Green Materials for Gel Formulation: Recent Advances, Main Features and Applications
Abstract
:1. Introduction
2. Hydrogels
3. Organogels
4. Bigels
5. Concluding Remarks and Future Challenges
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Simões, C.M.O.; Schenkel, E.P.; Gosmann, G.; Auler Mentz, J.C.P.M.; Petrovick, P.R. Pharmacognosy: From Plant to Medicine (in Portuguese), 1st ed.; Editora da UFRGS/Ed. da UFSC: Florianópolis, Brazil; Editora da UFSC: Porto Alegre, Brazil, 1999. [Google Scholar]
- ABIFITO. Available online: http://www.abifito.org.br (accessed on 12 October 2022).
- Sagiri, S.S.; Behera, B.; Rafanan, R.R.; Bhattacharya, C.; Pal, K.; Banerjee, I.; Rousseau, D. Organogels as matrices for controlled drug delivery: A review on the current state. Soft Mater. 2014, 12, 47–72. [Google Scholar] [CrossRef]
- Murdan, S.; Andrysek, T.; Son, D. Novel gels and their dispersions—Oral drug delivery systems for ciclosporin. Int. J. Pharm. 2005, 300, 113–124. [Google Scholar] [CrossRef]
- Lewis, L.; Hatzikiriakos, S.G.; Hamad, W.Y.; MacLachlan, M.J. Freeze−Thaw Gelation of Cellulose Nanocrystals. ACS Macro Lett. 2019, 8, 486–491. [Google Scholar] [CrossRef] [PubMed]
- Aleman, J.; Chadwick, A.V.; He, J.; Hess, M.; Horie, K.; Jones, R.G.; Kratochvil, P.; Meisel, I.; Mita, I.; Moad, G.; et al. Definitions of terms relating to the structure and processing of sols, gels, networks, and inorganic-organic hybrid materials (IUPAC Recommendations 2007). Pure Appl. Chem. 2007, 79, 1801–1827. [Google Scholar] [CrossRef]
- Banerjee, S.; Bhattacharya, S. Food gels: Gelling process and new applications Crit. Rev. Food Sci. Nutr. 2011, 52, 334–346. [Google Scholar]
- Jastram, A.; Claus, J.; Janmey, P.A.; Kragl, U. Rheological properties of hydrogels based on ionic liquids. Polym. Test. 2021, 93, 106943. [Google Scholar] [CrossRef]
- Ract, N.R.; Cruz, R.G.; Pereira, C.G. Chapter 14—Phase Equilibrium of Organogels. In Thermodynamics of Phase Equilibria in Food Engineering; Elsevier: London, UK, 2019; pp. 563–591. [Google Scholar]
- Liu, H.; Cheng, T.; Xian, M.; Cao, Y.; Fang, F.; Zou, H. Fatty acid from the renewable sources: A promising feedstock for the production of biofuels and biobased chemicals. Biotechnol. Adv. 2014, 32, 382–389. [Google Scholar] [CrossRef]
- Biermann, U.; Bornscheuer, U.; Meier, M.A.R.; Metzger, J.O.; Schäfer, H.J. Oils and Fats as Renewable Raw Materials in Chemistry. Angew. Chem. Int. Ed. 2011, 50, 3854–3871. [Google Scholar] [CrossRef]
- Tomás-Pejó, E.; González-Fernández, C.; Greses, S.; Kennes, C.; Otero-Logilde, N.; Veiga, M.C.; Bolzenella, D.; Muller, B.; Passoth, V. Production of short-chain fatty acids (SCFAs) as chemicals or substrates for microbes to obtain biochemicals. Biotechnol. Biofuels 2023, 16, 96. [Google Scholar] [CrossRef]
- Bohidar, H.B. Dynamics in thermoreversible polymer gels. Curr. Sci. 2001, 80, 1008–1017. [Google Scholar]
- Tamayo, M.R. Using Computational Methods to Rationalize Organogel Formation. Ph.D. Thesis, Sorbonne University, Paris, France, 2021. [Google Scholar]
- Zinic, M.; Vogtle, F.; Fages, F. Top. Cholesterol-based gelators. Curr. Chem. 2005, 256, 39–76. [Google Scholar]
- Tamaru, S.; Nakamura, M.; Takeuchi, M.; Shinkai, S. Rational Design of a Sugar-Appended Porphyrin Gelator that is Forced to Assemble into a One-Dimensional Aggregate. Org. Lett. 2001, 3, 3631–3634. [Google Scholar] [CrossRef]
- Kushwaha, S.K.S.; Saxena, P.; Rai, A.K. Stimuli sensitive hydrogels for ophthalmic drug delivery: A review. Int. J. Pharm. Investig. 2012, 2, 54–60. [Google Scholar] [CrossRef]
- Cerqueira, M.A.; Valoppi, F.; Pal, K. Oleogels and Organogels: A Promising Tool for New Functionalities. Gels 2022, 8, 349. [Google Scholar] [CrossRef]
- Murata, K.; Aoki, M.; Suzuki, T.; Harafa, T.; Kawabata, H.; Komori, T.; Ohseto, F.; Ueda, K.; Shinkai, S. Thermal and light control of the sol-gel phase transition in cholesterol-based organic gels. Novel helical aggregation modes as detected by circular dichroism and electron microscopic observation. J. Am. Chem. Soc. 1994, 116, 6664–6676. [Google Scholar] [CrossRef]
- Abdallah, D.J.; Weiss, R.G. Organogels and low molecular mass organic gelators. Adv. Mater. 2000, 12, 1237–1247. [Google Scholar] [CrossRef]
- John, G.; Zhu, G.; Li, J.; Dordick, J.S. Enzymatically Derived Sugar-Containing Self-Assembled Organogels with Nanostructured Morphologies. Angew. Chem. Int. Ed. 2006, 45, 4772–4775. [Google Scholar] [CrossRef]
- Co, E.D.; Marangoni, A.G. Organogels: An alternative edible oil-structuring method. J. Am. Chem. Soc. 2012, 89, 749–780. [Google Scholar]
- Barbucci, R. Hydrogels: Biological Properties and Applications; Springer-Verlag Italia: Milan, Italy, 2009; pp. 1–179. [Google Scholar]
- Rimmer, S. Biomedical Hydrogels–Biochemistry, Manufacture and Medical Applications; Woodhead Publishing: Sawston, UK, 2011. [Google Scholar]
- Bouten, P.J.M.; Zonjee, M.; Bender, J.; Yauw, S.T.K.; van Goor, H.; van Hest, J.C.M.; Hoogenboom, R. The chemistry of tissue adhesive materials. Prog. Polym. Sci. 2014, 39, 1375–1405. [Google Scholar] [CrossRef]
- Shakeel, A.; Lupi, F.R.; Gabriele, D.; Baldino, N.; Cindio, B. Bigels: A unique class of materials for drug delivery applications. Soft Mater. 2018, 16, 77–93. [Google Scholar] [CrossRef]
- Martín-Illana, A.; Notario-Pérez, F.; Cazorla-Luna, R.; Ruiz-Caro, R.; Bonferoni, M.C.; Tamayo, A.; Veiga, M.D. Bigels as drug delivery systems: From their components to their applications. Drug Discov. Today 2022, 27, 1008–1026. [Google Scholar] [CrossRef]
- Capello, C.; Fischer, U.; Hungerbühler, K. What is a green solvent? A comprehensive framework for the environmental assessment of solvents. Green Chem. 2007, 9, 927–934. [Google Scholar] [CrossRef]
- Clarke, C.J.; Tu, W.C.; Levers, O.; Bröhl, A.; Hallett, J.P. Green and Sustainable Solvents in Chemical Processes. Chem. Rev. 2018, 118, 747–800. [Google Scholar] [CrossRef]
- IUPAC—International Union of Pure and Applied Chemistry. Sustainable Chemistry. Available online: https://iupac.org/who-we-are/committees/sustainable-chemistry/ (accessed on 4 September 2023).
- Sagiri, S.S.; Rao, K.J. Chapter 22—Natural and bioderived molecular gelator-based oleogels and their applications. In Biopolymer-Based Formulations; Elsevier: Amsterdam, The Netherlands, 2020; pp. 513–559. [Google Scholar]
- Peppas, N.A.; Bures, P.; Leobandung, W.; Ichikawa, H. Hydrogels in pharmaceutical formulations. Eur. J. Pharm. Biopharm. 2000, 50, 27–46. [Google Scholar] [CrossRef]
- Chai, Q.; Jiao, Y.; Yu, X. Hydrogels for Biomedical Applications: Their Characteristics and the Mechanisms behind Them. Gels 2017, 3, 6. [Google Scholar] [CrossRef]
- Ahmed, A.A.K.; Naik, H.S.B.; Sherigara, B.S. Synthesis and characterization of chitosan-based pH-sensitive semi-interpenetrating network microspheres for controlled release of diclofenac sodium. Carbohydr. Res. 2009, 344, 699–706. [Google Scholar] [CrossRef]
- Peppas, N.A. Physiologically Responsive Hydrogels. J. Bioact. Compat. Polym. 1991, 6, 241–246. [Google Scholar] [CrossRef]
- Mura, P.; Faucci, M.T.; Bramanti, G.; Corti, P. Evaluation of transcutol as a clonazepam transdermal permeation enhancer from hydrophilic gel formulations. Eur. J. Pharm. Sci. 2000, 9, 365–372. [Google Scholar] [CrossRef]
- Du, X.; Zhou, J.; Shi, J.; Xu, B. Supramolecular Hydrogelators and Hydrogels: From Soft Matter to Molecular Biomaterials. Chem. Rev. 2015, 115, 13165–13307. [Google Scholar] [CrossRef] [PubMed]
- Lupi, F.R.; Gentile, L.; Gabriele, D.; Mazzulla, S.; Baldino, N.; Cindio, B. Olive oil and hyperthermal water bigels for cosmetic uses. J. Colloid Interface Sci. 2015, 459, 70–78. [Google Scholar] [CrossRef] [PubMed]
- Bot, A.; Adel, R.D.; Roijers, E.C. Fibrils of γ-oryzanol + β-sitosterol in edible oil organogels. J. Am. Oil Chem. Soc. 2008, 85, 1127–1134. [Google Scholar] [CrossRef]
- Hamachi, I.; Kiyonaka, S.; Shinkai, S. Solid-phase lipid synthesis (SPLS)-2: Incidental discovery of organogelators based on artificial glycolipids. Tetrahedron Lett. 2001, 42, 6141–6145. [Google Scholar] [CrossRef]
- Behera, B.; Sagiri, S.S.; Pal, K.; Srivastava, A. Modulating the physical properties of sunflower oil and sorbitan monopalmitate-based organogels. J. Appl. Polym. Sci. 2003, 127, 4910–4917. [Google Scholar] [CrossRef]
- Hwang, H.S.; Kim, S.; Singh, M.; Winkler-Moser, J.K.; Liu, S.X. Organogel formation of soybean oil with waxes. J. Am. Oil Chem. Soc. 2011, 89, 639–647. [Google Scholar] [CrossRef]
- Rocha, J.C.B.; Lopes, J.D.; Mascarenhas, M.C.N.; Arellano, D.B.; Guerreiro, L.M.R.; Cunha, R.L.D. Thermal and rheological properties of organogels formed by sugarcane or candelilla wax in soybean oil. Food Res. Int. 2013, 50, 318–323. [Google Scholar] [CrossRef]
- Teramoto, N.; Shibata, M.; Synthesis and properties of pullulan acetate. Thermal properties, biodegradability, and a semi-clear gel formation in organic solvents. Carbohydr. Polym. 2006, 63, 476–481. [Google Scholar] [CrossRef]
- Mitra, A.; Sarkar, V.; Mukhopadhyay, B. Simple carbohydrate-derived multifunctional gels. ChemistrySelect 2017, 2, 9958–9961. [Google Scholar] [CrossRef]
- Patel, A.R.; Babaahmadi, M.; Lesaffer, A.; Dewettinck, K. Rheological profiling of organogels prepared at critical gelling concentrations of natural waxes in a triacylglycerol solvent. J. Agric. Food Chem. 2015, 63, 4862–4869. [Google Scholar] [CrossRef] [PubMed]
- Mandua, C.; Barrera-Arellano, D.; Santana, M.; Fernandes, G. Waxes used as structuring agents for food organogels: A review. Grasas Aceites 2000, 71, e344. [Google Scholar] [CrossRef]
- Cui, J.; Zheng, Y.; Shen, Z.; Wan, X. Alkoxy tail length dependence of gelation ability and supramolecular chirality of sugar-appended organogelators. Langmuir 2010, 26, 15508–15515. [Google Scholar] [CrossRef] [PubMed]
- Cui, J.; Liu, A.; Guan, Y.; Zheng, J.; Shen, Z.; Wan, X. Tuning the helicity of self-assembled structure of a sugar-based organogelator by the proper choice of cooling rate. Langmuir 2010, 26, 3615–3622. [Google Scholar] [CrossRef] [PubMed]
- Prathap, A.; Sureshan, K.M. Sugar-based organogelators for various applications. Langmuir 2019, 35, 6005–6014. [Google Scholar] [CrossRef] [PubMed]
- Wyne, A.; Whitefield, M.; Dixon, A.; Anderson, S. An effective, cosmetically acceptable, novel hydro-gel emollient for the management of dry skin conditions. J. Dermatol. Treat. 2002, 13, 61–66. [Google Scholar] [CrossRef]
- Matheson, A.B.; Koutsos, V.; Dalkas, G.; Euston, S.; Clegg, P. Microstructure of β-sitosterol:γ-oryzanol edible organogels. Langmuir 2017, 33, 4537–4542. [Google Scholar] [CrossRef]
- Truong, T.; Prakash, S.; Bhandari, B. Effects of crystallisation of native phytosterols and monoacylglycerols on foaming properties of whipped oleogels. Food Chem. 2019, 285, 86–93. [Google Scholar] [CrossRef]
- Tempestini, E.; Bucci, M.; Mastromartino, V.; Gori, M.; Tanini, D.; Ambrosi, M.; Fratini, E.; Capperucci, A.; Lo Nostro, P. Organogels from double-chained vitamin C amphiphilic derivatives. ChemPhysChem 2017, 18, 1400–1406. [Google Scholar] [CrossRef]
- Nostro, P.L.; Ramsch, R.; Fratini, E.; Lagi, M.; Ridi, F.; Carretti, E.; Ambrosi, M.; Ninham, B.W.; Baglioni, P. Organogels from a vitamin C-based surfactant. J. Phys. Chem. B 2007, 111, 11714–11721. [Google Scholar] [CrossRef]
- Biswas, G.; Moon, H.J.; Boraty´nski, P.; Jeong, B.; Kwon, Y.U. Structural sensitivity of peptoid-based low molecular mass organogelator. Mater. Des. 2016, 108, 659–665. [Google Scholar] [CrossRef]
- Schaink, H.; Van Malssen, K.; Morgado-Alves, S.; Kalnin, D.; Van der Linden, E. Crystal network for edible oil organogels: Possibilities and limitations of the fatty acid and fatty alcohol systems. Food Res. Int. 2007, 40, 1185–1193. [Google Scholar] [CrossRef]
- Sawalha, H.; Venema, P.; Bot, A.; Flöter, E.; van der Linden, E. The Influence of Concentration and Temperature on the Formation of ¿-Oryzanol + ß-Sitosterol Tubules in Edible Oil Organogels. Food Biophys. 2011, 6, 20–25. [Google Scholar] [CrossRef]
- Rehman, K.; Amin, M.C.I.M.; Zulfakar, M.H. Development and physical characterization of polymer-fish oil bigel (hydrogel/oleogel) system as a transdermal drug delivery vehicle. J. Oleo Sci. 2014, 63, 961–970. [Google Scholar] [CrossRef]
- Behera, B.; Sagiri, S.S.; Pal, K.; Pramanik, K.; Rana, U.A.; Shakir, I.; Anis, A. Sunflower Oil and Protein-based Novel Bigels as Matrices for Drug Delivery Applications-Characterization and in vitro Antimicrobial Efficiency. Polym. Plast. Technol. Eng. 2015, 54, 837–850. [Google Scholar] [CrossRef]
- Leal-Calderon, F.; Schmitt, V. Solid-stabilized emulsions. Curr. Opin. Colloid Interface Sci. 2008, 13, 217–227. [Google Scholar] [CrossRef]
- Charyulu, R.N.; Muaralidharan, A.; Sandeep, D.S. Design and evaluation of bigels containing flurbiprofen. Res. J. Pharm. Technol. 2018, 11, 143–152. [Google Scholar] [CrossRef]
- Behera, B.; Sagiri, S.S.; Singh, V.K.; Pal, K.; Anis, A. Mechanical properties and delivery of drug/probiotics from starch and non-starch based novel bigels: A comparative study. Starch Starke 2014, 66, 865–879. [Google Scholar] [CrossRef]
- Ibrahim, M.M.; Hafez, S.A.; Mahdy, M.M. Organogels, hydrogels and bigels as transdermal delivery systems for diltiazem hydrochloride. Asian J. Pharm. Sci. 2013, 8, 48–57. [Google Scholar] [CrossRef]
- Shakeel, A.; Farooq, U.; Iqbal, T.; Yasin, S.; Lupi, F.R.; Gabriele, D. Key Characteristics and Modelling of Bigels Systems: A Review. Mater. Sci. Eng. C 2019, 97, 932–953. [Google Scholar] [CrossRef]
- Andonova, V.; Peneva, P.; Georgiev, G.S.; Toncheva, V.T.; Apostolova, E.; Peychev, Z.; Dimitrova, S.; Katsarova, M.; Petrova, N.; Kassarova, M. Ketoprofenloaded polymer carriers in bigel formulation: An approach to enhancing drug photostability in topical application forms. Int. J. Nanomed. 2017, 12, 6221–6238. [Google Scholar] [CrossRef]
- Singh, V.K.; Banerjee, I.; Agarwal, T.; Pramanik, K.; Bhattacharya, M.K.; Pal, K. Guar gum and sesame oil based novel bigels for controlled drug delivery. Colloids Surf. B 2014, 123, 582–592. [Google Scholar] [CrossRef] [PubMed]
- Andonova, V.Y.; Peneva, P.T.; Apostolova, E.G.; Dimcgeva, T.D.; Peychev, Z.L.; Kassarova, M.I. Carbopol hydrogel/sorbitan monostearate-almond oil based organogel biphasic formulations: Preparation and characterization of the bigels. Trop. J. Pharm. Res. 2017, 16, 1455–1463. [Google Scholar] [CrossRef]
- Lupi, F.R.; Shakeel, A.; Greco, V.; Oliviero Rossi, C.; Baldino, N.; Gabriele, D. A Rheological and Microstructural Characterisation of Bigels for Cosmetic and Pharmaceutical Uses. Mater. Sci. Eng. C 2016, 69, 358–365. [Google Scholar] [CrossRef] [PubMed]
- Rehman, K.; Zulfakar, M.H. Recent advances in gel technologies for topical and transdermal drug delivery. Drug Dev. Ind. Pharm. 2014, 40, 433–440. [Google Scholar] [CrossRef] [PubMed]
- Di Michele, L.; Fiocco, D.; Varrato, F.; Sastry, S.; Eiser, E.; Foffi, G. Aggregation dynamics, structure, and mechanical properties of bigels. Soft Matter 2014, 10, 3633–3648. [Google Scholar] [CrossRef] [PubMed]
- Almeida, I.F.; Fernandes, A.R.; Fernandes, L.; Ferreira, M.R.; Costa, P.C.; Bahia, M.F. Moisturizing effect of oleogel/hydrogel mixtures. Pharm. Dev. Technol. 2008, 13, 487–494. [Google Scholar] [CrossRef] [PubMed]
- Blumlein, A.; McManus, J.J. Bigels formed via spinodal decomposition of unfolded protein. J. Mater. Chem. B 2015, 3, 3429–3435. [Google Scholar] [CrossRef] [PubMed]
- Singh, V.K.; Anis, A.; Banerjee, I.; Pramanik, K.; Bhattacharya, M.K.; Pal, K. Preparation and characterization of novel carbopol based bigels for topical delivery of metronidazole for the treatment of bacterial vaginosis. Mater. Sci. Eng. C 2014, 44, 151–158. [Google Scholar] [CrossRef]
- Hoffman, A.S. Hydrogels for biomedical applications. Adv. Drug Deliv. Rev. 2002, 43, 3–12. [Google Scholar] [CrossRef]
- Zhu, Z.; Guan, Z.; Jia, S.; Lei, Z.; Lin, S.; Zhang, H.; Ma, Y.; Tian, Z.Q.; Yang, C.J. Au@Pt nanoparticle encapsulated target-responsive hydrogel with volumetric bar-chart chip readout for quantitative point-of-care testing. Angew. Chem. Int. Ed. 2014, 53, 12503–12507. [Google Scholar] [CrossRef]
- Jin, Z.; Liu, X.; Duan, S.; Yu, X.; Huang, Y.; Hayat, T.; Li, J. The adsorption of Eu(III) on carbonaceous nanofibers: Batch experiments and modeling study. J. Mol. Liq. 2016, 222, 456–462. [Google Scholar] [CrossRef]
- Pan, G.; Guo, Q.; Ma, Y.; Yang, H.; Li, B. Thermo-responsive hydrogel layers imprinted with RGDS peptide: A system for harvesting cell sheets. Angew. Chem. Int. Ed. 2013, 52, 6907–6911. [Google Scholar] [CrossRef]
- Ishihara, K.; Kobayashi, M.; Ishimaru, N.; Sinohara, I. Glucose Induced Permeation Control of Insulin through a Complex Membrane Consisting of Immobilized Glucose Oxidase and a Poly(amine). Polym. J. 1984, 16, 625–631. [Google Scholar] [CrossRef]
- Hoffman, A.S. Applications of thermally reversible polymers and hydrogels in therapeutics and diagnostics. J. Control. Release 1987, 6, 297–305. [Google Scholar] [CrossRef]
- Tanaka, T. Phase transitions in gels and a single polymer. Polymer 1979, 20, 1404–1412. [Google Scholar] [CrossRef]
- Dong, L.C.; Hoffman, A.S. Reversible Polymer Gels and Related Systems; Russo, P.S., Ed.; ACS Symposium Series; American Chemical Society: Washington, DC, USA, 1987; Volume 350, pp. 236–244. [Google Scholar]
- Monji, N.; Hoffman, A.S. A novel immuno assay system and bioseparation process based on thermal phase separating polymers. Appl. Biochem. Biotechnol. 1987, 14, 107–120. [Google Scholar] [CrossRef] [PubMed]
- Park, T.G.; Hoffman, A.S. Immobilization and characterization of beta-galactosidase in thermally reversible hydrogel beads. J. Biomed. Mater. Res. 1990, 24, 21–38. [Google Scholar] [CrossRef] [PubMed]
- Brannon-Peppas, L.; Peppas, N.A. Solute and penetrant diffusion in swellable polymers. IX. The mechanisms of drug release from ph-sensitive swelling-controlled systems. J. Control. Release 1989, 8, 267–274. [Google Scholar] [CrossRef]
- Ding, R.; Yu, X.; Wang, P.; Zhang, J.; Zhou, Y.; Cao, X.; Tang, H.; Ayres, N.; Zhang, P. Hybrid photosensitizer based on amphiphilic block copolymer stabilized silver nanoparticles for highly efficient photodynamic inactivation of bacteria. RSC Adv. 2016, 6, 20392–20398. [Google Scholar] [CrossRef]
- Tirrell, D.A. Macromolecular switches for bilayer membranes. J. Control. Release 1987, 6, 15–21. [Google Scholar] [CrossRef]
- Pan, L.; Yu, G.; Zhai, D.; Lee, H.R.; Zhao, W.; Liu, N.; Wang, H.; Tee, B.C.K.; Shi, Y.; Cui, Y.; et al. Hierarchical nanostructured conducting polymer hydrogel with high electrochemical activity. Proc. Natl. Acad. Sci. USA 2012, 109, 9287–9292. [Google Scholar] [CrossRef]
- Zhai, D.; Liu, B.; Shi, Y.; Pan, L.; Wang, Y.; Li, W.; Zhang, R.; Yu, G. Highly sensitive glucose sensor based on Pt nanoparticle/polyaniline hydrogel heterostructures. ACS Nano 2013, 7, 3540–3546. [Google Scholar] [CrossRef]
- Chen, C.; Vassallo, J.C.; Chatterjee, P.K. Absorbency; Chatterjee, P.K., Ed.; Elsevier: New York, NY, USA, 1985; pp. 257–281. [Google Scholar]
- Li, L.; Wang, Y.; Pan, L.; Shi, Y.; Cheng, W.; Shi, Y.; Yu, G. A nanostructured conductive hydrogels-based biosensor platform for human metabolite detection. Nano Lett. 2015, 15, 1146–1151. [Google Scholar] [CrossRef] [PubMed]
- Caló, E.; Khutoryanskiy, V.V. Biomedical applications of hydrogels: A review of patents and commercial products. Eur. Polym. J. 2015, 65, 252–267. [Google Scholar] [CrossRef]
- Esposito, C.L.; Kirilov, P.; Roullin, V.G. Organogels, promising drug delivery systems: An update of state-of-the-art and recent applications. J. Control. Release 2018, 271, 1–20. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Chi, J.; Xu, P.; Dong, X.; Le, A.T.; Shi, K.; Liu, Y.; Xiao, J. Supramolecular G-quadruplex hydrogels: Bridging fabrication to biomedical application. J. Mater. Sci. Technol. 2023, 155, 238–252. [Google Scholar] [CrossRef]
- Ren, X.; Wang, N.; Zhou, Y.; Song, A.; Jin, G.; Li, Z.; Luan, Y. An injectable hydrogel using an immunomodulating gelator for amplified tumor immunotherapy by blocking the arginase pathway. Acta Biomater. 2021, 124, 179–190. [Google Scholar] [CrossRef] [PubMed]
- Yu, J.Y.; Moon, S.E.; Kim, J.H.; Kang, S.M. Ultrasensitive and Highly Stretchable Multiple-Crosslinked Ionic Hydrogel Sensors with Long-Term Stability. Nano-Micro Lett. 2023, 15, 51. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Jiang, Z.; Lin, Y.; Yu, C.; Nie, X.; Xu, G.; Xu, W.; Jiang, Y.; Luan, Y. Tumor lysates-constructed hydrogel to potentiate tumor immunotherapy. J. Control. Release 2023, 358, 345–357. [Google Scholar] [CrossRef]
- Mitura, S.; Sionkowska, A.; Jaiswal, A. Biopolymers for hydrogels in cosmetics: Review. J. Mater. Sci. Mater. Med. 2020, 31, 50. [Google Scholar] [CrossRef]
- Matricardi, P.; Di Meo, C.; Coviello, T.; Hennink, W.; Alhaique, F. Interpenetrating Polymer Networks polysaccharide hydrogels for drug delivery and tissue engineering. Adv. Drug Deliv. Rev. 2013, 65, 1172–1187. [Google Scholar] [CrossRef]
- Dattilo, M.; Patitucci, F.; Prete, S.; Parisi, O.I.; Puoci, F. Polysaccharide-Based Hydrogels and Their Application as Drug Delivery Systems in Cancer Treatment: A Review. J. Funct. Biomater. 2023, 14, 55. [Google Scholar] [CrossRef]
- Singh, B.; Chauhan, N. Dietary fiber psyllium based hydrogels for use in insulin delivery. Int. J. Diab. Mellitus. 2010, 2, 32–37. [Google Scholar] [CrossRef]
- Schmaljohann, D. Thermo- and pH-responsive polymers in drug delivery. Adv. Drug Deliv. Rev. 2006, 58, 1655–1670. [Google Scholar] [CrossRef] [PubMed]
- Schoener, C.A.; Hutson, H.N.; Peppas, N.A. pH-responsive hydrogels with dispersed hydrophobic nanoparticles for the oral delivery of chemotherapeutics. J. Biomed. Mater. Res. A 2013, 101A, 2229–2236. [Google Scholar] [CrossRef] [PubMed]
- Niemczyk-Soczynska, B.; Gradys, A.; Kolbuk, D.; Krzton-Maziopa, A.; Rogujski, P.; Stanaszek, L.; Lukomska, B.; Sajkiewicz, P. A methylcellulose/agarose hydrogel as an innovative scaffold for tissue engineering. RSC Adv. 2022, 12, 26882–26894. [Google Scholar] [CrossRef] [PubMed]
- Lin, Z.; Xie, W.; Cui, Z.; Huang, J.; Cao, H.; Li, Y. 3D printed alginate/gelatin-based porous hydrogel scaffolds to improve diabetic wound healing. Giant 2023, 16, 10018. [Google Scholar] [CrossRef]
- Zhao, M.; Xu, R.; Yang, Y.; Tong, L.; Liang, J.; Jiang, Q.; Fan, Y.; Zhang, X.; Sun, Y. Bioabsorbable nano-micelle hybridized hydrogel scaffold prevents postoperative melanoma recurrence. J. Control. Release 2023, 356, 219–231. [Google Scholar] [CrossRef]
- Aldhaher, A.; Shahabipour, F.; Shaito, A.; Al-Assaf, S.; Elnour, A.A.M.; Sallam, E.E.; Teimourtash, S.; Elfadil, A.A. 3D hydrogel/ bioactive glass scaffolds in bone tissue engineering: Status and future opportunities. Heliyon 2023, 9, e17050. [Google Scholar] [CrossRef]
- Yan, M.; Wang, L.; Wu, Y.; Wang, L.; Lu, Y. Three-dimensional highly porous hydrogel scaffold for neural circuit dissection and modulation. Acta Biomater. 2023, 157, 252–262. [Google Scholar] [CrossRef]
- Ismail, Y.A.; Shabeeba, A.K.; Sidheekha, M.P.; Rajan, L. Chapter 9: Conducting polymer/hydrogel systems as soft actuators. In Actuators: Fundamentals, Principles, Materials and Applications; Inamuddin, I., Boddula, R., Asiri, A.M., Eds.; Scrivener Publishing LLC: Beverly, MA, USA, 2020; pp. 211–252. [Google Scholar]
- Liu, J.; He, S.; Liu, Z.; Wu, X.; Liu, J.; Shao, W. Novel multi-responsive soft actuator assembled with a graphene oxide nanoribbons doped strain hydrogel sensor with high sensitive and NIR-triggered performances. Sens. Actuators B Chem. 2023, 393, 15–134217. [Google Scholar] [CrossRef]
- Chen, Z.; Wang, H.; Cao, Y.; Chen, Y.; Akkus, O.; Liu, H.; Cao, C. Bio-inspired anisotropic hydrogels and their applications in soft actuators and robots. Matter 2023, 6, 3803–3837. [Google Scholar] [CrossRef]
- Liu, Q.; Wang, X.; Hou, Y.; Cheng, Y.; Zhang, J.; Xiao, L.; Zhao, J.; Li, W. Bio-inspired hydrogel actuator with rapid self-strengthening behavior. Eur. Polym. J. 2023, 188, 111941. [Google Scholar] [CrossRef]
- Li, W.; Guan, Q.; Li, M.; Saiz, E.; Hou, X. Nature-inspired strategies for the synthesis of hydrogel actuators and their applications. Prog. Polym. Sci. 2023, 140, 101665. [Google Scholar] [CrossRef]
- Jing, Y.; Wang, A.; Li, J.; Li, Q.; Han, Q.; Zheng, X.; Cao, H.; Bai, S. Preparation of conductive and transparent dipeptide hydrogels for wearable biosensor. Bio-Des. Manuf. 2022, 5, 153–162. [Google Scholar] [CrossRef]
- Barhoum, A.; Sadak, O.; Ramirez, I.A.; Iverson, N. Stimuli-bioresponsive hydrogels as new generation materials for implantable, wearable, and disposable biosensors for medical diagnostics: Principles, opportunities, and challenges. Adv. Colloid Interface Sci. 2023, 317, 102920. [Google Scholar] [CrossRef] [PubMed]
- Shi, Y.; Wang, W.; Lei, Z.; Wang, W.; Yu, D. A transparent, anti-fatigue, flexible multifunctional hydrogel with self-adhesion and conductivity for biosensors. Polymer 2023, 281, 126121. [Google Scholar] [CrossRef]
- Wang, Q.; Jiao, C.; Wang, X.; Wang, Y.; Sun, K.; Li, L.; Fan, Y.; Hu, L. A hydrogel-based biosensor for stable detection of glucose. Biosens. Bioelectr. 2023, 221, 114908. [Google Scholar] [CrossRef] [PubMed]
- Jeong, Y.; Kong, W.; Lu, T.; Irudayaraj, J. Soft hydrogel-shell confinement systems as bacteria-based bioactuators and biosensors. Biosens. Bioelectr. 2023, 219, 114809. [Google Scholar] [CrossRef] [PubMed]
- Gao, Y.; Li, X.; Serpe, M.J. Stimuli-responsive microgel-based etalons for optical sensing. RSC Adv. 2015, 5, 44074–44087. [Google Scholar] [CrossRef]
- Narayanaswamy, R.; Torchilin, V.P. Hydrogels and their applications in targeted drug delivery. Molecules 2019, 24, 603. [Google Scholar] [CrossRef]
- Gong, Q.; Zhao, Y.; Qian, T.; Wang, H.; Li, Z. Functionalized hydrogels in ophthalmic applications: Ocular inflammation, corneal injuries, vitreous substitutes and intravitreal injection. Mater. Des. 2022, 224, 111277. [Google Scholar] [CrossRef]
- Long, L.; Ge, Z.; Zhang, F.; Dong, R.; Yang, L.; Chen, Z.; Tang, S.; Wang, Y. Development of injectable hyaluronic acid-based hydrogels with antioxidant activity for the treatment of corneal neovascularization. Chem. Eng. J. 2023, 478, 147147. [Google Scholar] [CrossRef]
- Zhang, K.; Liu, Y.; Shi, X.; Zhang, R.; He, Y.; Zhang, H.; Wang, W. Application of polyvinyl alcohol/chitosan copolymer hydrogels in biomedicine: A review. Int. J. Biol. Macrom. 2023, 242, 125192. [Google Scholar] [CrossRef] [PubMed]
- Alexander, A.; Ajazuddin; Khan, J.; Saraf, A.; Saraf, S. Polyethylene glycol (PEG)-Poly(N-isopropylacrylamide) (PNIPAAm) based thermosensitive injectable hydrogels for biomedical applications. Eur. J. Pharm. Biopharm. 2014, 88, 575–585. [Google Scholar] [CrossRef] [PubMed]
- Aminabhavi, T.M.; Nadagouda, M.N.; More, U.A.; Joshi, S.D.; Kularni, V.H.; Noolvi, M.N.; Kulkarni, P.V. Controlled release of therapeutics using interpenetrating polymeric network. Expert Opin. Drug Deliv. 2015, 12, 669–688. [Google Scholar] [CrossRef]
- Singh, B.; Kumar, R.; Kumar, S.; Thakur, N.; Ram, K. Design of polysaccharide gum based network copolymeric hydrogels for drug delivery and wound dressing applications. Med. Nov. Technol. Devices 2023, 20, 100262. [Google Scholar] [CrossRef]
- Singh, B.; Singh, J.; Sharma, V.; Sharma, P.; Kumar, R. Functionalization of bioactive moringa gum for designing hydrogel wound dressings. Hybrid Adv. 2023, 4, 100096. [Google Scholar] [CrossRef]
- Zong, Q.; Peng, X.; Ding, Y.; Wu, H.; Lu, C.; Ye, J.; Sun, W.; Zhang, J.; Zhai, Y. Multifunctional hydrogel wound dressing with rapid on-demand degradation property based on aliphatic polycarbonate and chitosan. Int. J. Biol. Macromol. 2023, 244, 125138. [Google Scholar] [CrossRef]
- Meng, L.; Meng, P.; Tang, B.; Zhang, Q.; Wang, Y. Water-compatible molecularly imprinted photonic hydrogels for fast screening of morphine in urine. Chin. J. Anal. Chem. 2015, 43, 490–496. [Google Scholar]
- Lorenzo, R.A.; Carro, A.M.; Concheiro, A.; Alvarez-Lorenzo, C. Stimuli-responsive materials in analytical separation. Anal. Bioanal. Chem. 2015, 407, 4927–4948. [Google Scholar] [CrossRef]
- Kamath, K.R.; Park, K. Biodegradable hydrogels in drug delivery. Adv. Drug Deliv. Rev. 1993, 11, 59–84. [Google Scholar] [CrossRef]
- Li, J.; Jia, X.; Yin, L. Hydrogel: Diversity of Structures and Applications in Food Science. Food Rev. Int. 2021, 37, 313–372. [Google Scholar] [CrossRef]
- Pernetti, M.; Malssen, K.F.; Floten, E.; Bot, A. Structuring of edible oils by alternatives to crystalline fat. Curr. Opin. Colloid Interface Sci. 2007, 12, 221–231. [Google Scholar] [CrossRef]
- Weng, L.; Gouldstone, A.; Wu, Y.; Chen, W. Mechanically strong double network photo cross linked hydrogels from N, N-dimethylacrylamide and glycidyl methacrylated hyaluronan. Biomaterial 2008, 29, 2153–2163. [Google Scholar] [CrossRef] [PubMed]
- Moura, M.R.; Aouada, F.A.; Guilherme, M.R.; Radovanovic, E.; Rubira, A.F.; Muniz, E.C. Thermo-sensitive IPN hydrogels composed of PNIPAAm gels supported on alginate-Ca2+ with LCST tailored close to human body temperature. Polym. Test. 2006, 25, 961–969. [Google Scholar] [CrossRef]
- Moura, M.R.; Guilherme, M.R.; Campese, G.M.; Radovanovic, E.; Rubira, A.F.; Muniz, E.C. Porous alginate-Ca2+ hydrogels interpenetrated with PNIPAAm networks: Interrelationship between compressive stress and pore morphology. Eur. Polym. J. 2005, 41, 2845–2852. [Google Scholar] [CrossRef]
- Carvalho, I.C.; Mansur, H.S.; Leonel, A.G.; Mansur, A.A.P.; Lobato, Z.I.P. Soft matter polysaccharide-based hydrogels as versatile bioengineered platforms for brain tissue repair and regeneration. Int. J. Biol. Macromol. 2021, 182, 1091–1111. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Li, A.; Li, D.; Guo, Y.; Sun, L. Applications of mixed polysaccharide-protein systems in fabricating multi-structures of binary food gels—A review. Trends Food Sci. Technol. 2021, 109, 197–210. [Google Scholar] [CrossRef]
- Gronwald, O.; Shinkai, S. Sugar-Integrated Gelators of Organic Solvents. Chem. Eur. J. 2001, 7, 4328–4334. [Google Scholar] [CrossRef]
- Alsaab, H.; Bonam, S.P.; Bahl, D.; Chowdhury, P.; Alexander, K.; Boddu, S.H.S. Organogels in Drug Delivery: A Special Emphasis on Pluronic Lecithin Organogels. J. Pharm. Pharm. Sci. 2016, 19, 252–273. [Google Scholar] [CrossRef]
- Terech, P.; Weiss, R.G. Low molecular mass gelators of organic liquids and properties of their gels. Chem. Rev. 1997, 97, 3133–3159. [Google Scholar] [CrossRef]
- Van, E.J.H.; Feringa, B.L. New functional materials based on self assembling organogels: From serendipity towards design. Angew. Chem. Int. Ed. 2000, 39, 2263–2266. [Google Scholar]
- Abdallah, D.J.; Weiss, R.G. n-Alkanes gel n-alkanes (and many other organic liquids). Langmuir 2000, 16, 352–355. [Google Scholar] [CrossRef]
- Vintiloiu, A.; Leroux, J.C. Organogels and their use in drug delivery—A review. J. Control. Release 2008, 125, 179–192. [Google Scholar] [CrossRef] [PubMed]
- Sahoo, S.; Kumar, N.; Bhattacharya, C.; Sagiri, S.S.; Jain, K.; Pal, K.; Ray, S.S.; Nayak, B. Organogels: Properties and Applications in Drug Delivery. Des. Monomers Polym. 2011, 14, 95–108. [Google Scholar] [CrossRef]
- Ogutcu, M.; Yilmaz, E. Oleogels of virgin olive oil with carnauba wax and monoglyceride as spreadable products. Grasas Aceites 2014, 65, e040. [Google Scholar]
- Bemer, H.L.; Limbaugh, M.; Cramer, E.D.; Harper, W.J.; Maleky, F. Vegetable organogels incorporation in cream cheese products. Food Res. Int. 2016, 85, 67–75. [Google Scholar] [CrossRef]
- Han, L.; Li, L.; Li, L.; Zhao, L.; Liu, G.Q.; Liu, X.; Wang, X. Structure and physical properties of organogels developed by sitosterol and lecithin with sunflower oil. J. Am. Oil Chem. Soc. 2014, 91, 1783–1792. [Google Scholar] [CrossRef]
- Patel, A.R.; Rajarethinem, P.S.; Gredowska, A.; Turhan, O.; Lesaffer, A.; De Vos, W.H.; Van de Walle, D.; Dewettinck, K. Edible applications of shellac oleogels: Spreads, chocolate paste and cakes. Food Funct. 2014, 5, 645–652. [Google Scholar] [CrossRef]
- Tzankov, B.; Voycheva, C.; Tosheva, A.; Stefanova, D.; Tzankova, V.; Spassova, I.; Kovacheva, D.; Avramova, K.; Tzankova, D.; Yoncheva, K. Novel oleogels for topical delivery of quercetin based on mesoporous silica MCM-41 and HMS particles. J. Drug Deliv. Sci. Technol. 2023, 86, 104727. [Google Scholar] [CrossRef]
- Wang, S.; Chen, K.; Liu, G. Monoglyceride oleogels for lipophilic bioactive delivery—Influence of self-assembled structures on stability and in vitro bioaccessibility of astaxanthin. Food Chem. 2022, 375, 131880. [Google Scholar] [CrossRef]
- Mahler, P.; Mahler, F.; Duruz, H.; Ramazzina, M.; Liguori, V.; Mautone, G. Double-blind, randomized, controlled study on the efficacy and safety of a novel diclofenac epolamine gel formulated with lecithin for the treatment of sprains, strains and contusions. Drugs Exp. Clin. Res. 2003, 29, 45–52. [Google Scholar] [PubMed]
- Martinez, R.M.; Rosado, C.; Velasco, M.V.R.; Lannes, S.C.S.; Baby, A.R. Main features and applications of organogels in cosmetics. Int. J. Cosmetic Sci. 2019, 41, 109–117. [Google Scholar] [CrossRef] [PubMed]
- Sansón, M.D.S. Development of Oils Based on High Oleic Sunflower Oil Structured by Sorbitan Monostearate and Candelilla Wax. Master’s Thesis, University of São Paulo, São Paulo, Brazil, 2019. (In Portuguese). [Google Scholar]
- Botega, D.C.Z. Development of Organogels for Application in Cold Emulsions for Cosmetic Products. Ph.D. Thesis, Estadual Univserity of Campinas, Campinas, Brazil, 2018. (In Portuguese). [Google Scholar]
- Yu, H.; Shi, K.; Liu, D.; Huang, Q. Development of a food-grade organogel with high bioaccessibility and loading of curcuminoids. Food Chem. 2012, 131, 48–54. [Google Scholar] [CrossRef]
- Kamali, E.; Sahari, M.A.; Barzegar, M.; Gavlighi, H.A. Novel oleogel formulation based on amaranth oil: Physicochemical characterization. Food Sci. Nutr. 2019, 7, 1986–1996. [Google Scholar] [CrossRef] [PubMed]
- Kim, M.; Hwang, H.S.; Jeong, S.; Lee, S. Utilization of oleogels with binary oleogelator blends for filling creams low in saturated fat. LWT 2022, 155, 112972. [Google Scholar] [CrossRef]
- O’Sullivan, C.M.; Davidovich-Pinhas, M.; Wright, A.J.; Barbut, S.; Marangoni, A.G. Ethylcellulose oleogels for lipophilic bioactive delivery—effect of oleogelation on in vitro bioaccessibility and stability of beta-carotene. Food Funct. 2017, 8, 1438–1451. [Google Scholar] [CrossRef] [PubMed]
- Oh, I.; Lee, J.; Lee, H.G.; Lee, S. Feasibility of hydroxypropyl methylcellulose oleogel as an animal fat replacer for meat patties. Food Res. Int. 2019, 122, 566–572. [Google Scholar] [CrossRef]
- Wei, G.; Xiao-lu, G.; Hai-bo, H.; Xiang, L.; Yu, X.; Jiang-Ning, H. Structural characterization of modified whey protein isolates using cold plasma treatment and its applications in emulsion oleogels. Food Chem. 2021, 356, 129703. [Google Scholar]
- Al-Saedi, Z.H.F.; Salih, Z.T.; Ahmed, K.K.; Ahmed, R.A.; Jasim, S.A. Formulation and Characterization of Oleogel as a Topical Carrier of Azithromycin. AAPS Pharm. Sci. Technol. 2023, 24, 17. [Google Scholar] [CrossRef]
- Shuai, X.; McClements, D.J.; Geng, Q.; Dai, T.; Ruan, R.; Du, L.; Liu, Y.; Chen, J. Macadamia oil-based oleogels as cocoa butter alternatives: Physical properties, oxidative stability, lipolysis, and application. Food Res. Int. 2023, 172, 113098. [Google Scholar] [CrossRef]
- Suriaini, N.; Arpi, N.; Syamsuddin, Y.; Supardan, M.D. Characteristics of palm oil-based oleogel and its potency as a shortening replacer. S. Afr. J. Chem. Eng. 2023, 43, 197–203. [Google Scholar] [CrossRef]
- Silva-Avellaneda, E.; Bauer-Estrada, K.; Prieto-Correa, R.E.; Quintanilla-Carvajal, M.X. The effect of composition, microfluidization and process parameters on formation of oleogels for ice cream applications. Sci. Rep. 2021, 11, 7161. [Google Scholar] [CrossRef] [PubMed]
- Shi, R.; Zhang, Q.; Vriesekoop, F.; Yuan, Q.; Liang, H. Preparation of Organogel with Tea Polyphenols Complex for Enhancing the Antioxidation Properties of Edible Oil. J. Agric. Food Chem. 2014, 62, 8379–8384. [Google Scholar] [CrossRef] [PubMed]
- Thakur, D.; Singh, A.; Prabhakar, P.K.; Meghwal, M.; Upadhyay, A. Optimization and characterization of soybean oil-carnauba wax oleogel. LWT 2022, 157, 113108. [Google Scholar] [CrossRef]
- Gravelle, A.J.; Davidovich-Pinhas, M.; Zetzl, A.K.; Barbut, S.; Marangoni, A.G. Influence of solvent quality on the mechanical strength of ethylcellulose oleogels. Carbohydr. Polym. 2016, 135, 169–179. [Google Scholar] [CrossRef]
- Nikiforidis, C.V.; Scholten, E. Self-assemblies of lecithin and a-tocopherol as gelators of lipid material. RSC Adv. 2014, 4, 2466–2473. [Google Scholar] [CrossRef]
- Silva, S.L.; Amaral, J.T.; Ribeiro, M.; Sebastiao, E.E.; Vargas, C.; Franzen, F.D.; Schneider, G.; Lorenzo, J.M.; Fries, L.L.M.; Cichoski, A.J.; et al. Fat replacement by oleogel rich in oleic acid and its impact on the technological, nutritional, oxidative, and sensory properties of Bologna-type sausages. Meat Sci. 2019, 149, 141–148. [Google Scholar] [CrossRef] [PubMed]
- Vilar, W.D. Química e Tecnologia dos Poliuretanos, 3rd ed.; Vilar Consultoria: Rio de Janeiro, Brazil, 2004. [Google Scholar]
- Gandolfo, F.; Bot, A.; Floöer, E. Structuring of edible oils by long-chain FA, fatty alcohols, and their mixtures. J. Am. Oil Chem. Soc. 2004, 81, 1–6. [Google Scholar] [CrossRef]
- Varrato, F. Routes to Novel Colloidal Gels. Ph.D. Thesis, École Polythechnique Fédérale de Lausanne, Lausanne, Switzerland, 2012. [Google Scholar]
- Zampouni, K.; Mouzakitis, C.K.; Lazaridou, A.; Moschakis, T.; Katsanidis, E. Physicochemical properties and microstructure of bigels formed with gelatin and k-carrageenan hydrogels and monoglycerides in olive oil oleogels. Food Hydrocolloids 2023, 140, 108636. [Google Scholar] [CrossRef]
- Mazurkeviciute, A.; Ramanauskiene, K.; Ivaskiene, M.; Grigonis, A.; Briedis, V. Topical antifungal bigels: Formulation, characterization and evaluation. Acta Pharm. 2018, 68, 223–233. [Google Scholar] [CrossRef]
- Rhee, G.J.; Woo, J.S.; Hwang, S.J.; Al, E. Topical oleo-hydrogel preparation of ketoprofen with enhanced skin permeability. Drug Dev. Ind. Pharm. 1999, 25, 717–726. [Google Scholar] [CrossRef] [PubMed]
- Bollom, M.A.; Clark, S.; Acevedo, N.C. Development and characterization of a novel soy lecithin-stearic acid and whey protein concentrate bigel system for potential edible applications. Food Hydrocolloids 2020, 101, 105570. [Google Scholar] [CrossRef]
- Hamed, R.; AbuRezeq, A.; Tarawneh, O. Development of Hydrogels, Oleogels and Bigels as Local Drug Delivery Systems for Periodontitis. Drug Dev. Ind. Pharm. 2018, 44, 1488–1497. [Google Scholar] [CrossRef] [PubMed]
- Tomczykowa, M.; Wróblewska, M.; Winnicka, K.; Wieczorek, P.; Majewski, P.; Celínska-Janowicz, K.; Sawczuk, R.; Miltyk, W.; Tryniszewska, E.; Tomczyk, M. Novel Gel Formulations as Topical Carriers for the Essential Oil of Bidens Tripartita for the Treatment of Candidiasis. Molecule 2018, 23, 2517. [Google Scholar] [CrossRef]
- Zheng, H.; Mao, L.; Cui, M.; Liu, J.; Gao, Y. Development of food-grade bigels based on κ-carrageenan hydrogel and monoglyceride oleogels as carriers for β-carotene: Roles of oleogel fraction. Food Hydrocolloids 2020, 105, 105855. [Google Scholar] [CrossRef]
- Zulfakar, M.H.; Chan, L.M.; Rehman, K.; Wai, L.K.; Heard, C.M. Coenzyme Q10-Loaded Fish Oil-Based Bigel System: Probing the Delivery Across Porcine Skin and Possible Interaction with Fish Oil Fatty Acids. AAPS Pharm. Sci. Technol. 2018, 19, 1116–1123. [Google Scholar] [CrossRef]
- Rehman, K.; Zulfakar, M.H. Novel Fish Oil-Based Bigel System for Controlled Drug Delivery and Its Influence on Immunomodulatory Activity of Imiquimod Against Skin Cancer. Pharm. Res. 2017, 34, 36–48. [Google Scholar] [CrossRef]
- Wróblewska, M.; Szyma´nska, E.; Szekalska, M.; Winnicka, K. Different Types of Gel Carriers as Metronidazole Delivery Systems to the Oral Mucosa. Polymers 2020, 12, 680. [Google Scholar] [CrossRef]
- Vergara, D.; Loza-Rodríguez, N.; Acevedo, F.; Bustamante, M.; López, O. Povidone-Iodine Loaded Bigels: Characterization and Effect as a Hand Antiseptic Agent. J. Drug Deliv. Sci. Technol. 2022, 72, 103427. [Google Scholar] [CrossRef]
- Liu, C.; Zheng, Z.; Shi, Y.; Zhang, Y.; Liu, Y. Development of low-oil emulsion gel by solidifying oil droplets: Roles of internal beeswax concentration. Food Chem. 2021, 345, 128811. [Google Scholar] [CrossRef]
- Paul, S.R.; Qureshi, D.; Yogalakshmi, Y.; Nayak, S.K.; Singh, V.K.; Syed, I.; Sarkar, P.; Pal, K. Development of Bigels Based on Stearic Acid–Rice Bran Oil Oleogels and Tamarind Gum Hydrogels for Controlled Delivery Applications. J. Surfactants Deterg. 2018, 21, 17–29. [Google Scholar] [CrossRef]
- Kodela, S.P.; Pandey, P.M.; Nayak, S.K.; Uvanesh, K.; Anis, A.; Pal, K. Novel agar-stearyl alcohol oleogel-based bigels as structured delivery vehicles. Int. J. Polym. Mater. Polym. Biomater. 2017, 66, 669–678. [Google Scholar] [CrossRef]
- Singh, V.K.; Anis, A.; Al-Zahrani, S.M.; Pradhan, D.K.; Pal, K. Molecular and Electrochemical Impedance Spectroscopic Characterization of the Carbopol Based Bigel and Its Application in Iontophoretic Delivery of Antimicrobials. Int. J. Electrochem. Sci. 2014, 9, 5049–5060. [Google Scholar] [CrossRef]
- Satapathy, S.; Singh, V.K.; Sagiri, S.S.; Agarwal, T.; Banerjee, I.; Bhattacharya, M.K.; Kumar, N.; Pal, K. Development and characterization of gelatin-based hydrogels, emulsion hydrogels, and bigels: A comparative study. J. Appl. Polym. Sci. 2015, 132. [Google Scholar] [CrossRef]
- Wakhet, S.; Singh, V.K.; Sahoo, S.; Sagiri, S.S.; Kulanthaivel, S.; Bhattacharya, M.K.; Kumar, N.; Banerjee, I.; Pal, K. Characterization of gelatin-agar based phase separated hydrogel, emulgel and bigel: A comparative study. J. Mater. Sci. Mater. Med. 2015, 26, 118. [Google Scholar] [CrossRef]
- Zhu, Q.; Gao, J.; Han, L.; Han, K.; Wei, W.; Wu, T.; Li, J.; Zhang, M. Development and characterization of novel bigels based on monoglyceride-beeswax oleogel and high acyl gellan gum hydrogel for lycopene delivery. Food Chem. 2021, 365, 130419. [Google Scholar] [CrossRef]
- Behera, B.; Dey, S.; Sharma, V.; Pal, K. Rheological and Viscoelastic Properties of Novel Sunflower Oil-Span 40-Biopolymer–Based Bigels and Their Role as a Functional Material in the Delivery of Antimicrobial Agents. Adv. Polym. Technol. 2015, 34, 21488. [Google Scholar] [CrossRef]
- Sahoo, S.; Singh, V.K.; Uvanesh, K.; Biswal, D.; Anis, A.; Rana, U.A.; Al-Zahrani, S.M.; Pal, K. Development of ionic and non-ionic natural gum-based bigels: Prospects for drug delivery application. J. Appl. Polym. Sci. 2015, 132, 42561. [Google Scholar] [CrossRef]
- Behera, B.; Singh, V.K.; Kulanthaivel, S.; Bhattacharya, M.K.; Paramanik, K.; Banerjee, I.; Pal, K. Physical and mechanical properties of sunflower oil and synthetic polymers based bigels for the delivery of nitroimidazole antibiotic—A therapeutic approach for controlled drug delivery. Eur. Polym. J. 2015, 64, 253–264. [Google Scholar] [CrossRef]
- Martinez, R.M.; Magalhães, W.V.; Silva Sufi, B.; Padovani, G.; Nazato, L.I.S.; Velasco, M.V.R.; Lannes, S.C.S.; Baby, A.R. Vitamin E-loaded bigels and emulsions: Physicochemical characterization and potential biological application. Colloid Surf. B 2021, 201, 111651. [Google Scholar] [CrossRef]
- Khelifi, I.; Saada, M.; Hayouni, E.A.; Tourette, A.; Bouajila, J.; Ksouri, R. Development and characterization of novel bi-gel-based 1, 4-naphthoquinones for topical application with antioxidant potential. Arab. J. Sci. Eng. 2020, 45, 53–61. [Google Scholar] [CrossRef]
- Loza-Rodríguez, N.; Millan-Sanchez, A.; Lopez, O. A biocompatible lipid-based bigel for topical applications. Eur. J. Pharm. Biopharm. 2023, 190, 24–34. [Google Scholar] [CrossRef] [PubMed]
- Corredor-Chaparro, M.Y.; Vargas-Riveros, D.; Mora-Huertas, C.E. Hypromellose—Collagen hydrogels/sesame oil organogel based bigels as controlled drug delivery systems. J. Drug Deliv. Sci. Technol. 2022, 75, 103637. [Google Scholar] [CrossRef]
- Cortés, N.M.; Lorenzo, G.; Califano, A.N. Food grade microemulsion systems: Sunflower oil/castor oil derivative-ethanol/water. Rheological and physicochemical analysis. Food Res. Int. 2018, 107, 41–47. [Google Scholar] [CrossRef]
Gel Type [Refs] | Hydrogels [5,6,33,34,35,36,37] | Organogels [38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58] | Bigels [38,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74] |
---|---|---|---|
Definition | Water trapped in a 3-D network using a hydrophilic gelling agent (hydrophilic polymer) | Organic liquid trapped in a 3-D network by using an organogelator (LWM and HWM) | Organogel dispersed in hydrogel system (O/W); hydrogel dispersed in organogel system (W/O); or bi-continuous systems |
Advantages |
|
|
|
Disadvantages |
|
|
|
Bio-sourced Molecules | water, biopolymers (polysaccharides and proteins), natural polymers (such as gelatine or agar) | fatty acid, edible oils, waxes, fatty alcohols, carbohydrates, vitamin derivatives, peptides, steroids, and derivative molecules | Water, edible oils, lipids, biopolymers, others arising from the structures of organogels, and hydrogels |
Examples of Biomolecules/Biomaterials used in gel formation | Gelatin, agar, chitosan, sodium alginate, cellulose, hyaluronic acid, pectin, dextran, and their derivatives | stearic acid, 12-hydroxystearic acid, palm oil, sesame oil, soybean oil, canola oil, rice bran oil, cetyl alcohol, stearyl alcohol, ethylene glycol, propylene glycol, glycerol, among others. | guar gum, gelatin, sodium alginate, xanthan gum, agar, protein, pectin, starch, maltodextrin, olive oil, sunflower oil, castor oil, soybean oil, among others |
Solvent | Organogelator | Oil Content % (w/w) | Ref. |
---|---|---|---|
Amaranth oil | mixture of palmitic and stearic acid | 88–93 | [157] |
Canola oil | candelilla wax (CDW) and glycerol monostearate (GMS) | 90 | [158] |
Canola oil | Ethylcellulose | 90 | [159] |
Canola oil | hydrosypropylmethyl cellulose (HPMC) | 94 | [160] |
Coconut and peanut oil | whey protein isolate | 95 | [161] |
Coconut, canola and corn oil | Monostearin | 95 | [156] |
Grapeseed oil | GMS, palmitic acid, Compritol 888, and stearic acid | 85 | [162] |
Macadamia oil | GMS | >85 | [163] |
Palm oil | Beeswax | >95 | [164] |
Palm oil | whey protein isolate | 12–20 | [165] |
Peanut oil | stearic acid/stearic alcohol | 75–95 | [166] |
Soybean oil | sugarcane wax (SCW) and candelilla wax (CLW) | 96–99 | [42] |
Soybean oil | carnauba wax (CRW) | 85–95 | [167] |
Soybean oil | Ethylcellulose | 88 | [168] |
Sunflower oil | lecithin and α-tocopherol | 75 | [169] |
Sunflower oil | Gelatin (pork skin) | 20 | [170] |
Oleogel | Hydrogel | Incorporated Active | Application | Ref | |
---|---|---|---|---|---|
Solvent | Organogelator | Hydrogelator | |||
Almond oil | Sorbitan monosterate | Carbopol | Ketoprofen | drug delivery | [66] |
Caprylic + capric triglycerides | Compritol | Carbopol | Ibuprofen [47] | periodontitis | [178] |
Castor oil | Tween 80 | Sodium alginate | Essential oil of Bidens tripartita | antifungal treatment | [179] |
Corn oil | glycerol monoglyceride | Dispersion of 𝜅-carrageenan | β-Carotene | food bioactive delivery | [180] |
Fish oil | Beeswax | Carbopol | Coenzyme Q10 | cosmetic | [181] |
Fish oil | Beeswax | Carbopol | Imiquimod | transdermal | [182] |
Fish oil | Beeswax | Sodium alginate, Hydroxypropyl- methylcellulose | Imiquimod | drug delivery | [59] |
Linseed oil | Tween 80 | Sodium alginate | Metronidazole | periodontitis | [183] |
Liquid paraffin | Cholesterol | Carbopol | - | cosmetic | [72] |
Olive oil | Beeswax | Hydroxyethyl- cellulose | Povidone-iodine | transdermal | [184] |
Rapeseed oil | glycerol monoglyceride + beeswax | Xanthan | Curcumin | food bioactive delivery | [185] |
Rice bran oil | Stearic acid | Tamarind gum | Moxifloxacin | drug delivery | [186] |
Rice bran oil | Stearyl alcohol | Agar | Ciprofloxacin hydrochroride | drug delivery | [187] |
Sesame oil | Sorbitan monostearate | Carbopol | Metronidazole | drug delivery | [74,188] |
Sesame oil | Sorbitan monostearate | Gelatin | Ciprofloxacin | drug delivery | [189] |
Sesame oil | Sorbitan monostearate | Guar gum | Ciprofloxacin | drug delivery | [190] |
Soybean oil | Sorbitan monostearate, cetyl alcohol, lecithin-pluronic | Hydroxypropyl-methylcellulose | Diltiazem hydrochloride | drug delivery | [64] |
Soybean oil | Stearic acid | Agar + gelatin | Metronidazole | drug delivery | [67] |
Soybean oil | glycerol monoglyceride + beeswax | Gellan gum | Lycopene | food bioactive delivery | [191] |
Sunflower oil | Sorbitan monopalmitate | Gelatin, whey protein | Metronidazole | drug delivery | [60] |
Sunflower oil | Sorbitan monopalmitate | Guar gum, acacia gum, xanthan gum | Metronidazole | drug delivery | [192] |
Sunflower oil | Sorbitan monopalmitate + tween 80 | Guar gum, acacia Gum | Metronidazole | drug delivery | [193] |
Sunflower oil | Sorbitan monopalmitate | Polyvinyl alcohol, polyvinyl pyrrolidone | Metronidazole | drug delivery | [194] |
Sunflower oil or mineral oil | candelilla wax or 1,2–hydroxstearic acid | Sodium polyacrylate | Vitamin E | food bioactive delivery | [195] |
Sweet almond oil | Sorbitan monosterate | Alginate | Cetavlon | drug delivery | [196] |
Sweet almond oil | Sorbitan monosterate | Carbopol | - | Cosmetic | [72] |
Isopropyl palmitate + soya lecithin | pluronic lecithin | Hydroxy propyl methyl cellulose | Ketoprofen | drug delivery | [62] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Souza, M.E.B.C.; Pereira, C.G. Green Materials for Gel Formulation: Recent Advances, Main Features and Applications. Physchem 2024, 4, 3-24. https://doi.org/10.3390/physchem4010002
Souza MEBC, Pereira CG. Green Materials for Gel Formulation: Recent Advances, Main Features and Applications. Physchem. 2024; 4(1):3-24. https://doi.org/10.3390/physchem4010002
Chicago/Turabian StyleSouza, Maria Eduarda B. C., and Camila G. Pereira. 2024. "Green Materials for Gel Formulation: Recent Advances, Main Features and Applications" Physchem 4, no. 1: 3-24. https://doi.org/10.3390/physchem4010002