An Explicit Form of Ramp Function
Abstract
:1. Introduction
2. Towards an Explicit Form of Ramp Function
2.1. Theorem
2.2. Proof
- (i)
- (ii)
- (iii)
3. Discussion
4. Conclusions
Funding
Data Availability Statement
Conflicts of Interest
References
- Abramowitz, M.; Stegun, I.A. Handbook of Mathematical Functions with Formulas, Graphs and Mathematical Tables; Dover Publications INC: Mineola, NY, USA, 1972. [Google Scholar]
- Kanwal, R.P. Generalized Functions Theory and Technique: Theory and Technique, 2nd ed.; Birkhäuser: Boston, MA, USA, 1998. [Google Scholar]
- Peled, A.; Liu, B. Digital Signal Processing: Theory, Design, and Implementation; Wiley: New York, NY, USA, 1976. [Google Scholar]
- Spanier, J.; Oldham, K.B. The Unit-Step u(x-a) and Related Functions Ch. 8 from: An Atlas of Functions; Hemisphere: Washington, DC, USA, 1987; pp. 63–69. [Google Scholar]
- Palani, S. The z-Transform Analysis of Discrete Time Signals and Systems, Chapter 9 in Signals and Systems, 2nd ed.; Springer Nature: Cham, Switzerland, 2022; pp. 921–1055. [Google Scholar]
- Oppenheim, A.; Willsky, A.; Nawab, S. Signals and Systems; Prentice Hall: Upper Saddle River, NJ, USA, 1997; Volume 2. [Google Scholar]
- Haykin, S.; Van Veen, B. Signals and Systems, 2nd ed.; John Wiley & Sons (Asia) Pte. Ltd.: Singapore, 2004. [Google Scholar]
- Siebert, W.M. Circuits, Signals, and Systems; MIT Press: Cambridge, MA, USA, 1986. [Google Scholar]
- Singh, S. Proposed Concept of Signals for Ramp Functions. In Proceedings of the World Congress on Engineering and Computer Science 2010 Vol I WCECS 2010, San Francisco, CA, USA, 20–22 October 2010. [Google Scholar]
- Sayood, K. Special Functions. In Signals and Systems. Synthesis Lectures on Signal Processing; Springer: Cham, Switzerland, 2021. [Google Scholar] [CrossRef]
- Chen, W.K. The Electrical Engineering Handbook; Elsevier: Amsterdam, The Netherlands, 2004. [Google Scholar]
- Bell, W.W. Special Functions for Scientists and Engineers; Courier Corporation: North Chelmsford, MA, USA, 2004. [Google Scholar]
- Murphy, K. Explicit Forms of Discontinuous Functions the Dirac Delta and Irreducible Forms (Preprint). Available online: https://www.academia.edu/11704122/Explicit_Forms_of_Discontinuous_Functions_the_Dirac_Delta_and_Irreducible_Forms (accessed on 1 November 2023).
- Venetis, J.C. An analytic exact form of the unit step function. Math. Stat. 2014, 2, 235–237. [Google Scholar] [CrossRef]
- Venetis, J.C. An Explicit Form of Heaviside Step Function. Preprints 2021. [Google Scholar] [CrossRef]
- Tu, L.W. Smooth Functions on a Euclidean Space. In An Introduction to Manifolds; Universitext; Springer: New York, NY, USA, 2008. [Google Scholar] [CrossRef]
- Sobot, R. Special Functions. In Engineering Mathematics by Example; Springer: Cham, Switzerland, 2021. [Google Scholar] [CrossRef]
- Xu, X. Nonlinear trigonometric approximation and the Dirac delta function. J. Comput. Appl. Math. 2006, 209, 234–245. [Google Scholar] [CrossRef]
- Li, Y.T.; Wong, R. Integral and Series Representations of the Dirac Delta Function. Commun. Pure Appl. Anal. 2013, arXiv:1303.1943. [Google Scholar]
- Venetis, J.C. An Explicit Expression of the Unit Step Function. Int. Rev. Electr. Eng. 2023, 18, 83–87. [Google Scholar] [CrossRef]
- Cao, F.; Chen, Z. The construction and approximation of a class of neural networks operators with ramp functions. J. Comput. Anal. Appl. 2012, 14, 101–112. [Google Scholar]
- Costarelli, D. Interpolation by neural network operators activated by ramp functions. J. Math. Anal. Appl. 2014, 419, 574–582. [Google Scholar] [CrossRef]
- Zhang, L. Implementation of fixed-point neuron models with threshold, ramp and sigmoid activation functions. IOP Conf. Ser. Mater. Sci. Eng. 2017, 224, 12–54. [Google Scholar] [CrossRef]
- Costarelli, D. Approximate solutions of Volterra integral equations by an interpolation method based on ramp functions. Comp. Appl. Math. 2019, 38, 159. [Google Scholar] [CrossRef]
- Qian, Y.; Yu, D. Neural network interpolation operators activated by smooth ramp functions. Anal. Appl. 2022, 20, 791–813. [Google Scholar] [CrossRef]
- Giorgio, V.; Hovd, M. Quadratic programming with ramp functions and fast online QP-MPC solutions. Automatica 2023, 153, 111011. [Google Scholar]
- Morten, H.; Valmorbida, G. Solving LP-MPC problems using ramp functions. In Proceedings of the 2023 IEEE Conference on Control Technology and Applications (CCTA), Bridgetown, Barbados, 16–18 August 2023; IEEE: Piscataway, NJ, USA, 2023. [Google Scholar]
- Laudani, R.; Falsone, G. Response probability density function for multi-cracked beams with uncertain amplitude and position of cracks. Appl. Math. Model. 2021, 99, 14–26. [Google Scholar] [CrossRef]
- Keisuke, Y.; Ji, J. Substructure elimination method for evaluating bending vibration of beams. Mech. Eng. J. 2023, 10, 23-00293. [Google Scholar]
- Yavari, A.; Sarkani, S.; Moyer, E.T. On applications of generalized functions to beam bending problems. Int. J. Solids Struct. 2000, 37, 5675–5705. [Google Scholar] [CrossRef]
- Yavari, A.; Sarkani, S.; Reddy, J.N. On nonuniform Euler-Bernoulli and Timoshenko beams with jump discontinuities: Application of distribution theory. Int. J. Solids Struct. 2001, 38, 8389–8406. [Google Scholar] [CrossRef]
- Yavari, A.; Sarkani, S.; Reddy, J.N. Generalized solutions for beams with jump discontinuities on elastic foundations. Arch. Appl. Mech. 2001, 71, 625–639. [Google Scholar] [CrossRef]
- Ecsedi, I.; Dluhi, K. Use of discontinuity functions to obtain the frequency equation. J. Comput. Appl. Mech. 2004, 5, 193–199. [Google Scholar]
- Elishakoff, I.; Kaplunov, J.; Nolde, E. Celebrating the centenary of Timoshenko’s study of effects of shear deformation and rotary inertia. Appl. Mech. Rev. 2015, 67, 1067. [Google Scholar] [CrossRef]
- Failla, G. On the dynamics of viscoelastic discontinuous beams. J. Sound Vib. 2014, 60, 52–63. [Google Scholar] [CrossRef]
- Failla, G.; Santini, A. On Euler-Bernoulli discontinuous beam solutions via uniform-beam Green’s functions. Int. J. Solids Struct. 2007, 44, 7666–7687. [Google Scholar] [CrossRef]
- Failla, G.; Santini, A. A solution method for Euler-Bernoulli vibrating discontinuous beams. Mech. Res. Commun. 2008, 35, 517–529. [Google Scholar] [CrossRef]
- Failla, G.; Santini, A.; Spanos, P.D. Closed-form solutions for stochastic Euler-Bernoulli discontinuous beams. In Proceedings of the Congresso XVIII Congresso Nazionale AIMETA, Brescia, Italy, 11–14 September 2007. [Google Scholar]
- Falsone, G. The use of generalized functions in the discontinuous beam bending differential equations. Int. J. Eng. Educ. 2002, 18, 337–343. [Google Scholar]
- Falsone, G.; Settineri, D. An Euler-Bernoulli-like finite element method for Timoshenko beams. Mech. Res. Commun. 2011, 38, 12–16. [Google Scholar] [CrossRef]
- Falsone, G.; Settineri, D. Exact stochastic solution of beams subjected to delta-correlated loads. Struct. Eng. Mech. 2013, 4, 307–329. [Google Scholar] [CrossRef]
- Chen, H.Y.; Wang, Y.C.; Wang, D.; Xie, K. Effect of Axial Load and Thermal Heating on Dynamic Characteristics of Axially Moving Timoshenko Beam. Int. J. Struct. Stab. Dyn. 2023, 23, 2350191. [Google Scholar] [CrossRef]
- Chen, Q.; Chen, X.; Ma, Y.; Dong, G. Transient waves generated by a vertical flexible wavemaker plate with a general ramp function. Appl. Ocean. Res. 2020, 103, 102335. [Google Scholar] [CrossRef]
- Li, D.M.; Liu, J.H.; Nie, F.H.; Featherston, C.A.; Wu, Z. On tracking arbitrary crack path with complex variable meshless methods. Comput. Methods Appl. Mech. Eng. 2022, 399, 115402. [Google Scholar] [CrossRef]
- Groff, L.B.; Valmorbida, G.; da Silva, J.M.G., Jr. An implicit representation for the analysis of piecewise affine discrete-time systems. Automatica 2023, 147, 110730. [Google Scholar] [CrossRef]
- Cabral, L.; Valmorbida, G.; da Silva, J.G., Jr. Robust stability analysis of continuous PWA systems. IFAC-PapersOnLine 2023, 56, 556–561. [Google Scholar] [CrossRef]
- Nasuda, Y. Harmonic Oscillator with a Step and/or a Ramp. J. Phys. Conf. Ser. 2023, 2667, 012068. [Google Scholar] [CrossRef]
- Johansson, N.; Ronchi, E.; Scozzari, R.; Fronterrè, M. The use of multi-zone modelling for tunnel fires. Tunn. Undergr. Space Technol. 2023, 134, 104996. [Google Scholar] [CrossRef]
- Krüger, C.; Curoşu, V.; Loehnert, S. An extended phase-field approach for the efficient simulation of fatigue fracture processes. Int. J. Numer. Methods Eng. 2024, 125, e7422. [Google Scholar] [CrossRef]
- Tu, X.L.; Zhang, J.; Gambaruto, A.M.; Wilcox, P.D. Finite element modeling strategy for determining directivity of thermoelastically generated laser ultrasound. Ultrasonics 2024, 138, 107252. [Google Scholar] [CrossRef] [PubMed]
- Borwein, J.M.; Skerritt, M.P. Calculus. In An Introduction to Modern Mathematical Computing; Springer Undergraduate Texts in Mathematics and Technology; Springer: New York, NY, USA, 2011. [Google Scholar]
- Mathai, A.M.; Haubold, H.J. Special Functions for Applied Scientists; Springer: New York, NY, USA, 2008. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Venetis, J.C. An Explicit Form of Ramp Function. AppliedMath 2024, 4, 442-451. https://doi.org/10.3390/appliedmath4020023
Venetis JC. An Explicit Form of Ramp Function. AppliedMath. 2024; 4(2):442-451. https://doi.org/10.3390/appliedmath4020023
Chicago/Turabian StyleVenetis, John Constantine. 2024. "An Explicit Form of Ramp Function" AppliedMath 4, no. 2: 442-451. https://doi.org/10.3390/appliedmath4020023