Comparative Molecular Docking Studies of Selected Phytoconstituents on Adenosine A2A Receptor (PDB ID: 3UZA) as Potential Anti-Parkinson’s Agents †
Abstract
:1. Introduction
Phytoconstituents | Mechanism of Neuroprotective Action |
---|---|
Caffeine | Caffeine has capacity to antagonize adenosine receptors, particularly A2A receptors present in striatopallidal neurons and improves PD motor functioning [11]. |
Lenoleic acid | Antidepressant and anti-inflammatory properties, as well as increases in neuronal plasticity [12]. |
Oleic acid | Oleic acid serves as a neurotrophic factor that promotes synapse formation, axonal and dendritic growth, neuronal migration and aggregation, and the production of myelin phospholipids during brain development [13]. |
Vasicine | Effectively inhibited cholinesterases and Aβ aggregates, as well as neuroprotection activity [14]. |
Vasicinol | |
Vasicol | |
Baicalein | Baicalein has a protective effect against oxidative stress-related damage. It also suppressed cell viability loss, intracellular ROS production, and prevented the buildup of ROS [15]. |
Amentoflavone | Protects dopaminergic neurons from neurotoxicity by activating the PI3K/Akt and ERK signalling pathways, and reducing neuroinflammation in dopaminergic neurons [16]. |
Ginkgolide-B | Anti-inflammatory effects and scavenging of oxygen free radicals [17]. |
Alpha cubebene | Reduces the amyloid-induced neuroinflammatory response of microglia [18]. |
2. Material and Methods
2.1. Preparation of Ligands
2.2. Retrieval of Protein Structure and Preparation
2.3. Molecular Docking Studies
2.4. Toxiciy Study
3. Results and Discussion
Predictive Toxicity Studies
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Papagno, C.; Trojano, L. Cognitive and behavioral disorders in Parkinson’s disease: An update. I: Cognitive impairments. Neurol. Sci. 2018, 39, 215–223. [Google Scholar] [CrossRef] [PubMed]
- Schneider, S.A.; Obeso, J.A. Clinical and pathological features of Parkinson’s disease. Curr. Top. Behav. Neurosci. 2015, 22, 205–220. [Google Scholar] [PubMed]
- Goetz, C.G. The history of Parkinson’s disease: Early clinical descriptions and neurological therapies. Cold Spring Harb. Perspect. Med. 2011, 1, a008862. [Google Scholar] [CrossRef] [PubMed]
- Lees, A.J.; Hardy, J.; Revesz, T. Parkinson’s disease. Lancet 2009, 373, 2055–2066. [Google Scholar] [CrossRef] [PubMed]
- Xu, L.; Pu, J. Alpha-Synuclein in Parkinson’s Disease: From Pathogenetic Dysfunction to Potential Clinical Application. Park. Dis. 2016, 2016, 1720621. [Google Scholar] [CrossRef] [PubMed]
- DeMaagd, G.; Philip, A. Parkinson’s Disease and Its Management: Part 1: Disease Entity, Risk Factors, Pathophysiology, Clinical Presentation, and Diagnosis. Pharm. Ther. 2015, 40, 504–532. [Google Scholar]
- Groiss, S.J.; Wojtecki, L.; Südmeyer, M.; Schnitzler, A. Deep brain stimulation in Parkinson’s disease. Ther. Adv. Neurol. Disord. 2009, 2, 20–28. [Google Scholar] [CrossRef] [PubMed]
- Jankovic, J.; Aguilar, L.G. Current approaches to the treatment of Parkinson’s disease. Neuropsychiatr. Dis. Treat. 2008, 4, 743–757. [Google Scholar] [CrossRef] [PubMed]
- Khazdair, M.R.; Kianmehr, M.; Anaeigoudari, A. Effects of Medicinal Plants and Flavonoids on Parkinson’s Disease: A Review on Basic and Clinical Evidences. Adv. Pharm. Bull. 2021, 11, 224–232. [Google Scholar] [CrossRef] [PubMed]
- Rarey, M.; Kramer, B.; Lengauer, T.; Klebe, G. A fast flexible docking method using an incremental construction algorithm. J. Mol. Biol. 1996, 261, 470–489. [Google Scholar] [CrossRef] [PubMed]
- Lazarus, M.; Shen, H.Y.; Cherasse, Y.; Qu, W.M.; Huang, Z.L.; Bass, C.E.; Winsky-Sommerer, R.; Semba, K.; Fredholm, B.B.; Boison, D.; et al. Arousal effect of caffeine depends on adenosine A2A receptors in the shell of the nucleus accumbens. J. Neurosci. 2011, 31, 10067–10075. [Google Scholar] [CrossRef] [PubMed]
- Blondeau, N.; Lipsky, R.H.; Bourourou, M.; Duncan, M.W.; Gorelick, P.B.; Marini, A.M. Alpha-linolenic acid: An omega-3 fatty acid with neuroprotective properties-ready for use in the stroke clinic. Biomed. Res. Int. 2015, 2015, 519830. [Google Scholar] [CrossRef] [PubMed]
- Medina, J.M.; Tabernero, A. Astrocyte-synthesized oleic acid behaves as a neurotrophic factor for neurons. J. Physiol.-Paris 2002, 96, 265–271. [Google Scholar] [CrossRef] [PubMed]
- Roja, G.; Vikrant, B.H.; Sandur, S.K.; Sharma, A.; Pushpa, K.K. Accumulation of vasicine and vasicinone in tissue cultures of Adhatoda vasica and evaluation of the free radical-scavenging activities of the various crude extracts. Food Chem. 2011, 126, 1033–1038. [Google Scholar] [CrossRef]
- Park, C.; Choi, E.O.; Kim, G.Y.; Hwang, H.J.; Kim, B.W.; Yoo, Y.H.; Park, H.T.; Choi, Y.H. Protective Effect of Baicalein on Oxidative Stress-induced DNA Damage and Apoptosis in RT4-D6P2T Schwann Cells. Int. J. Med. Sci. 2019, 16, 8–16. [Google Scholar] [CrossRef] [PubMed]
- Cao, Q.; Qin, L.; Huang, F.; Wang, X.; Yang, L.; Shi, H.; Wu, H.; Zhang, B.; Chen, Z.; Wu, X. Amentoflavone protects dopaminergic neurons in MPTP-induced Parkinson’s disease model mice through PI3K/Akt and ERK signaling pathways. Toxicol. Appl. Pharmacol. 2017, 319, 80–90. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Zheng, T.; Hong, H.; Cai, N.; Zhou, X.; Sun, C.; Wu, L.; Liu, S.; Zhao, Y.; Zhu, L.; et al. Neuroprotective effects of Ginkgo biloba extract and Ginkgolide B against oxygen-glucose deprivation/reoxygenation and glucose injury in a new in vitro multicellular network model. Front. Med. 2018, 12, 307–318. [Google Scholar] [CrossRef] [PubMed]
- Park, S.Y.; Park, S.J.; Park, N.J.; Joo, W.H.; Lee, S.J.; Choi, Y.W. α-Iso-cubebene exerts neuroprotective effects in amyloid beta stimulated microglia activation. Neurosci. Lett. 2013, 555, 143–148. [Google Scholar] [CrossRef] [PubMed]
Docking Result | High Dock | Low Dock | High Match | Low Match |
---|---|---|---|---|
Rank | 1 | 323 | 2 | 259 |
Score | −23.118 | −2.4571 | −14.6326 | −12.4526 |
Match | 12 | 3 | 13 | 2 |
Docking Result | High Dock | Low Dock | High Match | Low Match |
---|---|---|---|---|
Rank | 1 | 177 | 36 | 174 |
Score | −21.6080 | 0.2300 | −13.9364 | −0.3296 |
Match | 17 | 11 | 22 | 5 |
Protein | Ligands | Binding Affinity (Kcal/mol) |
---|---|---|
3UZA | Levodopa | −23.118 |
Baicalein | −21.6080 | |
Caffiene | −17.9397 | |
Vasicol | −14.5378 | |
Vasicinol | −9.3958 | |
Vasicine | −8.5219 | |
Amentoflavone | −4.5378 | |
Linoleic acid | 4.2474 | |
Oleic acid | 5.1262 | |
Alpha cubebene | Not docked | |
Ginkgolide B | Not docked |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kumari, N.; Chandra, P.; Ghosh, M. Comparative Molecular Docking Studies of Selected Phytoconstituents on Adenosine A2A Receptor (PDB ID: 3UZA) as Potential Anti-Parkinson’s Agents. Chem. Proc. 2023, 14, 84. https://doi.org/10.3390/ecsoc-27-16119
Kumari N, Chandra P, Ghosh M. Comparative Molecular Docking Studies of Selected Phytoconstituents on Adenosine A2A Receptor (PDB ID: 3UZA) as Potential Anti-Parkinson’s Agents. Chemistry Proceedings. 2023; 14(1):84. https://doi.org/10.3390/ecsoc-27-16119
Chicago/Turabian StyleKumari, Namrata, Priyanka Chandra, and Manik Ghosh. 2023. "Comparative Molecular Docking Studies of Selected Phytoconstituents on Adenosine A2A Receptor (PDB ID: 3UZA) as Potential Anti-Parkinson’s Agents" Chemistry Proceedings 14, no. 1: 84. https://doi.org/10.3390/ecsoc-27-16119