AI and Face-Driven Orthodontics: A Scoping Review of Digital Advances in Diagnosis and Treatment Planning
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
4.1. Artificial Intelligence Tools and Datasets
4.2. Three-Dimensional Printing
4.3. Facial Scanning
4.4. Limitations of the Paper
4.5. Attention-Based Models
- Dental image segmentation: Attention-based models can be used to accurately segment and identify specific dental structures in images, such as teeth, alveolar bones and soft tissues. This information can then be used for various purposes, such as measuring tooth positions, assessing periodontal health and predicting orthodontic treatment outcomes.
- Predicting orthodontic treatment outcomes: Attention-based models can be trained on large datasets of patient records and treatment outcomes to identify patterns and correlations that predict the success of orthodontic treatment. This information can be used to personalise treatment plans and make informed decisions about the treatment duration and complexity.
- Automated tooth segmentation: Attention-based models can be used to automate the segmentation of teeth in dental images, removing the need for manual segmentation by orthodontists. This can save time and improve the efficiency of patient diagnosis and treatment planning.
- Real-time patient monitoring: Attention-based models can be used to analyse real-time data from intraoral cameras or sensors to monitor patient progress and provide feedback to orthodontists. This can help ensure timely interventions and optimise treatment outcomes.
- Virtual orthodontic simulations: Attention-based models can generate virtual simulations of orthodontic treatment outcomes, allowing orthodontists and patients to visualise the expected changes in tooth positions and facial aesthetics. This can enhance patient understanding and engagement in the treatment process.
4.6. Current Trends and Future Directions
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Proffit, W.R. The Soft Tissue Paradigm in Orthodontic Diagnosis and Treatment Planning: A New View for a New Century. J. Esthet. Dent. 2000, 12, 46–49. [Google Scholar] [CrossRef]
- Blatz, M.B.; Chiche, G.; Bahat, O.; Roblee, R.; Coachman, C.; Heymann, H.O. Evolution of Aesthetic Dentistry. J. Dent. Res. 2019, 98, 1294–1304. [Google Scholar] [CrossRef]
- Sinha, A. Evolving Trends in Orthodontic Imaging for Advance Patient Care. Indian J. Forensic Med. Toxicol. 2019, 13, 1835–1841. [Google Scholar] [CrossRef]
- Nasseh, I.; Al-Rawi, W. Cone Beam Computed Tomography. Dent. Clin. N. Am. 2018, 62, 361–391. [Google Scholar] [CrossRef]
- Thurzo, A.; Jančovičová, V.; Hain, M.; Thurzo, M.; Novák, B.; Kosnáčová, H.; Lehotská, V.; Varga, I.; Kováč, P.; Moravanský, N. Human Remains Identification Using Micro-CT, Chemometric and AI Methods in Forensic Experimental Reconstruction of Dental Patterns after Concentrated Sulphuric Acid Significant Impact. Molecules 2022, 27, 4035. [Google Scholar] [CrossRef]
- Hallac, R.R.; Feng, J.; Kane, A.A.; Seaward, J.R. Dynamic Facial Asymmetry in Patients with Repaired Cleft Lip Using 4D Imaging (Video Stereophotogrammetry). J. Cranio-Maxillofac. Surg. 2017, 45, 8–12. [Google Scholar] [CrossRef]
- Xue, Z.; Wu, L.; Qiu, T.; Li, Z.; Wang, X.; Liu, X. Three-Dimensional Dynamic Analysis of the Facial Movement Symmetry of Skeletal Class III Patients with Facial Asymmetry. J. Oral Maxillofac. Surg. 2020, 78, 267–274. [Google Scholar] [CrossRef]
- Carvalho, P.E.G.; Ortega, A.O.; Maeda, F.A.; da Silva, L.H.; Carvalho, V.G.G.; Torres, F.C. Digital Scanning in Modern Orthodontics. Curr. Oral Health Rep. 2019, 6, 269–276. [Google Scholar] [CrossRef]
- Erten, O.; Yılmaz, B.N. Three-Dimensional Imaging in Orthodontics. Turk. J. Orthod. 2018, 31, 86–94. [Google Scholar] [CrossRef]
- Anistoroaei, D.; Zegan, G.; Golovcencu, L.; Cernei, E.R.; Sodor-Botezatu, A.; Saveanu, I.C. Cone-Beam Computed Tomography-a Useful Tool in Orthodontic Diagnosis. In Proceedings of the 2019 E-Health and Bioengineering Conference (EHB), Iasi, Romania, 21–23 November 2019. [Google Scholar]
- Kenkare, P.; Shetty, S.; Mangal, U.; Ashith, M.V.; Shetty, S. The Utilization of Three-Dimensional Technology for an Accurate Diagnosis and Precise Treatment Planning in the Field of Orthodontics. Biomed. Pharmacol. J. 2021, 14, 2101–2107. [Google Scholar] [CrossRef]
- Staderini, E.; Guglielmi, F.; Cornelis, M.A.; Cattaneo, P.M. Three-Dimensional Prediction of Roots Position through Cone-Beam Computed Tomography Scans-Digital Model Superimposition: A Novel Method. Orthod. Craniofac. Res. 2019, 22, 16–23. [Google Scholar] [CrossRef]
- Xiao, Z.; Liu, Z.; Gu, Y. Integration of Digital Maxillary Dental Casts with 3D Facial Images in Orthodontic Patients: A Three-Dimensional Validation Study. Angle Orthod. 2020, 90, 397–404. [Google Scholar] [CrossRef]
- Ahn, J.; Nguyen, T.P.; Kim, Y.-J.; Kim, T.; Yoon, J. Automated Analysis of Three-Dimensional CBCT Images Taken in Natural Head Position That Combines Facial Profile Processing and Multiple Deep-Learning Models. Comput. Methods Programs Biomed. 2022, 226, 107123. [Google Scholar] [CrossRef]
- Tsolakis, I.A.; Tsolakis, A.I.; Elshebiny, T.; Matthaios, S.; Palomo, J.M. Comparing a Fully Automated Cephalometric Tracing Method to a Manual Tracing Method for Orthodontic Diagnosis. J. Clin. Med. 2022, 11, 6854. [Google Scholar] [CrossRef]
- Lippold, C.; Liu, X.; Wangdo, K.; Drerup, B.; Schreiber, K.; Kirschneck, C.; Moiseenko, T.; Danesh, G. Facial Landmark Localization by Curvature Maps and Profile Analysis. Head Face Med. 2014, 10, 54. [Google Scholar] [CrossRef]
- Adel, S.; Zaher, A.; El Harouni, N.; Venugopal, A.; Premjani, P.; Vaid, N. Robotic Applications in Orthodontics: Changing the Face of Contemporary Clinical Care. BioMed Res. Int. 2021, 2021, 9954615. [Google Scholar] [CrossRef]
- Khan, M.I.; Laxmikanth, S.M.; Gopal, T.; Neela, P.K. Artificial Intelligence and 3D Printing Technology in Orthodontics: Future and Scope. AIMS Biophys. 2022, 9, 182–197. [Google Scholar] [CrossRef]
- Sahoo, R.; Sahoo, N.R. Advances in Cephalometry in Relation to the Shift in Soft Tissue Paradigm for Orthodontic Treatment Planning. Indian J. Forensic Med. Toxicol. 2020, 14, 8745–8757. [Google Scholar] [CrossRef]
- Abdelkarim, A. Cone-Beam Computed Tomography in Orthodontics. Dent. J. 2019, 7, 89. [Google Scholar] [CrossRef]
- Grandoch, A.; Nestmann, F.; Kreppel, M.; Buller, J.; Borggrefe, J.; Zirk, M.; Zöller, J.E. Comparison of MRI with Dedicated Head and Neck Signal Amplification Coil and Cone Beam Computed Tomography: MRI Is a Useful Tool in Diagnostics of Cranio-Facial Growth Disorders. J. Cranio-Maxillofac. Surg. 2019, 47, 1827–1833. [Google Scholar] [CrossRef] [PubMed]
- Jaiswal, P.; Gandhi, A.; Gupta, A.; Malik, N.; Singh, S.; Ramesh, K. Reliability of Photogrammetric Landmarks to the Conventional Cephalogram for Analyzing Soft-Tissue Landmarks in Orthodontics. J. Pharm. Bioallied Sci. 2021, 13, S171–S175. [Google Scholar] [CrossRef] [PubMed]
- Proffit, W.R.; Fields, H.W.; Larson, B.; Sarver, D.M. Contemporary Orthodontics, 6th ed.; Mosby: St. Louis, MO, USA, 2018. [Google Scholar]
- Hans, M.G.; Palomo, J.M.; Valiathan, M. History of Imaging in Orthodontics from Broadbent to Cone-Beam Computed Tomography. Am. J. Orthod. Dentofac. Orthop. 2015, 148, 914–921. [Google Scholar] [CrossRef] [PubMed]
- Mintz, Y.; Brodie, R. Introduction to Artificial Intelligence in Medicine. Minim. Invasive Ther. Allied Technol. 2019, 28, 73–81. [Google Scholar] [CrossRef] [PubMed]
- Amisha; Malik, P.; Pathania, M.; Rathaur, V.K. Overview of Artificial Intelligence in Medicine. J. Fam. Med. Prim. Care 2019, 8, 2328–2331. [Google Scholar] [CrossRef] [PubMed]
- El-Sherbini, A.H.; Hassan Virk, H.U.; Wang, Z.; Glicksberg, B.S.; Krittanawong, C. Machine-Learning-Based Prediction Modelling in Primary Care: State-of-the-Art Review. AI 2023, 4, 437–460. [Google Scholar] [CrossRef]
- Wan, T.T.H.; Wan, H.S. Predictive Analytics with a Transdisciplinary Framework in Promoting Patient-Centric Care of Polychronic Conditions: Trends, Challenges, and Solutions. AI 2023, 4, 482–490. [Google Scholar] [CrossRef]
- Zhu, Z.; Ng, D.W.H.; Park, H.S.; McAlpine, M.C. 3D-Printed Multifunctional Materials Enabled by Artificial-Intelligence-Assisted Fabrication Technologies. Nat. Rev. Mater. 2021, 6, 27–47. [Google Scholar] [CrossRef]
- Ding, H.; Wu, J.; Zhao, W.; Matinlinna, J.P.; Burrow, M.F.; Tsoi, J.K.H. Artificial Intelligence in Dentistry—A Review. Front. Dent. Med. 2023, 4, 1085251. [Google Scholar] [CrossRef]
- Fawaz, P.; Sayegh, P.E.; Vannet, B.V. What Is the Current State of Artificial Intelligence Applications in Dentistry and Orthodontics? J. Stomatol. Oral Maxillofac. Surg. 2023, 124, 101524. [Google Scholar] [CrossRef]
- Grauer, D. Quality in Orthodontics: The Role of Customized Appliances. J. Esthet. Restor. Dent. 2021, 33, 253–258. [Google Scholar] [CrossRef]
- Yamashiro, T.; Ko, C.-C. Artificial Intelligence and Machine Learning in Orthodontics. Orthod. Craniofac. Res. 2021, 24, 3–5. [Google Scholar] [CrossRef]
- D’Ettorre, G.; Farronato, M.; Candida, E.; Quinzi, V.; Grippaudo, C. A Comparison between Stereophotogrammetry and Smartphone Structured Light Technology for Three-Dimensional Face Scanning. Angle Orthod. 2022, 93, 358–363. [Google Scholar] [CrossRef] [PubMed]
- Ayidh Alqahtani, K.; Jacobs, R.; Smolders, A.; Van Gerven, A.; Willems, H.; Shujaat, S.; Shaheen, E. Deep Convolutional Neural Network-Based Automated Segmentation and Classification of Teeth with Orthodontic Brackets on Cone-Beam Computed-Tomographic Images: A Validation Study. Eur. J. Orthod. 2023, 45, 169–174. [Google Scholar] [CrossRef] [PubMed]
- Bouletreau, P.; Makaremi, M.; Ibrahim, B.; Louvrier, A.; Sigaux, N. Artificial Intelligence: Applications in Orthognathic Surgery. J. Stomatol. Oral Maxillofac. Surg. 2019, 120, 347–354. [Google Scholar] [CrossRef] [PubMed]
- Thurzo, A.; Urbanová, W.; Novák, B.; Czako, L.; Siebert, T.; Stano, P.; Mareková, S.; Fountoulaki, G.; Kosnáčová, H.; Varga, I. Where Is the Artificial Intelligence Applied in Dentistry? Systematic Review and Literature Analysis. Healthcare 2022, 10, 1269. [Google Scholar] [CrossRef] [PubMed]
- Naran, S.; Steinbacher, D.M.; Taylor, J.A. Current Concepts in Orthognathic Surgery. Plast. Reconstr. Surg. 2018, 141, 925e–936e. [Google Scholar] [CrossRef] [PubMed]
- Farronato, M.; Maspero, C.; Lanteri, V.; Fama, A.; Ferrati, F.; Pettenuzzo, A.; Farronato, D. Current State of the Art in the Use of Augmented Reality in Dentistry: A Systematic Review of the Literature. BMC Oral Health 2019, 19, 135. [Google Scholar] [CrossRef] [PubMed]
- Rousseau, M.; Retrouvey, J.-M. Machine Learning in Orthodontics: Automated Facial Analysis of Vertical Dimension for Increased Precision and Efficiency. Am. J. Orthod. Dentofac. Orthop. 2022, 161, 445–450. [Google Scholar] [CrossRef]
- Strunga, M.; Urban, R.; Surovková, J.; Thurzo, A. Artificial Intelligence Systems Assisting in the Assessment of the Course and Retention of Orthodontic Treatment. Healthcare 2023, 11, 683. [Google Scholar] [CrossRef]
- Tian, Y.; Chen, C.; Xu, X.; Wang, J.; Hou, X.; Li, K.; Lu, X.; Shi, H.; Lee, E.-S.; Jiang, H.B. A Review of 3D Printing in Dentistry: Technologies, Affecting Factors, and Applications. Scanning 2021, 2021, 9950131. [Google Scholar] [CrossRef]
- Khanagar, S.B.; Al-Ehaideb, A.; Vishwanathaiah, S.; Maganur, P.C.; Patil, S.; Naik, S.; Baeshen, H.A.; Sarode, S.S. Scope and Performance of Artificial Intelligence Technology in Orthodontic Diagnosis, Treatment Planning, and Clinical Decision-Making—A Systematic Review. J. Dent. Sci. 2021, 16, 482–492. [Google Scholar] [CrossRef]
- Mohammad-Rahimi, H.; Nadimi, M.; Rohban, M.H.; Shamsoddin, E.; Lee, V.Y.; Motamedian, S.R. Machine Learning and Orthodontics, Current Trends and the Future Opportunities: A Scoping Review. Am. J. Orthod. Dentofac. Orthop. 2021, 160, 170–192.e4. [Google Scholar] [CrossRef] [PubMed]
- Gandedkar, N.H.; Vaid, N.R.; Darendeliler, M.A.; Premjani, P.; Ferguson, D.J. The Last Decade in Orthodontics: A Scoping Review of the Hits, Misses and the near Misses! Semin. Orthod. 2019, 25, 339–355. [Google Scholar] [CrossRef]
- Fatima, A.; Shafi, I.; Afzal, H.; Díez, I.D.L.T.; Lourdes, D.R.-S.M.; Breñosa, J.; Espinosa, J.C.M.; Ashraf, I. Advancements in Dentistry with Artificial Intelligence: Current Clinical Applications and Future Perspectives. Healthcare 2022, 10, 2188. [Google Scholar] [CrossRef] [PubMed]
- Kwon, H.-B.; Park, Y.-S.; Han, J.-S. Augmented Reality in Dentistry: A Current Perspective. Acta Odontol. Scand. 2018, 76, 497–503. [Google Scholar] [CrossRef]
- Retrouvey, J.-M.; Conley, R.S. Decoding Deep Learning Applications for Diagnosis and Treatment Planning. Dent. Press J. Orthod. 2022, 27, e22spe5. [Google Scholar] [CrossRef]
- Thurzo, A.; Strunga, M.; Havlínová, R.; Reháková, K.; Urban, R.; Surovková, J.; Kurilová, V. Smartphone-Based Facial Scanning as a Viable Tool for Facially Driven Orthodontics? Sensors 2022, 22, 7752. [Google Scholar] [CrossRef]
- Abd El-Ghafour, M.; Aboulhassan, M.A.; Fayed, M.M.S.; El-Beialy, A.R.; Eid, F.H.K.; Hegab, S.E.-D.; El-Gendi, M.; Emara, D. Effectiveness of a Novel 3D-Printed Nasoalveolar Molding Appliance (D-NAM) on Improving the Maxillary Arch Dimensions in Unilateral Cleft Lip and Palate Infants: A Randomized Controlled Trial. Cleft Palate-Craniofac. J. 2020, 57, 1370–1381. [Google Scholar] [CrossRef]
- Leite, A.F.; Vasconcelos, K.D.F.; Willems, H.; Jacobs, R. Radiomics and Machine Learning in Oral Healthcare. Proteom.-Clin. Appl. 2020, 14, e1900040. [Google Scholar] [CrossRef]
- Mayo, R.C.; Leung, J. Artificial Intelligence and Deep Learning—Radiology’s next Frontier? Clin. Imaging 2018, 49, 87–88. [Google Scholar] [CrossRef]
- Ren, R.; Luo, H.; Su, C.; Yao, Y.; Liao, W. Machine Learning in Dental, Oral and Craniofacial Imaging: A Review of Recent Progress. PeerJ 2021, 9, e11451. [Google Scholar] [CrossRef] [PubMed]
- Alphonse, A.S.; Kumari, S.V.; Priyanga, P.T. Caries Detection from Dental Images Using Novel Maximum Directional Pattern (MDP) and Deep Learning. Int. J. Electr. Electron. Res. 2022, 10, 100–104. [Google Scholar] [CrossRef]
- Kondody, R.T.; Patil, A.; Devika, G.; Jose, A.; Kumar, A.; Nair, S. Introduction to Artificial Intelligence and Machine Learning into Orthodontics: A Review. APOS Trends Orthod. 2022, 12, 214–220. [Google Scholar] [CrossRef]
- Kolsanov, A.V.; Popov, N.V.; Ayupova, I.O.; Khamadeeva, A.M.; Tiunova, N.V.; Kramm, E.K.; Makhota, A.Y. Determination of the Usability of Teleroentgenographic Studies in Orthodontic Practice. Biomed. Eng. 2023, 57, 195–199. [Google Scholar] [CrossRef]
- Alsubai, S. A Critical Review on the 3D Cephalometric Analysis Using Machine Learning. Computers 2022, 11, 154. [Google Scholar] [CrossRef]
- Suhail, S.; Harris, K.; Sinha, G.; Schmidt, M.; Durgekar, S.; Mehta, S.; Upadhyay, M. Learning Cephalometric Landmarks for Diagnostic Features Using Regression Trees. Bioengineering 2022, 9, 617. [Google Scholar] [CrossRef]
- Lin, L.; Tang, B.; Cao, L.; Yan, J.; Zhao, T.; Hua, F.; He, H. The Knowledge, Experience, and Attitude on Artificial Intelligence-Assisted Cephalometric Analysis: Survey of Orthodontists and Orthodontic Students. Am. J. Orthod. Dentofac. Orthop. 2023, 164, e97–e105. [Google Scholar] [CrossRef]
- Albalawi, F.; Alamoud, K.A. Trends and Application of Artificial Intelligence Technology in Orthodontic Diagnosis and Treatment Planning—A Review. Appl. Sci. 2022, 12, 11864. [Google Scholar] [CrossRef]
- Urban, R.; Haluzová, S.; Strunga, M.; Surovková, J.; Lifková, M.; Tomášik, J.; Thurzo, A. AI-Assisted CBCT Data Management in Modern Dental Practice: Benefits, Limitations and Innovations. Electronics 2023, 12, 1710. [Google Scholar] [CrossRef]
- Fan, Y.; Zhang, Y.; Chen, G.; He, W.; Song, G.; Matthews, H.; Claes, P.; Pei, Y.; Zha, H.; Penington, A.; et al. Automated Assessment of Mandibular Shape Asymmetry in 3-Dimensions. Am. J. Orthod. Dentofac. Orthop. 2022, 161, 698–707. [Google Scholar] [CrossRef]
- Balashova, M.; Khabadze, Z.; Popaduk, V.; Kulikova, A.; Bakaev, Y.; Abdulkerimova, S.; Generalova, Y.; Dashtieva, M.; Gadzhiev, F.; Umarov, A.; et al. Artificial Intelligence Application in Assessment of Upper Airway on Cone-Beam Computed Tomography Scans. J. Int. Dent. Med. Res. 2023, 16, 105–110. [Google Scholar]
- Seo, H.; Hwang, J.; Jeong, T.; Shin, J. Comparison of Deep Learning Models for Cervical Vertebral Maturation Stage Classification on Lateral Cephalometric Radiographs. J. Clin. Med. 2021, 10, 3591. [Google Scholar] [CrossRef]
- Liao, N.; Dai, J.; Tang, Y.; Zhong, Q.; Mo, S. iCVM: An Interpretable Deep Learning Model for CVM Assessment Under Label Uncertainty. IEEE J. Biomed. Health Inform. 2022, 26, 4325–4334. [Google Scholar] [CrossRef]
- Kulikova, A.A.; Khabadze, Z.S.; Abdulkerimova, S.M.; Bakaev, Y.A.; El-Khalaf Ramiz, M.; Bagdasarova, I.V. Comparison of Accuracy of 2D- and 3D-Diagnostic Methods in Analysis of Maxillofacial Region for Cephalometry in Orthdontic Practice Based on Literature. Russ. Electron. J. Radiol. 2019, 9, 171–180. [Google Scholar] [CrossRef]
- Hulsen, T. Explainable Artificial Intelligence (XAI): Concepts and Challenges in Healthcare. AI 2023, 4, 652–666. [Google Scholar] [CrossRef]
- Marcus, G. The Next Decade in AI: Four Steps Towards Robust Artificial Intelligence. arXiv 2020, arXiv:2002.06177. [Google Scholar] [CrossRef]
- Al Turkestani, N.; Bianchi, J.; Deleat-Besson, R.; Le, C.; Tengfei, L.; Prieto, J.C.; Gurgel, M.; Ruellas, A.C.O.; Massaro, C.; Aliaga Del Castillo, A.; et al. Clinical Decision Support Systems in Orthodontics: A Narrative Review of Data Science Approaches. Orthod. Craniofac. Res. 2021, 24, 26–36. [Google Scholar] [CrossRef]
- Chow, J.C.L.; Sanders, L.; Li, K. Design of an Educational Chatbot Using Artificial Intelligence in Radiotherapy. AI 2023, 4, 319–332. [Google Scholar] [CrossRef]
- He, D.; Gu, Y.; Sun, Y. Correlations between Objective Measurements and Subjective Evaluations of Facial Profile after Orthodontic Treatment. J. Int. Med. Res. 2020, 48, 1–13. [Google Scholar] [CrossRef]
- Putrino, A.; Abed, M.R.; Barbato, E.; Galluccio, G. A Current Tool in Facial Aesthetics Perception of Orthodontic Patient: The Digital Warping. Dent. Cadmos 2021, 89, 46–52. [Google Scholar] [CrossRef]
- Volovic, J.; Badirli, S.; Ahmad, S.; Leavitt, L.; Mason, T.; Bhamidipalli, S.S.; Eckert, G.; Albright, D.; Turkkahraman, H. A Novel Machine Learning Model for Predicting Orthodontic Treatment Duration. Diagnostics 2023, 13, 2740. [Google Scholar] [CrossRef]
- Ahmed, N.; Abbasi, M.S.; Zuberi, F.; Qamar, W.; Halim, M.S.B.; Maqsood, A.; Alam, M.K. Artificial Intelligence Techniques: Analysis, Application, and Outcome in Dentistry—A Systematic Review. BioMed Res. Int. 2021, 2021, 9751564. [Google Scholar] [CrossRef]
- Akdeniz, B.S.; Tosun, M.E. A Review of the Use of Artificial Intelligence in Orthodontics. J. Exp. Clin. Med. 2021, 38, 157–162. [Google Scholar] [CrossRef]
- Graber, L.W.; Vig, K.W.L.; Huang, G.J.; Fleming, P.S. Orthodontics, 7th ed.; Elsevier Health Sciences: Amsterdam, The Netherlands, 2022; ISBN 978-0-323-77859-6. [Google Scholar]
- Bulatova, G.; Kusnoto, B.; Grace, V.; Tsay, T.P.; Avenetti, D.M.; Sanchez, F.J.C. Assessment of Automatic Cephalometric Landmark Identification Using Artificial Intelligence. Orthod. Craniofac. Res. 2021, 24 (Suppl. S2), 37–42. [Google Scholar] [CrossRef]
- Tanikawa, C.; Lee, C.; Lim, J.; Oka, A.; Yamashiro, T. Clinical Applicability of Automated Cephalometric Landmark Identification: Part I-Patient-Related Identification Errors. Orthod. Craniofac. Res. 2021, 24 (Suppl. S2), 43–52. [Google Scholar] [CrossRef]
- Kim, J.; Kim, I.; Kim, Y.-J.; Kim, M.; Cho, J.-H.; Hong, M.; Kang, K.-H.; Lim, S.-H.; Kim, S.-J.; Kim, Y.H.; et al. Accuracy of Automated Identification of Lateral Cephalometric Landmarks Using Cascade Convolutional Neural Networks on Lateral Cephalograms from Nationwide Multi-Centres. Orthod. Craniofac. Res. 2021, 24 (Suppl. S2), 59–67. [Google Scholar] [CrossRef]
- Kim, D.-W.; Kim, J.; Kim, T.; Kim, T.; Kim, Y.-J.; Song, I.-S.; Ahn, B.; Choo, J.; Lee, D.-Y. Prediction of Hand-Wrist Maturation Stages Based on Cervical Vertebrae Images Using Artificial Intelligence. Orthod. Craniofac. Res. 2021, 24 (Suppl. S2), 68–75. [Google Scholar] [CrossRef]
- Kök, H.; Izgi, M.S.; Acilar, A.M. Determination of Growth and Development Periods in Orthodontics with Artificial Neural Network. Orthod. Craniofac. Res. 2021, 24 (Suppl. S2), 76–83. [Google Scholar] [CrossRef]
- Yurdakurban, E.; Duran, G.S.; Görgülü, S. Evaluation of an Automated Approach for Facial Midline Detection and Asymmetry Assessment: A Preliminary Study. Orthod. Craniofac. Res. 2021, 24 (Suppl. S2), 84–91. [Google Scholar] [CrossRef]
- Rousseau, M.; Vargas, J.; Rauch, F.; Marulanda, J.; Retrouvey, J.-M. Members of the BBDC Facial Morphology Analysis in Osteogenesis Imperfecta Types I, III and IV Using Computer Vision. Orthod. Craniofac. Res. 2021, 24, 92–99. [Google Scholar] [CrossRef]
- Lo Giudice, A.; Ronsivalle, V.; Spampinato, C.; Leonardi, R. Fully Automatic Segmentation of the Mandible Based on Convolutional Neural Networks (CNNs). Orthod. Craniofac. Res. 2021, 24 (Suppl. S2), 100–107. [Google Scholar] [CrossRef]
- Lim, J.; Tanikawa, C.; Kogo, M.; Yamashiro, T. Determination of Prognostic Factors for Orthognathic Surgery in Children with Cleft Lip and/or Palate. Orthod. Craniofac. Res. 2021, 24 (Suppl. S2), 153–162. [Google Scholar] [CrossRef]
- Auconi, P.; Ottaviani, E.; Barelli, E.; Giuntini, V.; McNamara, J.A.; Franchi, L. Prognostic Approach to Class III Malocclusion through Case-Based Reasoning. Orthod. Craniofac. Res. 2021, 24 (Suppl. S2), 163–171. [Google Scholar] [CrossRef]
- Serafin, M.; Baldini, B.; Cabitza, F.; Carrafiello, G.; Baselli, G.; Del Fabbro, M.; Sforza, C.; Caprioglio, A.; Tartaglia, G.M. Accuracy of Automated 3D Cephalometric Landmarks by Deep Learning Algorithms: Systematic Review and Meta-Analysis. Radiol. Medica 2023, 128, 544–555. [Google Scholar] [CrossRef]
- Duran, G.S.; Gökmen, Ş.; Topsakal, K.G.; Görgülü, S. Evaluation of the Accuracy of Fully Automatic Cephalometric Analysis Software with Artificial Intelligence Algorithm. Orthod. Craniofac. Res. 2023, 26, 481–490. [Google Scholar] [CrossRef]
- Huang, G.; Wu, L.; Hu, J.; Zhou, X.; He, F.; Wan, L.; Pan, S.-T. Main Applications and Recent Research Progresses of Additive Manufacturing in Dentistry. BioMed Res. Int. 2022, 2022, 5530188. [Google Scholar] [CrossRef]
- Tang, Y.; Zhang, Y.; Meng, Z.; Sun, Q.; Peng, L.; Zhang, L.; Lu, W.; Liang, W.; Chen, G.; Wei, Y. Accuracy of Additive Manufacturing in Stomatology. Front. Bioeng. Biotechnol. 2022, 10, 964651. [Google Scholar] [CrossRef]
- Michiko, A.; Shirahama, S.; Shimizu, A.; Romanec, C.; Anka, G. The Surgical Guides for TADs: The Rational and Laboratory Procedures. Appl. Sci. 2023, 13, 10332. [Google Scholar] [CrossRef]
- Panayi, N.C. In-House Three-Dimensional Designing and Printing Customized Brackets. J. World Fed. Orthod. 2022, 11, 190–196. [Google Scholar] [CrossRef]
- Nakornnoi, T.; Chantakao, C.; Luangaram, N.; Janbamrung, T.; Thitasomakul, T.; Sipiyaruk, K. Perceptions of Orthodontic Residents toward the Implementation of Dental Technologies in Postgraduate Curriculum. BMC Oral Health 2023, 23, 625. [Google Scholar] [CrossRef]
- Oberoi, G.; Nitsch, S.; Edelmayer, M.; Janjic, K.; Müller, A.S.; Agis, H. 3D Printing-Encompassing the Facets of Dentistry. Front. Bioeng. Biotechnol. 2018, 6, 172. [Google Scholar] [CrossRef]
- Franco de Sá Gomes, C.; Libdy, M.R.; Normando, D. Scan Time, Reliability and Accuracy of Craniofacial Measurements Using a 3D Light Scanner. J. Oral Biol. Craniofac. Res. 2019, 9, 331–335. [Google Scholar] [CrossRef]
- Pojda, D.; Tomaka, A.A.; Luchowski, L.; Tarnawski, M. Integration and Application of Multimodal Measurement Techniques: Relevance of Photogrammetry to Orthodontics. Sensors 2021, 21, 8026. [Google Scholar] [CrossRef]
- Mai, H.-N.; Lee, D.-H. Accuracy of Mobile Device–Compatible 3D Scanners for Facial Digitization: Systematic Review and Meta-Analysis. J. Med. Internet Res. 2020, 22, e22228. [Google Scholar] [CrossRef]
- Badr, A.M.; Refai, W.M.M.; El-Shal, M.G.; Abdelhameed, A.N. Accuracy and Reliability of Kinect Motion Sensing Input Device’s 3d Models: A Comparison to Direct Anthropometry and 2D Photogrammetry. Open Access Maced. J. Med. Sci. 2021, 9, 54–60. [Google Scholar] [CrossRef]
- Eliasova, H.; Dostalova, T.; Urbanova, P. A Comparison of the Precision of 3D Images of Facial Tissues from the Forensic Point of View. Forensic Imaging 2022, 28, 200471. [Google Scholar] [CrossRef]
- Mao, B.; Li, J.; Tian, Y.; Zhou, Y. The Accuracy of a Three-Dimensional Face Model Reconstructing Method Based on Conventional Clinical Two-Dimensional Photos. BMC Oral Health 2022, 22, 413. [Google Scholar] [CrossRef]
- Rongo, R.; Nissen, L.; Leroy, C.; Michelotti, A.; Cattaneo, P.M.; Cornelis, M.A. Three-Dimensional Soft Tissue Changes in Orthodontic Extraction and Non-Extraction Patients: A Prospective Study. Orthod. Craniofac. Res. 2021, 24 (Suppl. S2), 181–192. [Google Scholar] [CrossRef]
- Perrotti, G.; Reda, R.; Rossi, O.; D’apolito, I.; Testori, T.; Testarelli, L. A Radiation Free Alternative to CBCT Volumetric Rendering for Soft Tissue Evaluation. Braz. Dent. Sci. 2023, 26, 1–7. [Google Scholar] [CrossRef]
- Goh, G.D.; Lee, J.M.; Goh, G.L.; Huang, X.; Lee, S.; Yeong, W.Y. Machine Learning for Bioelectronics on Wearable and Implantable Devices: Challenges and Potential. Tissue Eng. Part A 2023, 29, 20–46. [Google Scholar] [CrossRef]
- Mekruksavanich, S.; Phaphan, W.; Hnoohom, N.; Jitpattanakul, A. Attention-Based Hybrid Deep Learning Network for Human Activity Recognition Using WiFi Channel State Information. Appl. Sci. 2023, 13, 8884. [Google Scholar] [CrossRef]
- Mengara Mengara, A.G.; Park, E.; Jang, J.; Yoo, Y. Attention-Based Distributed Deep Learning Model for Air Quality Forecasting. Sustainability 2022, 14, 3269. [Google Scholar] [CrossRef]
- Lee, S.; Yang, Y.; Aiyanyo, I.; Keith, M.; Boussougou, M.; Park, D.-J. Attention-Based 1D CNN-BiLSTM Hybrid Model Enhanced with FastText Word Embedding for Korean Voice Phishing Detection. Mathematics 2023, 11, 3217. [Google Scholar] [CrossRef]
- Singh, J.; Singh, N.; Fouda, M.M.; Saba, L.; Suri, J.S. Attention-Enabled Ensemble Deep Learning Models and Their Validation for Depression Detection: A Domain Adoption Paradigm. Diagnostics 2023, 13, 2092. [Google Scholar] [CrossRef]
- Deng, J.; Zhang, S.; Ma, J.; Lu, J.; Deng, J.; Zhang, S.; Ma, J. Self-Attention-Based Deep Convolution LSTM Framework for Sensor-Based Badminton Activity Recognition. Sensors 2023, 23, 8373. [Google Scholar] [CrossRef]
# | Title | Authors | Year | Main Focus | FWCI |
---|---|---|---|---|---|
1 | A comparison between stereophotogrammetry and smartphone structured light technology for three-dimensional face scanning [34] | D’Ettorre, Giorgio; Farronato, Marco; Candida, Ettore; Quinzi, Vincenzo; Grippaudo, Cristina | 2022 | Face scanning | 15.68 |
2 | Deep convolutional neural network-based automated segmentation and classification of teeth with orthodontic brackets on cone-beam computed-Tomographic images: A validation study [35] | Ayidh Alqahtani, Khalid; Jacobs, Reinhilde; Smolders, Andreas; Van Gerven, Adriaan; Willems, Holger; Shujaat, Sohaib; Shaheen, Eman | 2023 | AI | 13.2 |
3 | Artificial intelligence in dentistry—A review [30] | Ding, Hao; Wu, Jiamin; Zhao, Wuyuan; Matinlinna, Jukka P.; Burrow, Michael F.; Tsoi, James K. H. | 2023 | AI | 10.92 |
4 | Artificial Intelligence: Applications in orthognathic surgery [36] | Bouletreau P.; Makaremi M.; Ibrahim B.; Louvrier A.; Sigaux N. | 2019 | AI | 10.67 |
5 | Where Is the Artificial Intelligence Applied in Dentistry? Systematic Review and Literature Analysis [37] | Thurzo, Andrej; Urbanová, Wanda; Novák, B.; Czako, Ladislav; Siebert, Tomáš; Stano; Mareková, Simona; Fountoulaki, Georgia; Kosnáčová, Helena; Varga, Ivan | 2022 | AI | 5.83 |
6 | Current concepts in orthognathic surgery [38] | Naran, Sanjay; Steinbacher, Derek M.; Taylor, Jesse A. | 2018 | Digital planning | 5.62 |
7 | Current state of the art in the use of augmented reality in dentistry: A systematic review of the literature [39] | Farronato, Marco; Maspero, Cinzia; Lanteri, Valentina; Fama, Andrea; Ferrati, Francesco; Pettenuzzo, Alessandro; Farronato, Davide | 2019 | Augmented reality | 5.26 |
8 | Machine learning in orthodontics: Automated facial analysis of vertical dimension for increased precision and efficiency [40] | Rousseau, Maxime; Retrouvey, Jean-Marc | 2022 | AI | 5.22 |
9 | Artificial Intelligence Systems Assisting in the Assessment of the Course and Retention of Orthodontic Treatment [41] | Strunga, Martin; Urban, Renáta; Surovková, Jana; Thurzo, Andrej | 2023 | AI | 4.97 |
10 | A Review of 3D Printing in Dentistry: Technologies, Affecting Factors, and Applications [42] | Tian, Yueyi; Chen, ChunXu; Xu, Xiaotong; Wang, Jiayin; Hou, Xingyu; Li, Kelun; Lu, Xinyue; Shi, HaoYu; Lee, Eui-Seok; Jiang, Heng Bo | 2021 | 3D printing | 4.51 |
11 | Scope and performance of artificial intelligence technology in orthodontic diagnosis, treatment planning, and clinical decision-making—A systematic review [43] | Khanagar, Sanjeev B.; Al-Ehaideb, Ali; Vishwanathaiah, Satish; Maganur, Prabhadevi C.; Patil, Shankargouda; Naik, Sachin; Baeshen, Hosam A.; Sarode, Sachin S. | 2021 | AI | 4.47 |
12 | Machine learning and orthodontics, current trends and the future opportunities: A scoping review [44] | Mohammad-Rahimi, Hossein; Nadimi, Mohadeseh; Rohban, Mohammad Hossein; Shamsoddin, Erfan; Lee, Victor Y.; Motamedian, Saeed Reza | 2021 | AI | 4.02 |
13 | The last decade in orthodontics: A scoping review of the hits, misses and the near misses! [45] | Gandedkar, Narayan H.; Vaid, Nikhilesh R.; Darendeliler, M. Ali; Premjani, Pratik; Ferguson, Donald J. | 2019 | 3D printing | 3.82 |
14 | Advancements in Dentistry with Artificial Intelligence: Current Clinical Applications and Future Perspectives [46] | Fatima, Anum; Shafi, Imran; Afzal, Hammad; Díez, Isabel De La Torre; Lourdes, Del Rio-Solá M.; Breñosa, Jose; Espinosa, Julio César Martínez; Ashraf, Imran | 2022 | AI | 3.59 |
15 | Three-dimensional prediction of roots position through cone-beam computed tomography scans-digital model superimposition: A novel method [12] | Staderini, Edoardo,; Guglielmi, Federica; Cornelis, Marie A.; Cattaneo, Paolo M. | 2019 | CBCT, intraoral scanning | 3.46 |
16 | Augmented reality in dentistry: a current perspective [47] | Kwon, Ho-Beom; Park, Young-Seok; Han, Jung-Suk | 2018 | Augmented reality | 2.83 |
17 | Decoding Deep Learning applications for diagnosis and treatment planning [48] | Retrouvey, Jean-Marc; Conley, Richard Scott | 2022 | AI | 2.35 |
18 | Smartphone-Based Facial Scanning as a Viable Tool for Facially Driven Orthodontics? [49] | Thurzo, Andrej; Strunga, Martin; Havlínová, Romana; Reháková, Katarína; Urban, Renata; Surovková, Jana; Kurilová, Veronika | 2022 | Face scan | 2.19 |
19 | Effectiveness of a Novel 3D-Printed Nasoalveolar Molding Appliance (D-NAM) on Improving the Maxillary Arch Dimensions in Unilateral Cleft Lip and Palate Infants: A Randomized Controlled Trial [50] | Abd El-Ghafour, Mohamed; Aboulhassan, Mamdouh A.; Fayed, Mona M. Salah; El-Beialy, Amr Ragab; Eid, Faten Hussein Kamel; Hegab, Seif El-Din; El-Gendi, Mahmoud; Emara, Dawlat | 2020 | 3D printing | 2.18 |
20 | Radiomics and Machine Learning in Oral Healthcare [51] | Leite, André Ferreira; Vasconcelos, Karla de Faria; Willems, Holger; Jacobs, Reinhilde | 2020 | AI | 2.05 |
Feature | Current Orthodontic Treatment Concepts | AI-Powered Orthodontics |
---|---|---|
Approach | Subjective interpretation and limited data analysis | Objective and data-driven |
Diagnosis | Manual assessment of patient records and imaging | AI algorithms analysing digital scans and images |
Treatment Planning | Generalised approaches | Personalised treatment plans tailored to individual patients |
Monitoring | Periodic checkups | Real-time insights and the prediction of potential issues |
Efficiency | Manual tasks and time-consuming assessments | Automation and streamlining of workflows |
Outcomes | Potential for misdiagnoses and treatment errors | Improved patient outcomes, increased treatment efficiency and reduced diagnostic errors |
Engagement | Limited patient involvement | Enhanced patient understanding and engagement |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tomášik, J.; Zsoldos, M.; Oravcová, Ľ.; Lifková, M.; Pavleová, G.; Strunga, M.; Thurzo, A. AI and Face-Driven Orthodontics: A Scoping Review of Digital Advances in Diagnosis and Treatment Planning. AI 2024, 5, 158-176. https://doi.org/10.3390/ai5010009
Tomášik J, Zsoldos M, Oravcová Ľ, Lifková M, Pavleová G, Strunga M, Thurzo A. AI and Face-Driven Orthodontics: A Scoping Review of Digital Advances in Diagnosis and Treatment Planning. AI. 2024; 5(1):158-176. https://doi.org/10.3390/ai5010009
Chicago/Turabian StyleTomášik, Juraj, Márton Zsoldos, Ľubica Oravcová, Michaela Lifková, Gabriela Pavleová, Martin Strunga, and Andrej Thurzo. 2024. "AI and Face-Driven Orthodontics: A Scoping Review of Digital Advances in Diagnosis and Treatment Planning" AI 5, no. 1: 158-176. https://doi.org/10.3390/ai5010009