A Regional Perspective of Socio-Ecological Predictors for Fruit and Nut Tree Varietal Diversity Maintained by Farmer Communities in Central Asia
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Sites
2.2. Sampling on Farms and in Communities
2.3. Data Analysis
3. Results
3.1. Overall Diversity Estimates
3.2. Social Ecological Predictors
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Vavilov, N.I. Origin and Geographical Distribution of Cultivated Plants; Nauka: Leningrad, Russia, 1987. [Google Scholar]
- Purugganan, M.D.; Fuller, D.Q. The Nature of Selection during Plant Domestication. Nature 2009, 457, 843–848. [Google Scholar] [CrossRef] [PubMed]
- Miller, A.J.; Gross, B.L. From Forest to Field: Perennial Fruit Crop Domestication. Am. J. Bot. 2011, 98, 1389–1414. [Google Scholar] [CrossRef] [PubMed]
- Pollegioni, P.; Woeste, K.E.; Chiocchini, F.; Del Lungo, S.; Olimpieri, I.; Tortolano, V.; Clark, J.; Hemery, G.E.; Mapelli, S.; Malvolti, M.E. Ancient Humans Influenced the Current Spatial Genetic Structure of Common Walnut Populations in Asia. PLoS ONE 2015, 10, e0135980. [Google Scholar] [CrossRef]
- Janick, J. The Origins of Fruits, Fruit Growing, and Fruit Breeding. In Plant Breeding Reviews; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2005; Volume 25, pp. 255–321. ISBN 9780470650301. [Google Scholar]
- Groppi, A.; Liu, S.; Cornille, A.; Decroocq, S.; Bui, Q.T.; Tricon, D.; Cruaud, C.; Arribat, S.; Belser, C.; Marande, W.; et al. Population Genomics of Apricots Unravels Domestication History and Adaptive Events. Nat. Commun. 2021, 12, 3956. [Google Scholar] [CrossRef]
- Liu, S.; Cornille, A.; Decroocq, S.; Tricon, D.; Chague, A.; Eyquard, J.P.; Liu, W.S.; Giraud, T.; Decroocq, V. The Complex Evolutionary History of Apricots: Species Divergence, Gene Flow and Multiple Domestication Events. Mol. Ecol. 2019, 28, 5299–5314. [Google Scholar] [CrossRef]
- Cornille, A.; Antolín, F.; Garcia, E.; Vernesi, C.; Fietta, A.; Brinkkemper, O.; Kirleis, W.; Schlumbaum, A.; Roldán-Ruiz, I. A Multifaceted Overview of Apple Tree Domestication. Trends Plant Sci. 2019, 24, 770–782. [Google Scholar] [CrossRef]
- Vinceti, B.; Elias, M.; Azimov, R.; Turdieva, M.; Aaliev, S.; Bobokalonov, F.; Butkov, E.; Kaparova, E.; Mukhsimov, N.; Shamuradova, S.; et al. Home Gardens of Central Asia: Reservoirs of Diversity of Fruit and Nut Tree Species. PLoS ONE 2022, 17, e0271398. [Google Scholar] [CrossRef]
- Van Dusen, E. Agricultural Biodiversity in Transition Agriculture: Fruit Tree Genetic Resources in Rural Uzbekistan. Available online: https://www.bioecon-network.org/pages/7th_2005/VanDusen.pdf (accessed on 11 September 2023).
- Zhebentyayeva, T.; Ledbetter, C.; Burgos, L.; Llácer, G. Apricots. In Fruit Breeding; Springer: New York, NY, USA, 2012; pp. 415–458. ISBN 9781441907639. [Google Scholar]
- Azarov, A.; Polesny, Z.; Darr, D.; Kulikov, M.; Verner, V.; Sidle, R.C. Classification of Mountain Silvopastoral Farming Systems in Walnut Forests of Kyrgyzstan: Determining Opportunities for Sustainable Livelihoods. Agriculture 2022, 12, 2004. [Google Scholar] [CrossRef]
- Bourguiba, H.; Scotti, I.; Sauvage, C.; Zhebentyayeva, T.; Ledbetter, C.; Krška, B.; Remay, A.; D’Onofrio, C.; Iketani, H.; Christen, D.; et al. Genetic Structure of a Worldwide Germplasm Collection of Prunus Armeniaca L. Reveals Three Major Diffusion Routes for Varieties Coming from the Species’ Center of Origin. Front. Plant Sci. 2020, 11, 638. [Google Scholar] [CrossRef]
- Riaz, S.; de Lorenzis, G.; Velasco, D.; Koehmstedt, A.; Maghradze, D.; Bobokashvili, Z.; Musayev, M.; Zdunic, G.; Laucou, V.; Andrew Walker, M.; et al. Genetic diversity analysis of cultivated and wild grapevine (Vitis vinifera L.) accessions around the Mediterranean basin and Central Asia. BMC Plant Biol. 2018, 18, 137. [Google Scholar] [CrossRef]
- Mir-Makhamad, B.; Bjørn, R.; Stark, S.; Spengler, R.N. Pistachio (Pistachio vera) Domestication and Dispersal Out of Central Asia. Agronomy 2022, 12, 1758. [Google Scholar] [CrossRef]
- Jarvis, D.I.; Hodgkin, T.; Brown, A.H.D.; Tuxill, J.; Noriega, I.; Smale, M.; Sthapit, B. Crop Genetic Diversity in the Field and on the Farm: Principles and Applications in Research Practices; Yale Agrarian Studies Series; Yale University Press: New Haven, CT, USA; London, UK, 2016; ISBN 0300161123. [Google Scholar]
- Wild Apple and Fruit Trees of Central Asia; Janick, J. (Ed.) John Wiley & Sons: New York, NY, USA, 2003; Volume 29, ISBN 0471219681. [Google Scholar]
- Turdieva, M.K.; Kayimov, A.K.; Baymetov, K.I.; Mustafina, F.U.; Butkov, E.A. Conservation and Sustainable Use of Biodiversity of Fruit Crops and Wild Fruit Species. In Proceedings of the International Scientific and Practical Conference, Tashkent, Uzbekistan, 23–26 August 2011. [Google Scholar]
- Ryabov, I.N. Mobilization of Traditional Breeding Varieties and Their Use. In Proceedings of the Scientific Conference; Aystan Publishing House: Erevan, Armenia, 1970; pp. 199–202. (In Russian) [Google Scholar]
- Oleichenko, S.; Yegizbayeva, T.K.; Apushev, A.K.; Nusipzhanov, N.S. Assessment of Promising Local Walnut Forms for the South and South-East of Kazakhstan; National Academy of Sciences of the Republic of Kazakhstan: Almaty, Kazakhstan, 2020; Volume 5. [Google Scholar]
- Martínez-Garcí, P.J.; Hartung, J.; Pérez, L.; Cobos, F. Temporal Response to Drought Stress in Several Prunus Rootstocks and Wild Species. Agronomy 2020, 10, 1383. [Google Scholar] [CrossRef]
- Conservation of Fruit Tree Diversity in Central Asia: Policy Options and Challenges; Lapenña, I.; Turdieva, M.; Noriega, I.L.; Ayad, W.G. (Eds.) Bioversity International: Rome, Italy, 2014; ISBN 9789290439202. [Google Scholar]
- Gross, B.L.; Henk, A.D.; Richards, C.M.; Fazio, G.; Volk, G.M. Genetic Diversity in Malus ×domestica (Rosaceae) through Time in Response to Domestication. Am. J. Bot. 2014, 101, 1770–1779. [Google Scholar] [CrossRef] [PubMed]
- Vahdati, K.; Sarikhani, S.; Arab, M.M.; Leslie, C.A.; Dandekar, A.M.; Aletà, N.; Bielsa, B.; Gradziel, T.M.; Montesinos, Á.; Rubio-Cabetas, M.J.; et al. Advances in Rootstock Breeding of Nut Trees: Objectives and Strategies. Plants 2021, 10, 2234. [Google Scholar] [CrossRef]
- Fuller, D.Q.; Stevens, C.J. Between Domestication and Civilization: The Role of Agriculture and Arboriculture in the Emergence of the First Urban Societies. Veg. Hist. Archaeobotany 2019, 28, 263–282. [Google Scholar] [CrossRef]
- Djanibekov, U.; Villamor, G.B.; Dzhakypbekova, K.; Chamberlain, J.; Xu, J. Adoption of Sustainable Land Uses in Post-Soviet Central Asia: The Case for Agroforestry. Sustainability 2016, 8, 1030. [Google Scholar] [CrossRef]
- Sidle, R.C.; Khan, A.A.; Caiserman, A.; Qadamov, A.; Khojazoda, Z. Food security in high mountains of Central Asia: A broader perspective. BioScience 2023, 73, 347–363. [Google Scholar] [CrossRef]
- Rajametov, S.; Abdullaev, S. Horticulture Research In Central Asia: A review of Papers from Scopus Database Published for The Period of 2000–2020. Available online: https://www.preprints.org/manuscript/202202.0325/v1 (accessed on 11 September 2023).
- Jarvis, D.I.; Brown, A.H.D.; Cuong, P.H.; Collado-Panduro, L.; Latournerie-Moreno, L.; Gyawali, S.; Tanto, T.; Sawadogo, M.; Mar, I.; Sadiki, M.; et al. A Global Perspective of the Richness and Evenness of Traditional Crop-Variety Diversity Maintained by Farming Communities. Proc. Natl. Acad. Sci. USA 2008, 105, 5326–5331. [Google Scholar] [CrossRef]
- Olson, D.M.; Dinerstein, E.; Wikramanayake, E.D.; Burgess, N.D.; Powell, G.V.N.; Underwood, E.C.; D’Amico, J.A.; Itoua, I.; Strand, H.E.; Morrison, J.C.; et al. Terrestrial Ecoregions of the World: A New Map of Life on Earth. Bioscience 2001, 51, 933–938. [Google Scholar] [CrossRef]
- Jarvis, D.I.; Turdieva, M.K.; Campilian, D.M. Crop Genetic Diversity to Reduce Pest and Disease Pressures on On-Farm: Participatory Diagnosis Guidelines. Version I; Bioversity International: Rome, Italy, 2006; 101p. [Google Scholar]
- Bernis-Fonteneau, A.; Alcadi, R.; Frangella, M.; Jarvis, D.I. Scaling Up Pro-Poor Agrobiodiversity Interventions as a Development Option. Sustainability 2023, 15, 10526. [Google Scholar] [CrossRef]
- Bolker, B.M.; Brooks, M.E.; Clark, C.J.; Geange, S.W.; Poulsen, J.R.; Stevens, M.H.H.; White, J.S.S. Generalized linear mixed models: A practical guide for ecology and evolution. Trends Ecol. Evol. 2009, 24, 127–135. [Google Scholar] [CrossRef]
- Fick, S.E.; Hijmans, R.J. WorldClim 2: New 1-km Spatial Resolution Climate Surfaces for Global Land Areas. Int. J. Climatol. 2017, 37, 4302–4315. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2023; Available online: https://www.R-project.org/ (accessed on 11 September 2023).
- Bates, D.; Mächler, M.; Bolker, B.; Walker, S. Fitting Linear Mixed-Effects Models Using lme4. J. Stat. Softw. 2015, 67, 1–48. [Google Scholar] [CrossRef]
- Bartoń, K. MuMIn: Multi-Model Inference. R Package Version 1.47.5. 2023. Available online: https://CRAN.R-project.org/package=MuMIn (accessed on 11 September 2023).
- Bisht, I.S.; Mehta, P.S.; Bhandari, D.C. Traditional crop diversity and its conservation on-farm for sustainable agricultural production in Kumaon Himalaya of Uttaranchal state: A case study. Genet. Resour. Crop Evol. 2007, 54, 345–357. [Google Scholar] [CrossRef]
- Barry, M.B.; Pham, J.L.; Noyer, J.L.; Courtois, B.; Billot, C.; Ahmadi, N. Implications for in situ genetic resource conservation from the ecogeographical distribution of rice genetic diversity in Maritime Guinea. Plant Genet. Resour. 2007, 5, 45–54. [Google Scholar] [CrossRef]
- Bhandari, B. Summer Rainfall Variability and the Use of Rice (Oryza Sativa L.) Varietal Diversity for Adaptation: Farmers’ Perceptions and Responses in Nepal. Master’s Thesis, CBM Swedish Biodiversity Centre, Uppsala, Sweden, 2009. [Google Scholar]
- Bellon, M.R. The dynamics of crop infraspecific diversity: A conceptual framework at the farmer level. Econ. Bot. 1996, 50, 26–39. [Google Scholar] [CrossRef]
- Klein, A.-M.; Vaissière, B.E.; Cane, J.H.; Steffan-Dewenter, I.; Cunningham, S.A.; Kremen, C.; Tscharntke, T. Importance of pollinators in changing landscapes for world crops. Proc. R. Soc. B Biol. Sci. 2007, 274, 303–313. [Google Scholar] [CrossRef]
- Rai, R.; Joshi, S.; Roy, S.; Singh, O.; Samir, M.; Chandra, A. Implications of Changing Climate on Productivity of Temperate Fruit Crops with Special Reference to Apple. J. Hortic. 2015, 2, 135. [Google Scholar] [CrossRef]
- Richards, A.J. Does Low Biodiversity Resulting from Modern Agricultural Practice Affect Crop Pollination and Yield? Ann. Bot. 2001, 88, 165–172. [Google Scholar] [CrossRef]
- Rodrigo, J. Spring frosts in deciduous fruit trees—Morphological damage and flower hardiness. Sci. Hortic. 2000, 85, 155–173. [Google Scholar] [CrossRef]
- Veteto, J.R.; Carlson, S.B. Climate change and apple diversity: Local perceptions from Appalachian North Carolina. J. Ethnobiol. 2014, 34, 359–382. [Google Scholar] [CrossRef]
- Koskela, J.; Buck, A.; Cros, T. Proceedings of the conference EUFORGEN Climate Change and Forest Genetic Diversity: Implications for Sustainable Forest Management in Europe, Paris, France, 15–16 March 2006.
- Orlandi, F.; Marrapodi, S.; Proietti, C.; Ruga, L.; Fornaciari, M. Ecosystem Functions of Fruit Woody Species in an Urban Environment. Environ. Monit. Assess. 2023, 195, 118. [Google Scholar] [CrossRef] [PubMed]
- Thant, A.A.; Teutscherova, N.; Vazquez, E.; Kalousova, M.; Phyo, A.; Singh, R.K.; Lojka, B. On-farm rice diversity and farmers’ preferences for varietal attributes in Ayeyarwady Delta, Myanmar. J. Crop Improv. 2020, 34, 549–570. [Google Scholar] [CrossRef]
- Witcombe, J.R.; Hollington, P.A.; Howarth, C.J.; Reader, S.; Steele, K.A. Breeding for abiotic stresses for sustainable agriculture. Philos. Trans. R. Soc. B Biol. Sci. 2008, 363, 703–716. [Google Scholar] [CrossRef]
- Finckh, M.R.; Wolfe, M.S. Diversification strategies. In The Epidemiology of Plant Disease; Cooke, B.M., Jones, D.G., Kaye, B., Eds.; Springer: New York, NY, USA, 2006; pp. 269–308. [Google Scholar]
- Mulumba, J.V.; Nankya, R.; Adokorach, J.; Kiwuka, C.; Fadda, C.; De Santis, P.; Jarvis, D.I. A risk-minimizing argument for traditional crop varietal diversity use to reduce pest and disease damage in agricultural ecosystems of Uganda. Agric. Ecosyst. Environ. 2012, 157, 70–86. [Google Scholar] [CrossRef]
- Garrett, K.A.; Mundt, C.C. Epidemiology in mixed host populations. Phytopathology 1999, 89, 984–990. [Google Scholar] [CrossRef]
- Forsline, P.L.; Aldwinckle, H.S. Evaluation of Malus Sieversii Seedling Populations for Disease Resistance and Horticultural Traits. Acta Hortic. 2004, 663, 529–534. [Google Scholar] [CrossRef]
- Miller, D.D. Evaluation of Malus Sieversii Seedlings from Kazakhstan for Disease Resistance and Time of Leafing. Acta Hortic. 2004, 663, 535–538. [Google Scholar] [CrossRef]
- Fazio, G.; Aldwinckle, H.S.; Volk, G.M.; Richards, C.M.; Janisiewicz, W.J.; Forsline, P.L. Progress in Evaluating Malus Sieversii for Disease Resistance and Horticultural Traits. Acta Hortic. 2009, 814, 59–66. [Google Scholar] [CrossRef]
- Jurick, W.M.; Janisiewicz, W.J.; Saftner, R.A.; Vico, I.; Gaskins, V.L.; Park, E.; Forsline, P.L.; Fazio, G.; Conway, W.S. Identification of Wild Apple Germplasm (Malus Spp.) Accessions with Resistance to the Postharvest Decay Pathogens Penicillium Expansum and Colletotrichum Acutatum. Plant Breed. 2011, 130, 481–486. [Google Scholar] [CrossRef]
- Sestras, A.F.; Pamfil, D.; Dan, C.; Bolboaca, S.D.; Jäntschi, L.; Sestras, R.E. Possibilities to Improve Apple Scab (Venturia Inaequalis (Cke.) Wint.) and Powdery Mildew [Podosphaera Leucotricha (Ell. et Everh.) Salm.] Resistance on Apple by Increasing Genetic Diversity Using Potentials of Wild Species. Australlian J. Crop Sci. 2011, 5, 748–755. [Google Scholar]
- Didelot, F.; Brun, L.; Parisi, L. Effects of Cultivar Mixtures on Scab Control in Apple Orchards. Plant Pathol. 2007, 56, 1014–1022. [Google Scholar] [CrossRef]
- Demestihas, C.; Plénet, D.; Génard, M.; Raynal, C.; Lescourret, F. Ecosystem Services in Orchards. A Review. Agron. Sustain. Dev. 2017, 37, 12. [Google Scholar] [CrossRef]
- Montanaro, G.; Xiloyannis, C.; Nuzzo, V.; Dichio, B. Orchard Management, Soil Organic Carbon and Ecosystem Services in Mediterranean Fruit Tree Crops. Sci. Hortic. 2017, 217, 92–101. [Google Scholar] [CrossRef]
- Van Dusen, M.E.; Dennis, E.; Ilyasov, J.; Lee, M.; Treshkin, S.; Smale, M. Social Institutions and Seed Systems: The Diversity of Fruits and Nuts in Uzbekistan. In Valuing Crop Biodiversity: On-Farm Genetic Resources and Economic Change; Smale, M., Ed.; IPGRI: Maccarese, Italy, 2006; p. 192. ISBN 9780851990835. [Google Scholar]
- Kerven, C.; Robinson, S.; Behnke, R. Pastoralism at Scale on the Kazakh Rangelands: From Clans to Workers to Ranchers. Front. Sustain. Food Syst. 2021, 4, 590401. [Google Scholar] [CrossRef]
- Haider, L.J.; Boonstra, W.J.; Akobirshoeva, A.; Schlüter, M. Effects of development interventions on biocultural diversity: A case study from the Pamir Mountains. Agric. Hum. Values 2020, 37, 683–697. [Google Scholar] [CrossRef]
- Galluzzi, G.; Eyzaguirre, P.; Negri, V. Home Gardens: Neglected Hotspots of Agro-Biodiversity and Cultural Diversity. Biodivers. Conserv. 2010, 19, 3635–3654. [Google Scholar] [CrossRef]
- Eyzaguirre, P.B.; Linares, O.F. Home Gardens and Agrobiodiversity; Smithsonian Book: Washington, DC, USA, 2004. [Google Scholar]
- Galhena, D.H.; Freed, R.; Maredia, K.M. Home Gardens: A Promising Approach to Enhance Household Food Security and Wellbeing. Agric. Food Secur. 2013, 2, 8. [Google Scholar] [CrossRef]
- Lerman, Z.; Sedik, D. Sources of Agricultural Productivity Growth in Central Asia: The Case of Tajikistan and Uzbekistan; FAO Regional Office for Europe and Central Asia, Policy Studies on Rural Transition, No. 2009-5; FAO: Rome, Italy, 2009. [Google Scholar]
- Pushpakumara, G.; Sokolow, J.; Sthapit, B.; Sujarwo, W.; Hunter, D. Keeping It Close to Home. In Home Gardens for Improved Food Security and Livelihoods; Routledge: London, UK, 2020; pp. 46–77. ISBN 9781315471778. [Google Scholar]
Crop | Total Number of Varieties Per Crop | % Traditional Varieties (Landraces) | % Modern Varieties Bred in Central Asia Institutes | % Introduced Improved Varieties from Outside Central Asia |
---|---|---|---|---|
Almond | 11 | 91% | 9% | 0% |
Apple | 188 | 72% | 6% | 22% |
Apricot | 79 | 89% | 1% | 10% |
Cherry plum | 11 | 36% | 0% | 64% |
Currant | 7 | 86% | 14% | 0% |
Grapevine | 100 | 72% | 1% | 27% |
Pear | 47 | 74% | 4% | 21% |
Pomegranate | 29 | 86% | 0% | 14% |
Walnut | 24 | 83% | 0% | 17% |
Total number/mean % | 496 | 76% | 3% | 20% |
Coef. Estimate | Std. Error | z Value | p (>|z|) | |
---|---|---|---|---|
(Intercept) | 1.211071 | 0.263782 | 4.591 | 4.41 × 10−6 |
Management: Orchard | −0.346055 | 0.061785 | −5.601 | 2.13 × 10−8 |
Ecoregion: Badghyz and Karabil semi-desert | −0.484916 | 0.138486 | −3.502 | 0.000463 |
Ecoregion: Central Asian northern desert | 0.798726 | 0.146242 | 5.462 | 4.72 × 10−8 |
Ecoregion: Central Asian riparian woodlands | −0.624811 | 0.133364 | −4.685 | 2.80 × 10−6 |
Ecoregion: Central Asian southern desert | −0.454274 | 0.112785 | −4.028 | 5.63 × 10−5 |
Ecoregion: Gissaro-Alai open woodlands | −0.155917 | 0.096973 | −1.608 | 0.107868 |
Ecoregion: Kopet Dag semi-desert | −0.729989 | 0.193984 | −3.763 | 0.000168 |
Ecoregion: Kopet Dag woodlands and forest steppe | −0.341358 | 0.178067 | −1.917 | 0.055235 |
Ecoregion: Pamir alpine desert and tundra | 0.159150 | 0.223831 | 0.711 | 0.477066 |
Ecoregion: Tian Shan foothill arid steppe | 0.272411 | 0.130293 | 1.351 | 0.036550 |
Ecoregion: Tian Shan montane conifer forests | 0.234397 | 0.173525 | 1.526 | 0.176760 |
Abiotic stress | 0.082108 | 0.023349 | 3.517 | 0.000437 |
Ethno-linguistic group: Kyrgyz | 0.439634 | 0.161478 | 2.723 | 0.006478 |
Ethno-linguistic group: Russian | 0.261656 | 0.113879 | 2.298 | 0.021580 |
Ethno-linguistic group: Tajik | −0.009328 | 0.182743 | −0.051 | 0.959290 |
Ethno-linguistic group: Turkish | −0.077775 | 0.235427 | −0.330 | 0.741131 |
Ethno-linguistic group: Turkmen | 0.349178 | 0.459837 | 0.759 | 0.447642 |
Ethno-linguistic group: Uygur | −0.331758 | 0.169417 | −1.958 | 0.050203 |
Ethno-linguistic group: Uzbek | 0.192472 | 0.157862 | 1.219 | 0.222754 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Turdieva, M.; Bernis-Fonteneau, A.; Esenalieva, M.; Kayimov, A.; Saparmyradov, A.; Safaraliev, K.; Shalpykov, K.; Colangelo, P.; Jarvis, D.I. A Regional Perspective of Socio-Ecological Predictors for Fruit and Nut Tree Varietal Diversity Maintained by Farmer Communities in Central Asia. World 2024, 5, 22-35. https://doi.org/10.3390/world5010002
Turdieva M, Bernis-Fonteneau A, Esenalieva M, Kayimov A, Saparmyradov A, Safaraliev K, Shalpykov K, Colangelo P, Jarvis DI. A Regional Perspective of Socio-Ecological Predictors for Fruit and Nut Tree Varietal Diversity Maintained by Farmer Communities in Central Asia. World. 2024; 5(1):22-35. https://doi.org/10.3390/world5010002
Chicago/Turabian StyleTurdieva, Muhabbat, Agnès Bernis-Fonteneau, Maira Esenalieva, Abdihalil Kayimov, Ashirmuhammed Saparmyradov, Khursandi Safaraliev, Kairkul Shalpykov, Paolo Colangelo, and Devra I. Jarvis. 2024. "A Regional Perspective of Socio-Ecological Predictors for Fruit and Nut Tree Varietal Diversity Maintained by Farmer Communities in Central Asia" World 5, no. 1: 22-35. https://doi.org/10.3390/world5010002