Green Materials for Gel Formulation: Recent Advances, Main Features and Applications
Abstract
1. Introduction
2. Hydrogels
3. Organogels
4. Bigels
5. Concluding Remarks and Future Challenges
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Simões, C.M.O.; Schenkel, E.P.; Gosmann, G.; Auler Mentz, J.C.P.M.; Petrovick, P.R. Pharmacognosy: From Plant to Medicine (in Portuguese), 1st ed.; Editora da UFRGS/Ed. da UFSC: Florianópolis, Brazil; Editora da UFSC: Porto Alegre, Brazil, 1999. [Google Scholar]
- ABIFITO. Available online: http://www.abifito.org.br (accessed on 12 October 2022).
- Sagiri, S.S.; Behera, B.; Rafanan, R.R.; Bhattacharya, C.; Pal, K.; Banerjee, I.; Rousseau, D. Organogels as matrices for controlled drug delivery: A review on the current state. Soft Mater. 2014, 12, 47–72. [Google Scholar] [CrossRef]
- Murdan, S.; Andrysek, T.; Son, D. Novel gels and their dispersions—Oral drug delivery systems for ciclosporin. Int. J. Pharm. 2005, 300, 113–124. [Google Scholar] [CrossRef]
- Lewis, L.; Hatzikiriakos, S.G.; Hamad, W.Y.; MacLachlan, M.J. Freeze−Thaw Gelation of Cellulose Nanocrystals. ACS Macro Lett. 2019, 8, 486–491. [Google Scholar] [CrossRef] [PubMed]
- Aleman, J.; Chadwick, A.V.; He, J.; Hess, M.; Horie, K.; Jones, R.G.; Kratochvil, P.; Meisel, I.; Mita, I.; Moad, G.; et al. Definitions of terms relating to the structure and processing of sols, gels, networks, and inorganic-organic hybrid materials (IUPAC Recommendations 2007). Pure Appl. Chem. 2007, 79, 1801–1827. [Google Scholar] [CrossRef]
- Banerjee, S.; Bhattacharya, S. Food gels: Gelling process and new applications Crit. Rev. Food Sci. Nutr. 2011, 52, 334–346. [Google Scholar]
- Jastram, A.; Claus, J.; Janmey, P.A.; Kragl, U. Rheological properties of hydrogels based on ionic liquids. Polym. Test. 2021, 93, 106943. [Google Scholar] [CrossRef]
- Ract, N.R.; Cruz, R.G.; Pereira, C.G. Chapter 14—Phase Equilibrium of Organogels. In Thermodynamics of Phase Equilibria in Food Engineering; Elsevier: London, UK, 2019; pp. 563–591. [Google Scholar]
- Liu, H.; Cheng, T.; Xian, M.; Cao, Y.; Fang, F.; Zou, H. Fatty acid from the renewable sources: A promising feedstock for the production of biofuels and biobased chemicals. Biotechnol. Adv. 2014, 32, 382–389. [Google Scholar] [CrossRef]
- Biermann, U.; Bornscheuer, U.; Meier, M.A.R.; Metzger, J.O.; Schäfer, H.J. Oils and Fats as Renewable Raw Materials in Chemistry. Angew. Chem. Int. Ed. 2011, 50, 3854–3871. [Google Scholar] [CrossRef]
- Tomás-Pejó, E.; González-Fernández, C.; Greses, S.; Kennes, C.; Otero-Logilde, N.; Veiga, M.C.; Bolzenella, D.; Muller, B.; Passoth, V. Production of short-chain fatty acids (SCFAs) as chemicals or substrates for microbes to obtain biochemicals. Biotechnol. Biofuels 2023, 16, 96. [Google Scholar] [CrossRef]
- Bohidar, H.B. Dynamics in thermoreversible polymer gels. Curr. Sci. 2001, 80, 1008–1017. [Google Scholar]
- Tamayo, M.R. Using Computational Methods to Rationalize Organogel Formation. Ph.D. Thesis, Sorbonne University, Paris, France, 2021. [Google Scholar]
- Zinic, M.; Vogtle, F.; Fages, F. Top. Cholesterol-based gelators. Curr. Chem. 2005, 256, 39–76. [Google Scholar]
- Tamaru, S.; Nakamura, M.; Takeuchi, M.; Shinkai, S. Rational Design of a Sugar-Appended Porphyrin Gelator that is Forced to Assemble into a One-Dimensional Aggregate. Org. Lett. 2001, 3, 3631–3634. [Google Scholar] [CrossRef]
- Kushwaha, S.K.S.; Saxena, P.; Rai, A.K. Stimuli sensitive hydrogels for ophthalmic drug delivery: A review. Int. J. Pharm. Investig. 2012, 2, 54–60. [Google Scholar] [CrossRef]
- Cerqueira, M.A.; Valoppi, F.; Pal, K. Oleogels and Organogels: A Promising Tool for New Functionalities. Gels 2022, 8, 349. [Google Scholar] [CrossRef]
- Murata, K.; Aoki, M.; Suzuki, T.; Harafa, T.; Kawabata, H.; Komori, T.; Ohseto, F.; Ueda, K.; Shinkai, S. Thermal and light control of the sol-gel phase transition in cholesterol-based organic gels. Novel helical aggregation modes as detected by circular dichroism and electron microscopic observation. J. Am. Chem. Soc. 1994, 116, 6664–6676. [Google Scholar] [CrossRef]
- Abdallah, D.J.; Weiss, R.G. Organogels and low molecular mass organic gelators. Adv. Mater. 2000, 12, 1237–1247. [Google Scholar] [CrossRef]
- John, G.; Zhu, G.; Li, J.; Dordick, J.S. Enzymatically Derived Sugar-Containing Self-Assembled Organogels with Nanostructured Morphologies. Angew. Chem. Int. Ed. 2006, 45, 4772–4775. [Google Scholar] [CrossRef]
- Co, E.D.; Marangoni, A.G. Organogels: An alternative edible oil-structuring method. J. Am. Chem. Soc. 2012, 89, 749–780. [Google Scholar]
- Barbucci, R. Hydrogels: Biological Properties and Applications; Springer-Verlag Italia: Milan, Italy, 2009; pp. 1–179. [Google Scholar]
- Rimmer, S. Biomedical Hydrogels–Biochemistry, Manufacture and Medical Applications; Woodhead Publishing: Sawston, UK, 2011. [Google Scholar]
- Bouten, P.J.M.; Zonjee, M.; Bender, J.; Yauw, S.T.K.; van Goor, H.; van Hest, J.C.M.; Hoogenboom, R. The chemistry of tissue adhesive materials. Prog. Polym. Sci. 2014, 39, 1375–1405. [Google Scholar] [CrossRef]
- Shakeel, A.; Lupi, F.R.; Gabriele, D.; Baldino, N.; Cindio, B. Bigels: A unique class of materials for drug delivery applications. Soft Mater. 2018, 16, 77–93. [Google Scholar] [CrossRef]
- Martín-Illana, A.; Notario-Pérez, F.; Cazorla-Luna, R.; Ruiz-Caro, R.; Bonferoni, M.C.; Tamayo, A.; Veiga, M.D. Bigels as drug delivery systems: From their components to their applications. Drug Discov. Today 2022, 27, 1008–1026. [Google Scholar] [CrossRef]
- Capello, C.; Fischer, U.; Hungerbühler, K. What is a green solvent? A comprehensive framework for the environmental assessment of solvents. Green Chem. 2007, 9, 927–934. [Google Scholar] [CrossRef]
- Clarke, C.J.; Tu, W.C.; Levers, O.; Bröhl, A.; Hallett, J.P. Green and Sustainable Solvents in Chemical Processes. Chem. Rev. 2018, 118, 747–800. [Google Scholar] [CrossRef]
- IUPAC—International Union of Pure and Applied Chemistry. Sustainable Chemistry. Available online: https://iupac.org/who-we-are/committees/sustainable-chemistry/ (accessed on 4 September 2023).
- Sagiri, S.S.; Rao, K.J. Chapter 22—Natural and bioderived molecular gelator-based oleogels and their applications. In Biopolymer-Based Formulations; Elsevier: Amsterdam, The Netherlands, 2020; pp. 513–559. [Google Scholar]
- Peppas, N.A.; Bures, P.; Leobandung, W.; Ichikawa, H. Hydrogels in pharmaceutical formulations. Eur. J. Pharm. Biopharm. 2000, 50, 27–46. [Google Scholar] [CrossRef]
- Chai, Q.; Jiao, Y.; Yu, X. Hydrogels for Biomedical Applications: Their Characteristics and the Mechanisms behind Them. Gels 2017, 3, 6. [Google Scholar] [CrossRef]
- Ahmed, A.A.K.; Naik, H.S.B.; Sherigara, B.S. Synthesis and characterization of chitosan-based pH-sensitive semi-interpenetrating network microspheres for controlled release of diclofenac sodium. Carbohydr. Res. 2009, 344, 699–706. [Google Scholar] [CrossRef]
- Peppas, N.A. Physiologically Responsive Hydrogels. J. Bioact. Compat. Polym. 1991, 6, 241–246. [Google Scholar] [CrossRef]
- Mura, P.; Faucci, M.T.; Bramanti, G.; Corti, P. Evaluation of transcutol as a clonazepam transdermal permeation enhancer from hydrophilic gel formulations. Eur. J. Pharm. Sci. 2000, 9, 365–372. [Google Scholar] [CrossRef]
- Du, X.; Zhou, J.; Shi, J.; Xu, B. Supramolecular Hydrogelators and Hydrogels: From Soft Matter to Molecular Biomaterials. Chem. Rev. 2015, 115, 13165–13307. [Google Scholar] [CrossRef] [PubMed]
- Lupi, F.R.; Gentile, L.; Gabriele, D.; Mazzulla, S.; Baldino, N.; Cindio, B. Olive oil and hyperthermal water bigels for cosmetic uses. J. Colloid Interface Sci. 2015, 459, 70–78. [Google Scholar] [CrossRef] [PubMed]
- Bot, A.; Adel, R.D.; Roijers, E.C. Fibrils of γ-oryzanol + β-sitosterol in edible oil organogels. J. Am. Oil Chem. Soc. 2008, 85, 1127–1134. [Google Scholar] [CrossRef]
- Hamachi, I.; Kiyonaka, S.; Shinkai, S. Solid-phase lipid synthesis (SPLS)-2: Incidental discovery of organogelators based on artificial glycolipids. Tetrahedron Lett. 2001, 42, 6141–6145. [Google Scholar] [CrossRef]
- Behera, B.; Sagiri, S.S.; Pal, K.; Srivastava, A. Modulating the physical properties of sunflower oil and sorbitan monopalmitate-based organogels. J. Appl. Polym. Sci. 2003, 127, 4910–4917. [Google Scholar] [CrossRef]
- Hwang, H.S.; Kim, S.; Singh, M.; Winkler-Moser, J.K.; Liu, S.X. Organogel formation of soybean oil with waxes. J. Am. Oil Chem. Soc. 2011, 89, 639–647. [Google Scholar] [CrossRef]
- Rocha, J.C.B.; Lopes, J.D.; Mascarenhas, M.C.N.; Arellano, D.B.; Guerreiro, L.M.R.; Cunha, R.L.D. Thermal and rheological properties of organogels formed by sugarcane or candelilla wax in soybean oil. Food Res. Int. 2013, 50, 318–323. [Google Scholar] [CrossRef]
- Teramoto, N.; Shibata, M.; Synthesis and properties of pullulan acetate. Thermal properties, biodegradability, and a semi-clear gel formation in organic solvents. Carbohydr. Polym. 2006, 63, 476–481. [Google Scholar] [CrossRef]
- Mitra, A.; Sarkar, V.; Mukhopadhyay, B. Simple carbohydrate-derived multifunctional gels. ChemistrySelect 2017, 2, 9958–9961. [Google Scholar] [CrossRef]
- Patel, A.R.; Babaahmadi, M.; Lesaffer, A.; Dewettinck, K. Rheological profiling of organogels prepared at critical gelling concentrations of natural waxes in a triacylglycerol solvent. J. Agric. Food Chem. 2015, 63, 4862–4869. [Google Scholar] [CrossRef] [PubMed]
- Mandua, C.; Barrera-Arellano, D.; Santana, M.; Fernandes, G. Waxes used as structuring agents for food organogels: A review. Grasas Aceites 2000, 71, e344. [Google Scholar] [CrossRef]
- Cui, J.; Zheng, Y.; Shen, Z.; Wan, X. Alkoxy tail length dependence of gelation ability and supramolecular chirality of sugar-appended organogelators. Langmuir 2010, 26, 15508–15515. [Google Scholar] [CrossRef] [PubMed]
- Cui, J.; Liu, A.; Guan, Y.; Zheng, J.; Shen, Z.; Wan, X. Tuning the helicity of self-assembled structure of a sugar-based organogelator by the proper choice of cooling rate. Langmuir 2010, 26, 3615–3622. [Google Scholar] [CrossRef] [PubMed]
- Prathap, A.; Sureshan, K.M. Sugar-based organogelators for various applications. Langmuir 2019, 35, 6005–6014. [Google Scholar] [CrossRef] [PubMed]
- Wyne, A.; Whitefield, M.; Dixon, A.; Anderson, S. An effective, cosmetically acceptable, novel hydro-gel emollient for the management of dry skin conditions. J. Dermatol. Treat. 2002, 13, 61–66. [Google Scholar] [CrossRef]
- Matheson, A.B.; Koutsos, V.; Dalkas, G.; Euston, S.; Clegg, P. Microstructure of β-sitosterol:γ-oryzanol edible organogels. Langmuir 2017, 33, 4537–4542. [Google Scholar] [CrossRef]
- Truong, T.; Prakash, S.; Bhandari, B. Effects of crystallisation of native phytosterols and monoacylglycerols on foaming properties of whipped oleogels. Food Chem. 2019, 285, 86–93. [Google Scholar] [CrossRef]
- Tempestini, E.; Bucci, M.; Mastromartino, V.; Gori, M.; Tanini, D.; Ambrosi, M.; Fratini, E.; Capperucci, A.; Lo Nostro, P. Organogels from double-chained vitamin C amphiphilic derivatives. ChemPhysChem 2017, 18, 1400–1406. [Google Scholar] [CrossRef]
- Nostro, P.L.; Ramsch, R.; Fratini, E.; Lagi, M.; Ridi, F.; Carretti, E.; Ambrosi, M.; Ninham, B.W.; Baglioni, P. Organogels from a vitamin C-based surfactant. J. Phys. Chem. B 2007, 111, 11714–11721. [Google Scholar] [CrossRef]
- Biswas, G.; Moon, H.J.; Boraty´nski, P.; Jeong, B.; Kwon, Y.U. Structural sensitivity of peptoid-based low molecular mass organogelator. Mater. Des. 2016, 108, 659–665. [Google Scholar] [CrossRef]
- Schaink, H.; Van Malssen, K.; Morgado-Alves, S.; Kalnin, D.; Van der Linden, E. Crystal network for edible oil organogels: Possibilities and limitations of the fatty acid and fatty alcohol systems. Food Res. Int. 2007, 40, 1185–1193. [Google Scholar] [CrossRef]
- Sawalha, H.; Venema, P.; Bot, A.; Flöter, E.; van der Linden, E. The Influence of Concentration and Temperature on the Formation of ¿-Oryzanol + ß-Sitosterol Tubules in Edible Oil Organogels. Food Biophys. 2011, 6, 20–25. [Google Scholar] [CrossRef]
- Rehman, K.; Amin, M.C.I.M.; Zulfakar, M.H. Development and physical characterization of polymer-fish oil bigel (hydrogel/oleogel) system as a transdermal drug delivery vehicle. J. Oleo Sci. 2014, 63, 961–970. [Google Scholar] [CrossRef]
- Behera, B.; Sagiri, S.S.; Pal, K.; Pramanik, K.; Rana, U.A.; Shakir, I.; Anis, A. Sunflower Oil and Protein-based Novel Bigels as Matrices for Drug Delivery Applications-Characterization and in vitro Antimicrobial Efficiency. Polym. Plast. Technol. Eng. 2015, 54, 837–850. [Google Scholar] [CrossRef]
- Leal-Calderon, F.; Schmitt, V. Solid-stabilized emulsions. Curr. Opin. Colloid Interface Sci. 2008, 13, 217–227. [Google Scholar] [CrossRef]
- Charyulu, R.N.; Muaralidharan, A.; Sandeep, D.S. Design and evaluation of bigels containing flurbiprofen. Res. J. Pharm. Technol. 2018, 11, 143–152. [Google Scholar] [CrossRef]
- Behera, B.; Sagiri, S.S.; Singh, V.K.; Pal, K.; Anis, A. Mechanical properties and delivery of drug/probiotics from starch and non-starch based novel bigels: A comparative study. Starch Starke 2014, 66, 865–879. [Google Scholar] [CrossRef]
- Ibrahim, M.M.; Hafez, S.A.; Mahdy, M.M. Organogels, hydrogels and bigels as transdermal delivery systems for diltiazem hydrochloride. Asian J. Pharm. Sci. 2013, 8, 48–57. [Google Scholar] [CrossRef]
- Shakeel, A.; Farooq, U.; Iqbal, T.; Yasin, S.; Lupi, F.R.; Gabriele, D. Key Characteristics and Modelling of Bigels Systems: A Review. Mater. Sci. Eng. C 2019, 97, 932–953. [Google Scholar] [CrossRef]
- Andonova, V.; Peneva, P.; Georgiev, G.S.; Toncheva, V.T.; Apostolova, E.; Peychev, Z.; Dimitrova, S.; Katsarova, M.; Petrova, N.; Kassarova, M. Ketoprofenloaded polymer carriers in bigel formulation: An approach to enhancing drug photostability in topical application forms. Int. J. Nanomed. 2017, 12, 6221–6238. [Google Scholar] [CrossRef]
- Singh, V.K.; Banerjee, I.; Agarwal, T.; Pramanik, K.; Bhattacharya, M.K.; Pal, K. Guar gum and sesame oil based novel bigels for controlled drug delivery. Colloids Surf. B 2014, 123, 582–592. [Google Scholar] [CrossRef] [PubMed]
- Andonova, V.Y.; Peneva, P.T.; Apostolova, E.G.; Dimcgeva, T.D.; Peychev, Z.L.; Kassarova, M.I. Carbopol hydrogel/sorbitan monostearate-almond oil based organogel biphasic formulations: Preparation and characterization of the bigels. Trop. J. Pharm. Res. 2017, 16, 1455–1463. [Google Scholar] [CrossRef]
- Lupi, F.R.; Shakeel, A.; Greco, V.; Oliviero Rossi, C.; Baldino, N.; Gabriele, D. A Rheological and Microstructural Characterisation of Bigels for Cosmetic and Pharmaceutical Uses. Mater. Sci. Eng. C 2016, 69, 358–365. [Google Scholar] [CrossRef] [PubMed]
- Rehman, K.; Zulfakar, M.H. Recent advances in gel technologies for topical and transdermal drug delivery. Drug Dev. Ind. Pharm. 2014, 40, 433–440. [Google Scholar] [CrossRef] [PubMed]
- Di Michele, L.; Fiocco, D.; Varrato, F.; Sastry, S.; Eiser, E.; Foffi, G. Aggregation dynamics, structure, and mechanical properties of bigels. Soft Matter 2014, 10, 3633–3648. [Google Scholar] [CrossRef] [PubMed]
- Almeida, I.F.; Fernandes, A.R.; Fernandes, L.; Ferreira, M.R.; Costa, P.C.; Bahia, M.F. Moisturizing effect of oleogel/hydrogel mixtures. Pharm. Dev. Technol. 2008, 13, 487–494. [Google Scholar] [CrossRef] [PubMed]
- Blumlein, A.; McManus, J.J. Bigels formed via spinodal decomposition of unfolded protein. J. Mater. Chem. B 2015, 3, 3429–3435. [Google Scholar] [CrossRef] [PubMed]
- Singh, V.K.; Anis, A.; Banerjee, I.; Pramanik, K.; Bhattacharya, M.K.; Pal, K. Preparation and characterization of novel carbopol based bigels for topical delivery of metronidazole for the treatment of bacterial vaginosis. Mater. Sci. Eng. C 2014, 44, 151–158. [Google Scholar] [CrossRef]
- Hoffman, A.S. Hydrogels for biomedical applications. Adv. Drug Deliv. Rev. 2002, 43, 3–12. [Google Scholar] [CrossRef]
- Zhu, Z.; Guan, Z.; Jia, S.; Lei, Z.; Lin, S.; Zhang, H.; Ma, Y.; Tian, Z.Q.; Yang, C.J. Au@Pt nanoparticle encapsulated target-responsive hydrogel with volumetric bar-chart chip readout for quantitative point-of-care testing. Angew. Chem. Int. Ed. 2014, 53, 12503–12507. [Google Scholar] [CrossRef]
- Jin, Z.; Liu, X.; Duan, S.; Yu, X.; Huang, Y.; Hayat, T.; Li, J. The adsorption of Eu(III) on carbonaceous nanofibers: Batch experiments and modeling study. J. Mol. Liq. 2016, 222, 456–462. [Google Scholar] [CrossRef]
- Pan, G.; Guo, Q.; Ma, Y.; Yang, H.; Li, B. Thermo-responsive hydrogel layers imprinted with RGDS peptide: A system for harvesting cell sheets. Angew. Chem. Int. Ed. 2013, 52, 6907–6911. [Google Scholar] [CrossRef]
- Ishihara, K.; Kobayashi, M.; Ishimaru, N.; Sinohara, I. Glucose Induced Permeation Control of Insulin through a Complex Membrane Consisting of Immobilized Glucose Oxidase and a Poly(amine). Polym. J. 1984, 16, 625–631. [Google Scholar] [CrossRef]
- Hoffman, A.S. Applications of thermally reversible polymers and hydrogels in therapeutics and diagnostics. J. Control. Release 1987, 6, 297–305. [Google Scholar] [CrossRef]
- Tanaka, T. Phase transitions in gels and a single polymer. Polymer 1979, 20, 1404–1412. [Google Scholar] [CrossRef]
- Dong, L.C.; Hoffman, A.S. Reversible Polymer Gels and Related Systems; Russo, P.S., Ed.; ACS Symposium Series; American Chemical Society: Washington, DC, USA, 1987; Volume 350, pp. 236–244. [Google Scholar]
- Monji, N.; Hoffman, A.S. A novel immuno assay system and bioseparation process based on thermal phase separating polymers. Appl. Biochem. Biotechnol. 1987, 14, 107–120. [Google Scholar] [CrossRef] [PubMed]
- Park, T.G.; Hoffman, A.S. Immobilization and characterization of beta-galactosidase in thermally reversible hydrogel beads. J. Biomed. Mater. Res. 1990, 24, 21–38. [Google Scholar] [CrossRef] [PubMed]
- Brannon-Peppas, L.; Peppas, N.A. Solute and penetrant diffusion in swellable polymers. IX. The mechanisms of drug release from ph-sensitive swelling-controlled systems. J. Control. Release 1989, 8, 267–274. [Google Scholar] [CrossRef]
- Ding, R.; Yu, X.; Wang, P.; Zhang, J.; Zhou, Y.; Cao, X.; Tang, H.; Ayres, N.; Zhang, P. Hybrid photosensitizer based on amphiphilic block copolymer stabilized silver nanoparticles for highly efficient photodynamic inactivation of bacteria. RSC Adv. 2016, 6, 20392–20398. [Google Scholar] [CrossRef]
- Tirrell, D.A. Macromolecular switches for bilayer membranes. J. Control. Release 1987, 6, 15–21. [Google Scholar] [CrossRef]
- Pan, L.; Yu, G.; Zhai, D.; Lee, H.R.; Zhao, W.; Liu, N.; Wang, H.; Tee, B.C.K.; Shi, Y.; Cui, Y.; et al. Hierarchical nanostructured conducting polymer hydrogel with high electrochemical activity. Proc. Natl. Acad. Sci. USA 2012, 109, 9287–9292. [Google Scholar] [CrossRef]
- Zhai, D.; Liu, B.; Shi, Y.; Pan, L.; Wang, Y.; Li, W.; Zhang, R.; Yu, G. Highly sensitive glucose sensor based on Pt nanoparticle/polyaniline hydrogel heterostructures. ACS Nano 2013, 7, 3540–3546. [Google Scholar] [CrossRef]
- Chen, C.; Vassallo, J.C.; Chatterjee, P.K. Absorbency; Chatterjee, P.K., Ed.; Elsevier: New York, NY, USA, 1985; pp. 257–281. [Google Scholar]
- Li, L.; Wang, Y.; Pan, L.; Shi, Y.; Cheng, W.; Shi, Y.; Yu, G. A nanostructured conductive hydrogels-based biosensor platform for human metabolite detection. Nano Lett. 2015, 15, 1146–1151. [Google Scholar] [CrossRef] [PubMed]
- Caló, E.; Khutoryanskiy, V.V. Biomedical applications of hydrogels: A review of patents and commercial products. Eur. Polym. J. 2015, 65, 252–267. [Google Scholar] [CrossRef]
- Esposito, C.L.; Kirilov, P.; Roullin, V.G. Organogels, promising drug delivery systems: An update of state-of-the-art and recent applications. J. Control. Release 2018, 271, 1–20. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Chi, J.; Xu, P.; Dong, X.; Le, A.T.; Shi, K.; Liu, Y.; Xiao, J. Supramolecular G-quadruplex hydrogels: Bridging fabrication to biomedical application. J. Mater. Sci. Technol. 2023, 155, 238–252. [Google Scholar] [CrossRef]
- Ren, X.; Wang, N.; Zhou, Y.; Song, A.; Jin, G.; Li, Z.; Luan, Y. An injectable hydrogel using an immunomodulating gelator for amplified tumor immunotherapy by blocking the arginase pathway. Acta Biomater. 2021, 124, 179–190. [Google Scholar] [CrossRef] [PubMed]
- Yu, J.Y.; Moon, S.E.; Kim, J.H.; Kang, S.M. Ultrasensitive and Highly Stretchable Multiple-Crosslinked Ionic Hydrogel Sensors with Long-Term Stability. Nano-Micro Lett. 2023, 15, 51. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Jiang, Z.; Lin, Y.; Yu, C.; Nie, X.; Xu, G.; Xu, W.; Jiang, Y.; Luan, Y. Tumor lysates-constructed hydrogel to potentiate tumor immunotherapy. J. Control. Release 2023, 358, 345–357. [Google Scholar] [CrossRef]
- Mitura, S.; Sionkowska, A.; Jaiswal, A. Biopolymers for hydrogels in cosmetics: Review. J. Mater. Sci. Mater. Med. 2020, 31, 50. [Google Scholar] [CrossRef]
- Matricardi, P.; Di Meo, C.; Coviello, T.; Hennink, W.; Alhaique, F. Interpenetrating Polymer Networks polysaccharide hydrogels for drug delivery and tissue engineering. Adv. Drug Deliv. Rev. 2013, 65, 1172–1187. [Google Scholar] [CrossRef]
- Dattilo, M.; Patitucci, F.; Prete, S.; Parisi, O.I.; Puoci, F. Polysaccharide-Based Hydrogels and Their Application as Drug Delivery Systems in Cancer Treatment: A Review. J. Funct. Biomater. 2023, 14, 55. [Google Scholar] [CrossRef]
- Singh, B.; Chauhan, N. Dietary fiber psyllium based hydrogels for use in insulin delivery. Int. J. Diab. Mellitus. 2010, 2, 32–37. [Google Scholar] [CrossRef][Green Version]
- Schmaljohann, D. Thermo- and pH-responsive polymers in drug delivery. Adv. Drug Deliv. Rev. 2006, 58, 1655–1670. [Google Scholar] [CrossRef] [PubMed]
- Schoener, C.A.; Hutson, H.N.; Peppas, N.A. pH-responsive hydrogels with dispersed hydrophobic nanoparticles for the oral delivery of chemotherapeutics. J. Biomed. Mater. Res. A 2013, 101A, 2229–2236. [Google Scholar] [CrossRef] [PubMed]
- Niemczyk-Soczynska, B.; Gradys, A.; Kolbuk, D.; Krzton-Maziopa, A.; Rogujski, P.; Stanaszek, L.; Lukomska, B.; Sajkiewicz, P. A methylcellulose/agarose hydrogel as an innovative scaffold for tissue engineering. RSC Adv. 2022, 12, 26882–26894. [Google Scholar] [CrossRef] [PubMed]
- Lin, Z.; Xie, W.; Cui, Z.; Huang, J.; Cao, H.; Li, Y. 3D printed alginate/gelatin-based porous hydrogel scaffolds to improve diabetic wound healing. Giant 2023, 16, 10018. [Google Scholar] [CrossRef]
- Zhao, M.; Xu, R.; Yang, Y.; Tong, L.; Liang, J.; Jiang, Q.; Fan, Y.; Zhang, X.; Sun, Y. Bioabsorbable nano-micelle hybridized hydrogel scaffold prevents postoperative melanoma recurrence. J. Control. Release 2023, 356, 219–231. [Google Scholar] [CrossRef]
- Aldhaher, A.; Shahabipour, F.; Shaito, A.; Al-Assaf, S.; Elnour, A.A.M.; Sallam, E.E.; Teimourtash, S.; Elfadil, A.A. 3D hydrogel/ bioactive glass scaffolds in bone tissue engineering: Status and future opportunities. Heliyon 2023, 9, e17050. [Google Scholar] [CrossRef]
- Yan, M.; Wang, L.; Wu, Y.; Wang, L.; Lu, Y. Three-dimensional highly porous hydrogel scaffold for neural circuit dissection and modulation. Acta Biomater. 2023, 157, 252–262. [Google Scholar] [CrossRef]
- Ismail, Y.A.; Shabeeba, A.K.; Sidheekha, M.P.; Rajan, L. Chapter 9: Conducting polymer/hydrogel systems as soft actuators. In Actuators: Fundamentals, Principles, Materials and Applications; Inamuddin, I., Boddula, R., Asiri, A.M., Eds.; Scrivener Publishing LLC: Beverly, MA, USA, 2020; pp. 211–252. [Google Scholar]
- Liu, J.; He, S.; Liu, Z.; Wu, X.; Liu, J.; Shao, W. Novel multi-responsive soft actuator assembled with a graphene oxide nanoribbons doped strain hydrogel sensor with high sensitive and NIR-triggered performances. Sens. Actuators B Chem. 2023, 393, 15–134217. [Google Scholar] [CrossRef]
- Chen, Z.; Wang, H.; Cao, Y.; Chen, Y.; Akkus, O.; Liu, H.; Cao, C. Bio-inspired anisotropic hydrogels and their applications in soft actuators and robots. Matter 2023, 6, 3803–3837. [Google Scholar] [CrossRef]
- Liu, Q.; Wang, X.; Hou, Y.; Cheng, Y.; Zhang, J.; Xiao, L.; Zhao, J.; Li, W. Bio-inspired hydrogel actuator with rapid self-strengthening behavior. Eur. Polym. J. 2023, 188, 111941. [Google Scholar] [CrossRef]
- Li, W.; Guan, Q.; Li, M.; Saiz, E.; Hou, X. Nature-inspired strategies for the synthesis of hydrogel actuators and their applications. Prog. Polym. Sci. 2023, 140, 101665. [Google Scholar] [CrossRef]
- Jing, Y.; Wang, A.; Li, J.; Li, Q.; Han, Q.; Zheng, X.; Cao, H.; Bai, S. Preparation of conductive and transparent dipeptide hydrogels for wearable biosensor. Bio-Des. Manuf. 2022, 5, 153–162. [Google Scholar] [CrossRef]
- Barhoum, A.; Sadak, O.; Ramirez, I.A.; Iverson, N. Stimuli-bioresponsive hydrogels as new generation materials for implantable, wearable, and disposable biosensors for medical diagnostics: Principles, opportunities, and challenges. Adv. Colloid Interface Sci. 2023, 317, 102920. [Google Scholar] [CrossRef] [PubMed]
- Shi, Y.; Wang, W.; Lei, Z.; Wang, W.; Yu, D. A transparent, anti-fatigue, flexible multifunctional hydrogel with self-adhesion and conductivity for biosensors. Polymer 2023, 281, 126121. [Google Scholar] [CrossRef]
- Wang, Q.; Jiao, C.; Wang, X.; Wang, Y.; Sun, K.; Li, L.; Fan, Y.; Hu, L. A hydrogel-based biosensor for stable detection of glucose. Biosens. Bioelectr. 2023, 221, 114908. [Google Scholar] [CrossRef] [PubMed]
- Jeong, Y.; Kong, W.; Lu, T.; Irudayaraj, J. Soft hydrogel-shell confinement systems as bacteria-based bioactuators and biosensors. Biosens. Bioelectr. 2023, 219, 114809. [Google Scholar] [CrossRef] [PubMed]
- Gao, Y.; Li, X.; Serpe, M.J. Stimuli-responsive microgel-based etalons for optical sensing. RSC Adv. 2015, 5, 44074–44087. [Google Scholar] [CrossRef]
- Narayanaswamy, R.; Torchilin, V.P. Hydrogels and their applications in targeted drug delivery. Molecules 2019, 24, 603. [Google Scholar] [CrossRef]
- Gong, Q.; Zhao, Y.; Qian, T.; Wang, H.; Li, Z. Functionalized hydrogels in ophthalmic applications: Ocular inflammation, corneal injuries, vitreous substitutes and intravitreal injection. Mater. Des. 2022, 224, 111277. [Google Scholar] [CrossRef]
- Long, L.; Ge, Z.; Zhang, F.; Dong, R.; Yang, L.; Chen, Z.; Tang, S.; Wang, Y. Development of injectable hyaluronic acid-based hydrogels with antioxidant activity for the treatment of corneal neovascularization. Chem. Eng. J. 2023, 478, 147147. [Google Scholar] [CrossRef]
- Zhang, K.; Liu, Y.; Shi, X.; Zhang, R.; He, Y.; Zhang, H.; Wang, W. Application of polyvinyl alcohol/chitosan copolymer hydrogels in biomedicine: A review. Int. J. Biol. Macrom. 2023, 242, 125192. [Google Scholar] [CrossRef] [PubMed]
- Alexander, A.; Ajazuddin; Khan, J.; Saraf, A.; Saraf, S. Polyethylene glycol (PEG)-Poly(N-isopropylacrylamide) (PNIPAAm) based thermosensitive injectable hydrogels for biomedical applications. Eur. J. Pharm. Biopharm. 2014, 88, 575–585. [Google Scholar] [CrossRef] [PubMed]
- Aminabhavi, T.M.; Nadagouda, M.N.; More, U.A.; Joshi, S.D.; Kularni, V.H.; Noolvi, M.N.; Kulkarni, P.V. Controlled release of therapeutics using interpenetrating polymeric network. Expert Opin. Drug Deliv. 2015, 12, 669–688. [Google Scholar] [CrossRef]
- Singh, B.; Kumar, R.; Kumar, S.; Thakur, N.; Ram, K. Design of polysaccharide gum based network copolymeric hydrogels for drug delivery and wound dressing applications. Med. Nov. Technol. Devices 2023, 20, 100262. [Google Scholar] [CrossRef]
- Singh, B.; Singh, J.; Sharma, V.; Sharma, P.; Kumar, R. Functionalization of bioactive moringa gum for designing hydrogel wound dressings. Hybrid Adv. 2023, 4, 100096. [Google Scholar] [CrossRef]
- Zong, Q.; Peng, X.; Ding, Y.; Wu, H.; Lu, C.; Ye, J.; Sun, W.; Zhang, J.; Zhai, Y. Multifunctional hydrogel wound dressing with rapid on-demand degradation property based on aliphatic polycarbonate and chitosan. Int. J. Biol. Macromol. 2023, 244, 125138. [Google Scholar] [CrossRef]
- Meng, L.; Meng, P.; Tang, B.; Zhang, Q.; Wang, Y. Water-compatible molecularly imprinted photonic hydrogels for fast screening of morphine in urine. Chin. J. Anal. Chem. 2015, 43, 490–496. [Google Scholar]
- Lorenzo, R.A.; Carro, A.M.; Concheiro, A.; Alvarez-Lorenzo, C. Stimuli-responsive materials in analytical separation. Anal. Bioanal. Chem. 2015, 407, 4927–4948. [Google Scholar] [CrossRef]
- Kamath, K.R.; Park, K. Biodegradable hydrogels in drug delivery. Adv. Drug Deliv. Rev. 1993, 11, 59–84. [Google Scholar] [CrossRef]
- Li, J.; Jia, X.; Yin, L. Hydrogel: Diversity of Structures and Applications in Food Science. Food Rev. Int. 2021, 37, 313–372. [Google Scholar] [CrossRef]
- Pernetti, M.; Malssen, K.F.; Floten, E.; Bot, A. Structuring of edible oils by alternatives to crystalline fat. Curr. Opin. Colloid Interface Sci. 2007, 12, 221–231. [Google Scholar] [CrossRef]
- Weng, L.; Gouldstone, A.; Wu, Y.; Chen, W. Mechanically strong double network photo cross linked hydrogels from N, N-dimethylacrylamide and glycidyl methacrylated hyaluronan. Biomaterial 2008, 29, 2153–2163. [Google Scholar] [CrossRef] [PubMed]
- Moura, M.R.; Aouada, F.A.; Guilherme, M.R.; Radovanovic, E.; Rubira, A.F.; Muniz, E.C. Thermo-sensitive IPN hydrogels composed of PNIPAAm gels supported on alginate-Ca2+ with LCST tailored close to human body temperature. Polym. Test. 2006, 25, 961–969. [Google Scholar] [CrossRef]
- Moura, M.R.; Guilherme, M.R.; Campese, G.M.; Radovanovic, E.; Rubira, A.F.; Muniz, E.C. Porous alginate-Ca2+ hydrogels interpenetrated with PNIPAAm networks: Interrelationship between compressive stress and pore morphology. Eur. Polym. J. 2005, 41, 2845–2852. [Google Scholar] [CrossRef]
- Carvalho, I.C.; Mansur, H.S.; Leonel, A.G.; Mansur, A.A.P.; Lobato, Z.I.P. Soft matter polysaccharide-based hydrogels as versatile bioengineered platforms for brain tissue repair and regeneration. Int. J. Biol. Macromol. 2021, 182, 1091–1111. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Li, A.; Li, D.; Guo, Y.; Sun, L. Applications of mixed polysaccharide-protein systems in fabricating multi-structures of binary food gels—A review. Trends Food Sci. Technol. 2021, 109, 197–210. [Google Scholar] [CrossRef]
- Gronwald, O.; Shinkai, S. Sugar-Integrated Gelators of Organic Solvents. Chem. Eur. J. 2001, 7, 4328–4334. [Google Scholar] [CrossRef]
- Alsaab, H.; Bonam, S.P.; Bahl, D.; Chowdhury, P.; Alexander, K.; Boddu, S.H.S. Organogels in Drug Delivery: A Special Emphasis on Pluronic Lecithin Organogels. J. Pharm. Pharm. Sci. 2016, 19, 252–273. [Google Scholar] [CrossRef]
- Terech, P.; Weiss, R.G. Low molecular mass gelators of organic liquids and properties of their gels. Chem. Rev. 1997, 97, 3133–3159. [Google Scholar] [CrossRef]
- Van, E.J.H.; Feringa, B.L. New functional materials based on self assembling organogels: From serendipity towards design. Angew. Chem. Int. Ed. 2000, 39, 2263–2266. [Google Scholar]
- Abdallah, D.J.; Weiss, R.G. n-Alkanes gel n-alkanes (and many other organic liquids). Langmuir 2000, 16, 352–355. [Google Scholar] [CrossRef]
- Vintiloiu, A.; Leroux, J.C. Organogels and their use in drug delivery—A review. J. Control. Release 2008, 125, 179–192. [Google Scholar] [CrossRef] [PubMed]
- Sahoo, S.; Kumar, N.; Bhattacharya, C.; Sagiri, S.S.; Jain, K.; Pal, K.; Ray, S.S.; Nayak, B. Organogels: Properties and Applications in Drug Delivery. Des. Monomers Polym. 2011, 14, 95–108. [Google Scholar] [CrossRef]
- Ogutcu, M.; Yilmaz, E. Oleogels of virgin olive oil with carnauba wax and monoglyceride as spreadable products. Grasas Aceites 2014, 65, e040. [Google Scholar]
- Bemer, H.L.; Limbaugh, M.; Cramer, E.D.; Harper, W.J.; Maleky, F. Vegetable organogels incorporation in cream cheese products. Food Res. Int. 2016, 85, 67–75. [Google Scholar] [CrossRef]
- Han, L.; Li, L.; Li, L.; Zhao, L.; Liu, G.Q.; Liu, X.; Wang, X. Structure and physical properties of organogels developed by sitosterol and lecithin with sunflower oil. J. Am. Oil Chem. Soc. 2014, 91, 1783–1792. [Google Scholar] [CrossRef]
- Patel, A.R.; Rajarethinem, P.S.; Gredowska, A.; Turhan, O.; Lesaffer, A.; De Vos, W.H.; Van de Walle, D.; Dewettinck, K. Edible applications of shellac oleogels: Spreads, chocolate paste and cakes. Food Funct. 2014, 5, 645–652. [Google Scholar] [CrossRef]
- Tzankov, B.; Voycheva, C.; Tosheva, A.; Stefanova, D.; Tzankova, V.; Spassova, I.; Kovacheva, D.; Avramova, K.; Tzankova, D.; Yoncheva, K. Novel oleogels for topical delivery of quercetin based on mesoporous silica MCM-41 and HMS particles. J. Drug Deliv. Sci. Technol. 2023, 86, 104727. [Google Scholar] [CrossRef]
- Wang, S.; Chen, K.; Liu, G. Monoglyceride oleogels for lipophilic bioactive delivery—Influence of self-assembled structures on stability and in vitro bioaccessibility of astaxanthin. Food Chem. 2022, 375, 131880. [Google Scholar] [CrossRef]
- Mahler, P.; Mahler, F.; Duruz, H.; Ramazzina, M.; Liguori, V.; Mautone, G. Double-blind, randomized, controlled study on the efficacy and safety of a novel diclofenac epolamine gel formulated with lecithin for the treatment of sprains, strains and contusions. Drugs Exp. Clin. Res. 2003, 29, 45–52. [Google Scholar] [PubMed]
- Martinez, R.M.; Rosado, C.; Velasco, M.V.R.; Lannes, S.C.S.; Baby, A.R. Main features and applications of organogels in cosmetics. Int. J. Cosmetic Sci. 2019, 41, 109–117. [Google Scholar] [CrossRef] [PubMed]
- Sansón, M.D.S. Development of Oils Based on High Oleic Sunflower Oil Structured by Sorbitan Monostearate and Candelilla Wax. Master’s Thesis, University of São Paulo, São Paulo, Brazil, 2019. (In Portuguese). [Google Scholar]
- Botega, D.C.Z. Development of Organogels for Application in Cold Emulsions for Cosmetic Products. Ph.D. Thesis, Estadual Univserity of Campinas, Campinas, Brazil, 2018. (In Portuguese). [Google Scholar]
- Yu, H.; Shi, K.; Liu, D.; Huang, Q. Development of a food-grade organogel with high bioaccessibility and loading of curcuminoids. Food Chem. 2012, 131, 48–54. [Google Scholar] [CrossRef]
- Kamali, E.; Sahari, M.A.; Barzegar, M.; Gavlighi, H.A. Novel oleogel formulation based on amaranth oil: Physicochemical characterization. Food Sci. Nutr. 2019, 7, 1986–1996. [Google Scholar] [CrossRef] [PubMed]
- Kim, M.; Hwang, H.S.; Jeong, S.; Lee, S. Utilization of oleogels with binary oleogelator blends for filling creams low in saturated fat. LWT 2022, 155, 112972. [Google Scholar] [CrossRef]
- O’Sullivan, C.M.; Davidovich-Pinhas, M.; Wright, A.J.; Barbut, S.; Marangoni, A.G. Ethylcellulose oleogels for lipophilic bioactive delivery—effect of oleogelation on in vitro bioaccessibility and stability of beta-carotene. Food Funct. 2017, 8, 1438–1451. [Google Scholar] [CrossRef] [PubMed]
- Oh, I.; Lee, J.; Lee, H.G.; Lee, S. Feasibility of hydroxypropyl methylcellulose oleogel as an animal fat replacer for meat patties. Food Res. Int. 2019, 122, 566–572. [Google Scholar] [CrossRef]
- Wei, G.; Xiao-lu, G.; Hai-bo, H.; Xiang, L.; Yu, X.; Jiang-Ning, H. Structural characterization of modified whey protein isolates using cold plasma treatment and its applications in emulsion oleogels. Food Chem. 2021, 356, 129703. [Google Scholar]
- Al-Saedi, Z.H.F.; Salih, Z.T.; Ahmed, K.K.; Ahmed, R.A.; Jasim, S.A. Formulation and Characterization of Oleogel as a Topical Carrier of Azithromycin. AAPS Pharm. Sci. Technol. 2023, 24, 17. [Google Scholar] [CrossRef]
- Shuai, X.; McClements, D.J.; Geng, Q.; Dai, T.; Ruan, R.; Du, L.; Liu, Y.; Chen, J. Macadamia oil-based oleogels as cocoa butter alternatives: Physical properties, oxidative stability, lipolysis, and application. Food Res. Int. 2023, 172, 113098. [Google Scholar] [CrossRef]
- Suriaini, N.; Arpi, N.; Syamsuddin, Y.; Supardan, M.D. Characteristics of palm oil-based oleogel and its potency as a shortening replacer. S. Afr. J. Chem. Eng. 2023, 43, 197–203. [Google Scholar] [CrossRef]
- Silva-Avellaneda, E.; Bauer-Estrada, K.; Prieto-Correa, R.E.; Quintanilla-Carvajal, M.X. The effect of composition, microfluidization and process parameters on formation of oleogels for ice cream applications. Sci. Rep. 2021, 11, 7161. [Google Scholar] [CrossRef] [PubMed]
- Shi, R.; Zhang, Q.; Vriesekoop, F.; Yuan, Q.; Liang, H. Preparation of Organogel with Tea Polyphenols Complex for Enhancing the Antioxidation Properties of Edible Oil. J. Agric. Food Chem. 2014, 62, 8379–8384. [Google Scholar] [CrossRef] [PubMed]
- Thakur, D.; Singh, A.; Prabhakar, P.K.; Meghwal, M.; Upadhyay, A. Optimization and characterization of soybean oil-carnauba wax oleogel. LWT 2022, 157, 113108. [Google Scholar] [CrossRef]
- Gravelle, A.J.; Davidovich-Pinhas, M.; Zetzl, A.K.; Barbut, S.; Marangoni, A.G. Influence of solvent quality on the mechanical strength of ethylcellulose oleogels. Carbohydr. Polym. 2016, 135, 169–179. [Google Scholar] [CrossRef]
- Nikiforidis, C.V.; Scholten, E. Self-assemblies of lecithin and a-tocopherol as gelators of lipid material. RSC Adv. 2014, 4, 2466–2473. [Google Scholar] [CrossRef]
- Silva, S.L.; Amaral, J.T.; Ribeiro, M.; Sebastiao, E.E.; Vargas, C.; Franzen, F.D.; Schneider, G.; Lorenzo, J.M.; Fries, L.L.M.; Cichoski, A.J.; et al. Fat replacement by oleogel rich in oleic acid and its impact on the technological, nutritional, oxidative, and sensory properties of Bologna-type sausages. Meat Sci. 2019, 149, 141–148. [Google Scholar] [CrossRef] [PubMed]
- Vilar, W.D. Química e Tecnologia dos Poliuretanos, 3rd ed.; Vilar Consultoria: Rio de Janeiro, Brazil, 2004. [Google Scholar]
- Gandolfo, F.; Bot, A.; Floöer, E. Structuring of edible oils by long-chain FA, fatty alcohols, and their mixtures. J. Am. Oil Chem. Soc. 2004, 81, 1–6. [Google Scholar] [CrossRef]
- Varrato, F. Routes to Novel Colloidal Gels. Ph.D. Thesis, École Polythechnique Fédérale de Lausanne, Lausanne, Switzerland, 2012. [Google Scholar]
- Zampouni, K.; Mouzakitis, C.K.; Lazaridou, A.; Moschakis, T.; Katsanidis, E. Physicochemical properties and microstructure of bigels formed with gelatin and k-carrageenan hydrogels and monoglycerides in olive oil oleogels. Food Hydrocolloids 2023, 140, 108636. [Google Scholar] [CrossRef]
- Mazurkeviciute, A.; Ramanauskiene, K.; Ivaskiene, M.; Grigonis, A.; Briedis, V. Topical antifungal bigels: Formulation, characterization and evaluation. Acta Pharm. 2018, 68, 223–233. [Google Scholar] [CrossRef]
- Rhee, G.J.; Woo, J.S.; Hwang, S.J.; Al, E. Topical oleo-hydrogel preparation of ketoprofen with enhanced skin permeability. Drug Dev. Ind. Pharm. 1999, 25, 717–726. [Google Scholar] [CrossRef] [PubMed]
- Bollom, M.A.; Clark, S.; Acevedo, N.C. Development and characterization of a novel soy lecithin-stearic acid and whey protein concentrate bigel system for potential edible applications. Food Hydrocolloids 2020, 101, 105570. [Google Scholar] [CrossRef]
- Hamed, R.; AbuRezeq, A.; Tarawneh, O. Development of Hydrogels, Oleogels and Bigels as Local Drug Delivery Systems for Periodontitis. Drug Dev. Ind. Pharm. 2018, 44, 1488–1497. [Google Scholar] [CrossRef] [PubMed]
- Tomczykowa, M.; Wróblewska, M.; Winnicka, K.; Wieczorek, P.; Majewski, P.; Celínska-Janowicz, K.; Sawczuk, R.; Miltyk, W.; Tryniszewska, E.; Tomczyk, M. Novel Gel Formulations as Topical Carriers for the Essential Oil of Bidens Tripartita for the Treatment of Candidiasis. Molecule 2018, 23, 2517. [Google Scholar] [CrossRef]
- Zheng, H.; Mao, L.; Cui, M.; Liu, J.; Gao, Y. Development of food-grade bigels based on κ-carrageenan hydrogel and monoglyceride oleogels as carriers for β-carotene: Roles of oleogel fraction. Food Hydrocolloids 2020, 105, 105855. [Google Scholar] [CrossRef]
- Zulfakar, M.H.; Chan, L.M.; Rehman, K.; Wai, L.K.; Heard, C.M. Coenzyme Q10-Loaded Fish Oil-Based Bigel System: Probing the Delivery Across Porcine Skin and Possible Interaction with Fish Oil Fatty Acids. AAPS Pharm. Sci. Technol. 2018, 19, 1116–1123. [Google Scholar] [CrossRef]
- Rehman, K.; Zulfakar, M.H. Novel Fish Oil-Based Bigel System for Controlled Drug Delivery and Its Influence on Immunomodulatory Activity of Imiquimod Against Skin Cancer. Pharm. Res. 2017, 34, 36–48. [Google Scholar] [CrossRef]
- Wróblewska, M.; Szyma´nska, E.; Szekalska, M.; Winnicka, K. Different Types of Gel Carriers as Metronidazole Delivery Systems to the Oral Mucosa. Polymers 2020, 12, 680. [Google Scholar] [CrossRef]
- Vergara, D.; Loza-Rodríguez, N.; Acevedo, F.; Bustamante, M.; López, O. Povidone-Iodine Loaded Bigels: Characterization and Effect as a Hand Antiseptic Agent. J. Drug Deliv. Sci. Technol. 2022, 72, 103427. [Google Scholar] [CrossRef]
- Liu, C.; Zheng, Z.; Shi, Y.; Zhang, Y.; Liu, Y. Development of low-oil emulsion gel by solidifying oil droplets: Roles of internal beeswax concentration. Food Chem. 2021, 345, 128811. [Google Scholar] [CrossRef]
- Paul, S.R.; Qureshi, D.; Yogalakshmi, Y.; Nayak, S.K.; Singh, V.K.; Syed, I.; Sarkar, P.; Pal, K. Development of Bigels Based on Stearic Acid–Rice Bran Oil Oleogels and Tamarind Gum Hydrogels for Controlled Delivery Applications. J. Surfactants Deterg. 2018, 21, 17–29. [Google Scholar] [CrossRef]
- Kodela, S.P.; Pandey, P.M.; Nayak, S.K.; Uvanesh, K.; Anis, A.; Pal, K. Novel agar-stearyl alcohol oleogel-based bigels as structured delivery vehicles. Int. J. Polym. Mater. Polym. Biomater. 2017, 66, 669–678. [Google Scholar] [CrossRef]
- Singh, V.K.; Anis, A.; Al-Zahrani, S.M.; Pradhan, D.K.; Pal, K. Molecular and Electrochemical Impedance Spectroscopic Characterization of the Carbopol Based Bigel and Its Application in Iontophoretic Delivery of Antimicrobials. Int. J. Electrochem. Sci. 2014, 9, 5049–5060. [Google Scholar] [CrossRef]
- Satapathy, S.; Singh, V.K.; Sagiri, S.S.; Agarwal, T.; Banerjee, I.; Bhattacharya, M.K.; Kumar, N.; Pal, K. Development and characterization of gelatin-based hydrogels, emulsion hydrogels, and bigels: A comparative study. J. Appl. Polym. Sci. 2015, 132. [Google Scholar] [CrossRef]
- Wakhet, S.; Singh, V.K.; Sahoo, S.; Sagiri, S.S.; Kulanthaivel, S.; Bhattacharya, M.K.; Kumar, N.; Banerjee, I.; Pal, K. Characterization of gelatin-agar based phase separated hydrogel, emulgel and bigel: A comparative study. J. Mater. Sci. Mater. Med. 2015, 26, 118. [Google Scholar] [CrossRef]
- Zhu, Q.; Gao, J.; Han, L.; Han, K.; Wei, W.; Wu, T.; Li, J.; Zhang, M. Development and characterization of novel bigels based on monoglyceride-beeswax oleogel and high acyl gellan gum hydrogel for lycopene delivery. Food Chem. 2021, 365, 130419. [Google Scholar] [CrossRef]
- Behera, B.; Dey, S.; Sharma, V.; Pal, K. Rheological and Viscoelastic Properties of Novel Sunflower Oil-Span 40-Biopolymer–Based Bigels and Their Role as a Functional Material in the Delivery of Antimicrobial Agents. Adv. Polym. Technol. 2015, 34, 21488. [Google Scholar] [CrossRef]
- Sahoo, S.; Singh, V.K.; Uvanesh, K.; Biswal, D.; Anis, A.; Rana, U.A.; Al-Zahrani, S.M.; Pal, K. Development of ionic and non-ionic natural gum-based bigels: Prospects for drug delivery application. J. Appl. Polym. Sci. 2015, 132, 42561. [Google Scholar] [CrossRef]
- Behera, B.; Singh, V.K.; Kulanthaivel, S.; Bhattacharya, M.K.; Paramanik, K.; Banerjee, I.; Pal, K. Physical and mechanical properties of sunflower oil and synthetic polymers based bigels for the delivery of nitroimidazole antibiotic—A therapeutic approach for controlled drug delivery. Eur. Polym. J. 2015, 64, 253–264. [Google Scholar] [CrossRef]
- Martinez, R.M.; Magalhães, W.V.; Silva Sufi, B.; Padovani, G.; Nazato, L.I.S.; Velasco, M.V.R.; Lannes, S.C.S.; Baby, A.R. Vitamin E-loaded bigels and emulsions: Physicochemical characterization and potential biological application. Colloid Surf. B 2021, 201, 111651. [Google Scholar] [CrossRef]
- Khelifi, I.; Saada, M.; Hayouni, E.A.; Tourette, A.; Bouajila, J.; Ksouri, R. Development and characterization of novel bi-gel-based 1, 4-naphthoquinones for topical application with antioxidant potential. Arab. J. Sci. Eng. 2020, 45, 53–61. [Google Scholar] [CrossRef]
- Loza-Rodríguez, N.; Millan-Sanchez, A.; Lopez, O. A biocompatible lipid-based bigel for topical applications. Eur. J. Pharm. Biopharm. 2023, 190, 24–34. [Google Scholar] [CrossRef] [PubMed]
- Corredor-Chaparro, M.Y.; Vargas-Riveros, D.; Mora-Huertas, C.E. Hypromellose—Collagen hydrogels/sesame oil organogel based bigels as controlled drug delivery systems. J. Drug Deliv. Sci. Technol. 2022, 75, 103637. [Google Scholar] [CrossRef]
- Cortés, N.M.; Lorenzo, G.; Califano, A.N. Food grade microemulsion systems: Sunflower oil/castor oil derivative-ethanol/water. Rheological and physicochemical analysis. Food Res. Int. 2018, 107, 41–47. [Google Scholar] [CrossRef]
Gel Type [Refs] | Hydrogels [5,6,33,34,35,36,37] | Organogels [38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58] | Bigels [38,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74] |
---|---|---|---|
Definition | Water trapped in a 3-D network using a hydrophilic gelling agent (hydrophilic polymer) | Organic liquid trapped in a 3-D network by using an organogelator (LWM and HWM) | Organogel dispersed in hydrogel system (O/W); hydrogel dispersed in organogel system (W/O); or bi-continuous systems |
Advantages |
|
|
|
Disadvantages |
|
|
|
Bio-sourced Molecules | water, biopolymers (polysaccharides and proteins), natural polymers (such as gelatine or agar) | fatty acid, edible oils, waxes, fatty alcohols, carbohydrates, vitamin derivatives, peptides, steroids, and derivative molecules | Water, edible oils, lipids, biopolymers, others arising from the structures of organogels, and hydrogels |
Examples of Biomolecules/Biomaterials used in gel formation | Gelatin, agar, chitosan, sodium alginate, cellulose, hyaluronic acid, pectin, dextran, and their derivatives | stearic acid, 12-hydroxystearic acid, palm oil, sesame oil, soybean oil, canola oil, rice bran oil, cetyl alcohol, stearyl alcohol, ethylene glycol, propylene glycol, glycerol, among others. | guar gum, gelatin, sodium alginate, xanthan gum, agar, protein, pectin, starch, maltodextrin, olive oil, sunflower oil, castor oil, soybean oil, among others |
Solvent | Organogelator | Oil Content % (w/w) | Ref. |
---|---|---|---|
Amaranth oil | mixture of palmitic and stearic acid | 88–93 | [157] |
Canola oil | candelilla wax (CDW) and glycerol monostearate (GMS) | 90 | [158] |
Canola oil | Ethylcellulose | 90 | [159] |
Canola oil | hydrosypropylmethyl cellulose (HPMC) | 94 | [160] |
Coconut and peanut oil | whey protein isolate | 95 | [161] |
Coconut, canola and corn oil | Monostearin | 95 | [156] |
Grapeseed oil | GMS, palmitic acid, Compritol 888, and stearic acid | 85 | [162] |
Macadamia oil | GMS | >85 | [163] |
Palm oil | Beeswax | >95 | [164] |
Palm oil | whey protein isolate | 12–20 | [165] |
Peanut oil | stearic acid/stearic alcohol | 75–95 | [166] |
Soybean oil | sugarcane wax (SCW) and candelilla wax (CLW) | 96–99 | [42] |
Soybean oil | carnauba wax (CRW) | 85–95 | [167] |
Soybean oil | Ethylcellulose | 88 | [168] |
Sunflower oil | lecithin and α-tocopherol | 75 | [169] |
Sunflower oil | Gelatin (pork skin) | 20 | [170] |
Oleogel | Hydrogel | Incorporated Active | Application | Ref | |
---|---|---|---|---|---|
Solvent | Organogelator | Hydrogelator | |||
Almond oil | Sorbitan monosterate | Carbopol | Ketoprofen | drug delivery | [66] |
Caprylic + capric triglycerides | Compritol | Carbopol | Ibuprofen [47] | periodontitis | [178] |
Castor oil | Tween 80 | Sodium alginate | Essential oil of Bidens tripartita | antifungal treatment | [179] |
Corn oil | glycerol monoglyceride | Dispersion of 𝜅-carrageenan | β-Carotene | food bioactive delivery | [180] |
Fish oil | Beeswax | Carbopol | Coenzyme Q10 | cosmetic | [181] |
Fish oil | Beeswax | Carbopol | Imiquimod | transdermal | [182] |
Fish oil | Beeswax | Sodium alginate, Hydroxypropyl- methylcellulose | Imiquimod | drug delivery | [59] |
Linseed oil | Tween 80 | Sodium alginate | Metronidazole | periodontitis | [183] |
Liquid paraffin | Cholesterol | Carbopol | - | cosmetic | [72] |
Olive oil | Beeswax | Hydroxyethyl- cellulose | Povidone-iodine | transdermal | [184] |
Rapeseed oil | glycerol monoglyceride + beeswax | Xanthan | Curcumin | food bioactive delivery | [185] |
Rice bran oil | Stearic acid | Tamarind gum | Moxifloxacin | drug delivery | [186] |
Rice bran oil | Stearyl alcohol | Agar | Ciprofloxacin hydrochroride | drug delivery | [187] |
Sesame oil | Sorbitan monostearate | Carbopol | Metronidazole | drug delivery | [74,188] |
Sesame oil | Sorbitan monostearate | Gelatin | Ciprofloxacin | drug delivery | [189] |
Sesame oil | Sorbitan monostearate | Guar gum | Ciprofloxacin | drug delivery | [190] |
Soybean oil | Sorbitan monostearate, cetyl alcohol, lecithin-pluronic | Hydroxypropyl-methylcellulose | Diltiazem hydrochloride | drug delivery | [64] |
Soybean oil | Stearic acid | Agar + gelatin | Metronidazole | drug delivery | [67] |
Soybean oil | glycerol monoglyceride + beeswax | Gellan gum | Lycopene | food bioactive delivery | [191] |
Sunflower oil | Sorbitan monopalmitate | Gelatin, whey protein | Metronidazole | drug delivery | [60] |
Sunflower oil | Sorbitan monopalmitate | Guar gum, acacia gum, xanthan gum | Metronidazole | drug delivery | [192] |
Sunflower oil | Sorbitan monopalmitate + tween 80 | Guar gum, acacia Gum | Metronidazole | drug delivery | [193] |
Sunflower oil | Sorbitan monopalmitate | Polyvinyl alcohol, polyvinyl pyrrolidone | Metronidazole | drug delivery | [194] |
Sunflower oil or mineral oil | candelilla wax or 1,2–hydroxstearic acid | Sodium polyacrylate | Vitamin E | food bioactive delivery | [195] |
Sweet almond oil | Sorbitan monosterate | Alginate | Cetavlon | drug delivery | [196] |
Sweet almond oil | Sorbitan monosterate | Carbopol | - | Cosmetic | [72] |
Isopropyl palmitate + soya lecithin | pluronic lecithin | Hydroxy propyl methyl cellulose | Ketoprofen | drug delivery | [62] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Souza, M.E.B.C.; Pereira, C.G. Green Materials for Gel Formulation: Recent Advances, Main Features and Applications. Physchem 2024, 4, 3-24. https://doi.org/10.3390/physchem4010002
Souza MEBC, Pereira CG. Green Materials for Gel Formulation: Recent Advances, Main Features and Applications. Physchem. 2024; 4(1):3-24. https://doi.org/10.3390/physchem4010002
Chicago/Turabian StyleSouza, Maria Eduarda B. C., and Camila G. Pereira. 2024. "Green Materials for Gel Formulation: Recent Advances, Main Features and Applications" Physchem 4, no. 1: 3-24. https://doi.org/10.3390/physchem4010002
APA StyleSouza, M. E. B. C., & Pereira, C. G. (2024). Green Materials for Gel Formulation: Recent Advances, Main Features and Applications. Physchem, 4(1), 3-24. https://doi.org/10.3390/physchem4010002