 2013, 38, 816–825. [Google Scholar] [CrossRef]
- Biamonte, J.; Wittek, P.; Pancotti, N.; Rebentrost, P.; Wiebe, N.; Lloyd, S. Quantum Machine Learning. Nature 2017, 549, 195–202. [Google Scholar] [CrossRef]
- Dunjko, V.; Briegel, H.J. Machine Learning & Artificial Intelligence in the Quantum Domain: A Review of Recent Progress. Rep. Prog. Phys. 2018, 81, 074001. [Google Scholar] [CrossRef]
- Farhi, E.; Goldstone, J.; Gutmann, S.; Zhou, L. The Quantum Approximate Optimization Algorithm and the Sherrington-Kirkpatrick Model at Infinite Size. Quantum 2022, 6, 759. [Google Scholar] [CrossRef]
- Pirandola, S.; Eisert, J.; Weedbrook, C.; Furusawa, A.; Braunstein, S.L. Advances in Quantum Teleportation. Nat. Photon 2015, 9, 641–652. [Google Scholar] [CrossRef]
- Zoufal, C.; Lucchi, A.; Woerner, S. Quantum Generative Adversarial Networks for Learning and Loading Random Distributions. NPJ Quantum Inf. 2019, 5, 103. [Google Scholar] [CrossRef]
- Grover, L.K. A Fast Quantum Mechanical Algorithm for Database Search. In Proceedings of the Twenty-Eighth Annual ACM Symposium on Theory of Computing—STOC’96, Philadelphia, PA, USA, 22–24 May 1996; pp. 212–219. [Google Scholar]
- Orús, R.; Mugel, S.; Lizaso, E. Quantum Computing for Finance: Overview and Prospects. Rev. Phys. 2019, 4, 100028. [Google Scholar] [CrossRef]
- O’Gorman, B.; Babbush, R.; Perdomo-Ortiz, A.; Aspuru-Guzik, A.; Smelyanskiy, V. Bayesian Network Structure Learning Using Quantum Annealing. Eur. Phys. J. Spec. Top. 2015, 224, 163–188. [Google Scholar] [CrossRef]
- Houssein, E.H.; Abohashima, Z.; Elhoseny, M.; Mohamed, W.M. Machine Learning in the Quantum Realm: The State-of-the-Art, Challenges, and Future Vision. Expert Syst. Appl. 2022, 194, 116512. [Google Scholar] [CrossRef]
- Aggarwal, D.; Brennen, G.; Lee, T.; Santha, M.; Tomamichel, M. Quantum Attacks on Bitcoin, and How to Protect against Them. arXiv 2017, arXiv:1710.10377. [Google Scholar] [CrossRef]
- Perdomo-Ortiz, A.; Benedetti, M.; Realpe-Gómez, J.; Biswas, R. Opportunities and Challenges for Quantum-Assisted Machine Learning in near-Term Quantum Computers. Quantum Sci. Technol. 2018, 3, 030502. [Google Scholar] [CrossRef]
- Khumalo, M.T.; Chieza, H.A.; Prag, K.; Woolway, M. An Investigation of IBM Quantum Computing Device Performance on Combinatorial Optimisation Problems. Neural Comput. Appl. 2022. [Google Scholar] [CrossRef]
- Burnes, B. Kurt Lewin and the Planned Approach to Change: A Re-Appraisal. J Manag. Stud. 2004, 41, 977–1002. [Google Scholar] [CrossRef]
- Hiatt, J.M. ADKAR: A Model for Change in Business, Goverment and Our Community, 1st ed.; Prosci Learning Center Publications: Fort Collins, CO, USA, 2006; ISBN 978-1-930885-50-9. [Google Scholar]
- Kotter, J.P. Leading Change; Harvard Business School Press: Boston, MA, USA, 1996; ISBN 978-0-585-18465-4. [Google Scholar]
- Peters, T.J.; Waterman, R.H. In Search of Excellence: Lessons from America’s Best-Run Companies; Collins Business Essentials; Nachdr.; HarperCollins: New York, NY, USA, 2008; ISBN 978-0-06-054878-0. [Google Scholar]
- Bridges, W.; Bridges, S. Managing Transitions: Making the Most of Change, 4th ed.; Nicholas Brealey Publishing: London, UK; Boston, MA, USA, 2017; ISBN 978-1-4736-6450-0. [Google Scholar]
- Sutor, R.S. Dancing with Qubits: How Quantum Computing Works and How It May Change the World; Expert Insight; Packt: Birmingham, UK; Mumbai, India, 2019; ISBN 978-1-83882-736-6. [Google Scholar]
- Card, D.; Nelson, C. How Automation and Digital Disruption Are Shaping the Workforce of the Future. SHR 2019, 18, 242–245. [Google Scholar] [CrossRef]
- Kaack, L.H.; Donti, P.L.; Strubell, E.; Kamiya, G.; Creutzig, F.; Rolnick, D. Aligning Artificial Intelligence with Climate Change Mitigation. Nat. Clim. Chang. 2022, 12, 518–527. [Google Scholar] [CrossRef]
- Arute, F.; Arya, K.; Babbush, R.; Bacon, D.; Bardin, J.C.; Barends, R.; Biswas, R.; Boixo, S.; Brandao, F.G.S.L.; Buell, D.A.; et al. Quantum Supremacy Using a Programmable Superconducting Processor. Nature 2019, 574, 505–510. [Google Scholar] [CrossRef] [PubMed]
- Armenakis, A.A.; Harris, S.G. Crafting a Change Message to Create Transformational Readiness. J. Organ. Change Manag. 2002, 15, 169–183. [Google Scholar] [CrossRef]
- Gill, S.S.; Kumar, A.; Singh, H.; Singh, M.; Kaur, K.; Usman, M.; Buyya, R. Quantum Computing: A Taxonomy, Systematic Review and Future Directions. Softw. Pr. Exp. 2022, 52, 66–114. [Google Scholar] [CrossRef]
- Sun, X.; Liu, W. Expanding Service Capabilities Through an On-Demand Workforce. Oper. Res. 2023. [Google Scholar] [CrossRef]
- Bass, J.M. Future Trends in Agile at Scale: A Summary of the 7th International Workshop on Large-Scale Agile Development. In Agile Processes in Software Engineering and Extreme Programming—Workshops; Hoda, R., Ed.; Lecture Notes in Business Information Processing; Springer International Publishing: Cham, Switzerland, 2019; Volume 364, pp. 75–80. ISBN 978-3-030-30125-5. [Google Scholar]
- Possati, L.M. Ethics of Quantum Computing: An Outline. Philos. Technol. 2023, 36, 48. [Google Scholar] [CrossRef]
- Gruetzemacher, R.; Whittlestone, J. The Transformative Potential of Artificial Intelligence. Futures 2022, 135, 102884. [Google Scholar] [CrossRef]
- Bachnik, K.; Misiaszek, T.; Day-Duro, E. Integrating Corporate Social Challenge, Learning and Innovation in Business Education. J. Bus. Res. 2023, 159, 113700. [Google Scholar] [CrossRef]
- Zhang, C.; Lu, Y. Study on Artificial Intelligence: The State of the Art and Future Prospects. J. Ind. Inf. Integr. 2021, 23, 100224. [Google Scholar] [CrossRef]
- Magnani, M. The Technological Revolution: Professions at Risk and New Jobs. In Making the Global Economy Work for Everyone; Springer International Publishing: Cham, Switzerland, 2022; pp. 53–71. ISBN 978-3-030-92083-8. [Google Scholar]
- Bharany, S.; Sharma, S.; Khalaf, O.I.; Abdulsahib, G.M.; Al Humaimeedy, A.S.; Aldhyani, T.H.H.; Maashi, M.; Alkahtani, H. A Systematic Survey on Energy-Efficient Techniques in Sustainable Cloud Computing. Sustainability 2022, 14, 6256. [Google Scholar] [CrossRef]
- Harrow, A.W.; Montanaro, A. Quantum Computational Supremacy. Nature 2017, 549, 203–209. [Google Scholar] [CrossRef]
- Braxton, S.N. Competency Frameworks, Alternative Credentials and the Evolving Relationship of Higher Education and Employers in Recognizing Skills and Achievements. IJILT 2023. [Google Scholar] [CrossRef]
- Ahmadi, A.; Vogel, B. Knowing but Not Enacting Leadership: Navigating the Leadership Knowing–Doing Gap in Leveraging Leadership Development. AMLE 2023, 22, 507–530. [Google Scholar] [CrossRef]
- Do, H.; Budhwar, P.; Shipton, H.; Nguyen, H.-D.; Nguyen, B. Building Organizational Resilience, Innovation through Resource-Based Management Initiatives, Organizational Learning and Environmental Dynamism. J. Bus. Res. 2022, 141, 808–821. [Google Scholar] [CrossRef]
- Cruess, S.R.; Cruess, R.L.; Steinert, Y. Supporting the Development of a Professional Identity: General Principles. Med. Teach. 2019, 41, 641–649. [Google Scholar] [CrossRef]
- Reese, S. Extended Book Review and Author Interview: The Rise of the Ambidextrous Organization: The Secret Revolution Happening Right under Your Nose. TLO 2021, 28, 554–559. [Google Scholar] [CrossRef]
- Saunila, M. Innovation Capability in SMEs: A Systematic Review of the Literature. J. Innov. Knowl. 2020, 5, 260–265. [Google Scholar] [CrossRef]
- Marin, R. Employee Engagement: An Actual Theme, in a Permanent Evolution. JHRMR 2021, 2021, 796417. [Google Scholar] [CrossRef]
- Yu, T.; Cannella, A.A. A Comprehensive Review of Multimarket Competition Research. J. Manag. 2013, 39, 76–109. [Google Scholar] [CrossRef]
- Bouncken, R.B.; Fredrich, V.; Ritala, P.; Kraus, S. Coopetition in New Product Development Alliances: Advantages and Tensions for Incremental and Radical Innovation. Br. J. Manag. 2018, 29, 391–410. [Google Scholar] [CrossRef]
- Perkmann, M.; Walsh, K. University–Industry Relationships and Open Innovation: Towards a Research Agenda. Int. J. Manag. Rev. 2007, 9, 259–280. [Google Scholar] [CrossRef]
- Battistella, C.; De Toni, A.F.; Pessot, E. Open Accelerators for Start-Ups Success: A Case Study. EJIM 2017, 20, 80–111. [Google Scholar] [CrossRef]
- Dyer, J.H.; Nobeoka, K. Creating and Managing a High-Performance Knowledge-Sharing Network: The Toyota Case. Strat. Mgmt. J. 2000, 21, 345–367. [Google Scholar] [CrossRef]
- Enkel, E.; Gassmann, O. Creative Imitation: Exploring the Case of Cross-industry Innovation. R D Manag. 2010, 40, 256–270. [Google Scholar] [CrossRef]
- Long, T.B.; Blok, V. Integrating the Management of Socio-Ethical Factors into Industry Innovation: Towards a Concept of Open Innovation 2.0. IFAM 2018, 21, 463–486. [Google Scholar] [CrossRef]
- Tolstykh, T.; Shmeleva, N.; Gamidullaeva, L.; Krasnobaeva, V. The Role of Collaboration in the Development of Industrial Enterprises Integration. Sustainability 2023, 15, 7180. [Google Scholar] [CrossRef]
- Doz, Y.L. Strategic Alliances. SSRN J. 2023. [Google Scholar] [CrossRef]
- Kohtamäki, M.; Rabetino, R.; Huikkola, T. Learning in Strategic Alliances: Reviewing the Literature Streams and Crafting the Agenda for Future Research. Ind. Mark. Manag. 2023, 110, 68–84. [Google Scholar] [CrossRef]
- Ireland, R.D.; Hitt, M.A.; Vaidyanath, D. Alliance Management as a Source of Competitive Advantage. J. Manag. 2002, 28, 413–446. [Google Scholar] [CrossRef]
- Gulati, R. Does Familiarity Breed Trust? The Implications of Repeated Ties for Contractual Choice in Alliances. Acad. Manag. J. 1995, 38, 85–112. [Google Scholar] [CrossRef]
- Willcocks, L.; Smith, G. IT-Enabled Business Process Reengineering: Organizational and Human Resource Dimensions. J. Strateg. Inf. Syst. 1995, 4, 279–301. [Google Scholar] [CrossRef]
- Grant, R.M. Contemporary Strategy Analysis, 11th ed.; Wiley: Hoboken, NJ, USA, 2022; ISBN 978-1-119-81523-5. [Google Scholar]
- Katila, R.; Ahuja, G. Something Old, Something New: A Longitudinal Study of Search Behavior and New Product Introduction. Acad. Manag. J. 2002, 45, 1183–1194. [Google Scholar] [CrossRef]
- MacCormack, A.; Verganti, R.; Iansiti, M. Developing Products on “Internet Time”: The Anatomy of a Flexible Development Process. Manag. Sci. 2001, 47, 133–150. [Google Scholar] [CrossRef]
- West, J.; Gallagher, S. Challenges of Open Innovation: The Paradox of Firm Investment in Open-Source Software. RD Manag. 2006, 36, 319–331. [Google Scholar] [CrossRef]
- McGrath, R.G. Failing by Design. Harv Bus Rev 2011, 89, 76–83, 137. [Google Scholar]
- Davila, T.; Wouters, M. Managing Budget Emphasis through the Explicit Design of Conditional Budgetary Slack. Account. Organ. Soc. 2005, 30, 587–608. [Google Scholar] [CrossRef]
- Edmondson, A.C.; Mcmanus, S.E. Methodological Fit in Management Field Research. AMR 2007, 32, 1246–1264. [Google Scholar] [CrossRef]
- Cohen, W.M.; Levinthal, D.A. Absorptive Capacity: A New Perspective on Learning and Innovation. Adm. Sci. Q. 1990, 35, 128. [Google Scholar] [CrossRef]
- Cooper, R.G.; Edgett, S.J.; Kleinschmidt, E.J. New Product Portfolio Management: Practices and Performance. J. Prod. Innov. Manag. 1992, 16, 333–351. [Google Scholar] [CrossRef]
- Chesbrough, H.W. Open Innovation: The New Imperative for Creating and Profiting from Technology; Harvard Business School Press: Boston, MA, USA, 2003; ISBN 978-1-57851-837-1. [Google Scholar]
- Teece, D.J. Explicating Dynamic Capabilities: The Nature and Microfoundations of (Sustainable) Enterprise Performance. Strat. Mgmt. J. 2007, 28, 1319–1350. [Google Scholar] [CrossRef]
- Nonaka, I.; Toyama, R. The Knowledge-Creating Theory Revisited: Knowledge Creation as a Synthesizing Process. Knowl. Manag. Res. Pract. 2003, 1, 2–10. [Google Scholar] [CrossRef]
- IBM Research Quantum Computing. Available online: https://research.ibm.com/quantum-computing (accessed on 29 September 2023).
- Google AI Blog Progress on Quantum Computing. Available online: https://blog.research.google/2019/10/quantum-supremacy-using-programmable.html (accessed on 29 September 2023).
- Svore, K.; Geller, A.; Troyer, M.; Azariah, J.; Granade, C.; Heim, B.; Kliuchnikov, V.; Mykhailova, M.; Paz, A.; Roetteler, M. Q#: Enabling Scalable Quantum Computing and Development with a High-Level DSL. In Proceedings of the Real World Domain Specific Languages Workshop 2018, Vienna, Austria, 24 February 2018; pp. 1–10. [Google Scholar]
- Microsoft Microsoft Azure Quantum. Available online: https://quantum.microsoft.com/ (accessed on 6 November 2023).
- Rigetti Quantum Computing. Available online: https://www.rigetti.com/ (accessed on 28 September 2023).
- Reagor, M.; Osborn, C.B.; Tezak, N.; Staley, A.; Prawiroatmodjo, G.; Scheer, M.; Alidoust, N.; Sete, E.A.; Didier, N.; Da Silva, M.P.; et al. Demonstration of Universal Parametric Entangling Gates on a Multi-Qubit Lattice. Sci. Adv. 2018, 4, eaao3603. [Google Scholar] [CrossRef]
- Browaeys, A.; Lahaye, T. Many-Body Physics with Individually Controlled Rydberg Atoms. Nat. Phys. 2020, 16, 132–142. [Google Scholar] [CrossRef]
- Killoran, N.; Izaac, J.; Quesada, N.; Bergholm, V.; Amy, M.; Weedbrook, C. Strawberry Fields: A Software Platform for Photonic Quantum Computing. Quantum 2019, 3, 129. [Google Scholar] [CrossRef]
- Silvério, H.; Grijalva, S.; Dalyac, C.; Leclerc, L.; Karalekas, P.J.; Shammah, N.; Beji, M.; Henry, L.-P.; Henriet, L. Pulser: An Open-Source Package for the Design of Pulse Sequences in Programmable Neutral-Atom Arrays. Quantum 2022, 6, 629. [Google Scholar] [CrossRef]
- D-Wave NISQ Hybrid Quantum Computing. Available online: https://www.dwavesys.com/ (accessed on 28 September 2023).
- Boixo, S.; Smelyanskiy, V.N.; Shabani, A.; Isakov, S.V.; Dykman, M.; Denchev, V.S.; Amin, M.H.; Smirnov, A.Y.; Mohseni, M.; Neven, H. Computational Multiqubit Tunnelling in Programmable Quantum Annealers. Nat. Commun. 2016, 7, 10327. [Google Scholar] [CrossRef] [PubMed]
- Venturelli, D.; Marchand, D.J.J.; Rojo, G. Quantum Annealing Implementation of Job-Shop Scheduling. arXiv 2015, arXiv:1506.08479. [Google Scholar]
- Neukart, F.; Compostella, G.; Seidel, C.; Von Dollen, D.; Yarkoni, S.; Parney, B. Traffic Flow Optimization Using a Quantum Annealer. Front. ICT 2017, 4, 29. [Google Scholar] [CrossRef]
- Batra, K.; Zorn, K.M.; Foil, D.H.; Minerali, E.; Gawriljuk, V.O.; Lane, T.R.; Ekins, S. Quantum Machine Learning Algorithms for Drug Discovery Applications. J. Chem. Inf. Model. 2021, 61, 2641–2647. [Google Scholar] [CrossRef] [PubMed]
- Veis, L.; Pittner, J. Quantum Computing Applied to Calculations of Molecular Energies: CH2 Benchmark. J. Chem. Phys. 2010, 133, 194106. [Google Scholar] [CrossRef] [PubMed]
- Heras, U.L.; Mezzacapo, A.; Lamata, L.; Filipp, S.; Wallraff, A.; Solano, E. Digital Quantum Simulation of Spin Systems in Superconducting Circuits. Phys. Rev. Lett. 2014, 112, 200501. [Google Scholar] [CrossRef]
- Amin, M.H.; Andriyash, E.; Rolfe, J.; Kulchytskyy, B.; Melko, R. Quantum Boltzmann Machine. Phys. Rev. X 2018, 8, 021050. [Google Scholar] [CrossRef]
- Kelly, J.; Barends, R.; Fowler, A.G.; Megrant, A.; Jeffrey, E.; White, T.C.; Sank, D.; Mutus, J.Y.; Campbell, B.; Chen, Y.; et al. State Preservation by Repetitive Error Detection in a Superconducting Quantum Circuit. Nature 2015, 519, 66–69. [Google Scholar] [CrossRef] [PubMed]
- Georgiadou, A.; Mouzakitis, S.; Bounas, K.; Askounis, D. A Cyber-Security Culture Framework for Assessing Organization Readiness. J. Comput. Inf. Syst. 2022, 62, 452–462. [Google Scholar] [CrossRef]
- Etzioni, A.; Etzioni, O. Incorporating Ethics into Artificial Intelligence. J. Ethics 2017, 21, 403–418. [Google Scholar] [CrossRef]
- Ciliberto, C.; Herbster, M.; Ialongo, A.D.; Pontil, M.; Rocchetto, A.; Severini, S.; Wossnig, L. Quantum Machine Learning: A Classical Perspective. Proc. R. Soc. A 2018, 474, 20170551. [Google Scholar] [CrossRef]
- Vadyala, S.R.; Betgeri, S.N. General Implementation of Quantum Physics-Informed Neural Networks. Array 2023, 18, 100287. [Google Scholar] [CrossRef]
- D’Ariano, G.M.; Chiribella, G.; Perinotti, P. Quantum Theory from First Principles: An Informational Approach, 1st paperback ed.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2019; ISBN 978-1-107-04342-8. [Google Scholar]
- Bennett, C.H.; Brassard, G. Quantum Cryptography: Public Key Distribution and Coin Tossing. Theor. Comput. Sci. 2014, 560, 7–11. [Google Scholar] [CrossRef]
- Harrow, A.W.; Hassidim, A.; Lloyd, S. Quantum Algorithm for Linear Systems of Equations. Phys. Rev. Lett. 2009, 103, 150502. [Google Scholar] [CrossRef] [PubMed]
- How, M.-L. Advancing Multidisciplinary STEM Education with Mathematics for Future-Ready Quantum Algorithmic Literacy. Mathematics 2022, 10, 1146. [Google Scholar] [CrossRef]
- Gisin, N.; Ribordy, G.; Tittel, W.; Zbinden, H. Quantum Cryptography. Rev. Mod. Phys. 2002, 74, 145–195. [Google Scholar] [CrossRef]
- Yang, Z.; Zhang, X. Entanglement-Based Quantum Deep Learning. New J. Phys. 2020, 22, 033041. [Google Scholar] [CrossRef]
- Wehner, S.; Elkouss, D.; Hanson, R. Quantum Internet: A Vision for the Road Ahead. Science 2018, 362, eaam9288. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
How, M.-L.; Cheah, S.-M. Forging the Future: Strategic Approaches to Quantum AI Integration for Industry Transformation. AI 2024, 5, 290-323. https://doi.org/10.3390/ai5010015
How M-L, Cheah S-M. Forging the Future: Strategic Approaches to Quantum AI Integration for Industry Transformation. AI. 2024; 5(1):290-323. https://doi.org/10.3390/ai5010015
Chicago/Turabian StyleHow, Meng-Leong, and Sin-Mei Cheah. 2024. "Forging the Future: Strategic Approaches to Quantum AI Integration for Industry Transformation" AI 5, no. 1: 290-323. https://doi.org/10.3390/ai5010015