A Survey of CNN-Based Approaches for Crack Detection in Solar PV Modules: Current Trends and Future Directions
Abstract
:1. Introduction
2. Solar PV Module Cracks Impact on PV Output Power
3. Solar PV Module Cracks Detection Techniques
4. Fundamentals of Convolutional Neural Networks (CNN)
5. CNN-Based Crack Detection Methods
6. Discussion and Comparative Analysis
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Hassan, Q.; Abdulateef, A.M.; Hafedh, S.A.; Al-samari, A.; Abdulateef, J.; Sameen, A.Z.; Salman, H.M.; Al-Jiboory, A.K.; Wieteska, S.; Jaszczur, M. Renewable Energy-to-Green Hydrogen: A Review of Main Resources Routes, Processes and Evaluation. Int. J. Hydrogen Energy 2023, 48, 17383–17408. [Google Scholar] [CrossRef]
- Osman, A.I.; Chen, L.; Yang, M.; Msigwa, G.; Farghali, M.; Fawzy, S.; Rooney, D.W.; Yap, P.S. Cost, Environmental Impact, and Resilience of Renewable Energy under a Changing Climate: A Review. Environ. Chem. Lett. 2022, 21, 741–764. [Google Scholar] [CrossRef]
- Zhang, H.; Yu, Z.; Zhu, C.; Yang, R.; Yan, B.; Jiang, G. Green or Not? Environmental Challenges from Photovoltaic Technology. Environ. Pollut. 2023, 320, 121066. [Google Scholar] [CrossRef] [PubMed]
- Kumar, P.P.; Rahman, A.; Nuvvula, R.S.S.; Colak, I.; Muyeen, S.M.; Shezan, S.A.; Shafiullah, G.M.; Ishraque, M.F.; Hossain, M.A.; Alsaif, F.; et al. Using Energy Conservation-Based Demand-Side Management to Optimize an Off-Grid Integrated Renewable Energy System Using Different Battery Technologies. Sustainability 2023, 15, 10137. [Google Scholar] [CrossRef]
- Hossain, M.I.; Ali, A.; Bermudez Benito, V.; Figgis, B.; Aïssa, B. Anti-Soiling Coatings for Enhancement of PV Panel Performance in Desert Environment: A Critical Review and Market Overview. Materials 2022, 15, 7139. [Google Scholar] [CrossRef] [PubMed]
- Lin, K.M.; Lin, H.H.; Lin, Y.T. Development of a CNN-Based Hierarchical Inspection System for Detecting Defects on Electroluminescence Images of Single-Crystal Silicon Photovoltaic Modules. Mater. Today Commun. 2022, 31, 103796. [Google Scholar] [CrossRef]
- Verdhan, V. Image Classification Using LeNet. In Computer Vision Using Deep Learning; Apress: Berkeley, CA, USA, 2021; pp. 67–101. [Google Scholar] [CrossRef]
- Arora, D.; Garg, M.; Gupta, M. Diving Deep in Deep Convolutional Neural Network. In Proceedings of the IEEE 2020 2nd International Conference on Advances in Computing, Communication Control and Networking, ICACCCN, Greater Noida, India, 18–19 December 2020; pp. 749–751. [Google Scholar] [CrossRef]
- Tamilselvi, M.; Karthikeyan, S.; Ramkumar, G. Face Recognition Based on Spatio Angular Using Visual Geometric Group-19 Convolutional Neural Network. Ann. Rom. Soc. Cell Biol. 2021, 25, 2131–2138. [Google Scholar]
- Souaidi, M.; El Ansari, M. Multi-Scale Hybrid Network for Polyp Detection in Wireless Capsule Endoscopy and Colonoscopy Images. Diagnostics 2022, 12, 2030. [Google Scholar] [CrossRef]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Identity Mappings in Deep Residual Networks. In Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), Proceedings of the Computer Vision–ECCV 2016: 14th European Conference, Amsterdam, The Netherlands, 11–14 October 2016; Springer International Publishing: Berlin/Heidelberg, Germany, 2016; pp. 630–645. [Google Scholar] [CrossRef]
- Rasool, M.; Ismail, N.A.; Al-Dhaqm, A.; Yafooz, W.M.S.; Alsaeedi, A. A Novel Approach for Classifying Brain Tumours Combining a SqueezeNet Model with SVM and Fine-Tuning. Electronics 2022, 12, 149. [Google Scholar] [CrossRef]
- Lew, A.J.; Yu, C.H.; Hsu, Y.C.; Buehler, M.J. Deep Learning Model to Predict Fracture Mechanisms of Graphene. Npj 2d Mater. Appl. 2021, 5, 48. [Google Scholar] [CrossRef]
- Chang, Z.; Wan, Z.; Xu, Y.; Schlangen, E.; Šavija, B. Convolutional Neural Network for Predicting Crack Pattern and Stress-Crack Width Curve of Air-Void Structure in 3D Printed Concrete. Eng. Fract. Mech. 2022, 271, 108624. [Google Scholar] [CrossRef]
- Elapolu, M.; Shishir, M.; Science, A.T.-C.M. A Novel Approach for Studying Crack Propagation in Polycrystalline Graphene Using Machine Learning Algorithms; Elsevier: Amsterdam, The Netherlands, 2022. [Google Scholar]
- Perera, R.; Guzzetti, D.; Agrawal, V. Graph Neural Networks for Simulating Crack Coalescence and Propagation in Brittle Materials. Comput. Methods Appl. Mech. Eng. 2022, 395, 115021. [Google Scholar] [CrossRef]
- Abdelhamid, M.; Singh, R.; Omar, M. Review of Microcrack Detection Techniques for Silicon Solar Cells. IEEE J. Photovolt. 2014, 4, 514–524. [Google Scholar] [CrossRef]
- Tao, W.; Bao, G.; Liu, J.; Zhang, M.; Wang, L.; Dai, J.; Huang, Y.; Du, Y.; Zhang, Z.; Jin, H. Thermo-Mechanical Stress Modeling and Experimental Investigation on Micro-Cracks in Tilling Ribbon Photovoltaic Modules during Lamination and Mechanical Load Test. Sol. Energy 2023, 249, 521–531. [Google Scholar] [CrossRef]
- Moazami Goodarzi, D.; Lauri, J.; Putaala, J.; Nousiainen, O.; Fabritius, T. Eddy Current Soldering of Solar Cell Ribbons under a Layer of Glass. Sol. Energy Mater. Sol. Cells 2023, 259, 112427. [Google Scholar] [CrossRef]
- Afridi, M.; Kumar, A.; Mahmood, F.; TamizhMani, G.S. Comparative Analysis of Hotspot Stress Endurance in Pristine and Thermal Cycled Prestressed Glass–Glass Photovoltaic Modules. Sustainability 2023, 15, 12131. [Google Scholar] [CrossRef]
- Badran, G.; Dhimish, M. Potential Induced Degradation in Photovoltaic Modules: A Review of the Latest Research and Developments. Solar 2023, 3, 322–346. [Google Scholar] [CrossRef]
- Dhimish, M.; Lazaridis, P.I. An Empirical Investigation on the Correlation between Solar Cell Cracks and Hotspots. Sci. Rep. 2021, 11, 23961. [Google Scholar] [CrossRef]
- Dhimish, M.; Hu, Y. Rapid Testing on the Effect of Cracks on Solar Cells Output Power Performance and Thermal Operation. Sci. Rep. 2022, 12, 12168. [Google Scholar] [CrossRef]
- Wang, W.; Yang, Z.; Ding, J.; Kong, J.; Li, X. Improving Water-Resistance of Inverted Flexible Perovskite Solar Cells via Tailoring the Top Electron-Selective Layers. Sol. Energy Mater. Sol. Cells 2022, 238, 111609. [Google Scholar] [CrossRef]
- Shakibi, H.; Afzal, S.; Shokri, A.; Sobhani, B. Utilization of a Phase Change Material with Metal Foam for the Performance Improvement of the Photovoltaic Cells. J. Energy Storage 2022, 51, 104466. [Google Scholar] [CrossRef]
- Kaymak, M.K.; Şahin, A.D. Floating and Terrestrial Photovoltaic Systems Comparison under Extreme Weather Conditions. Int. J. Energy Res. 2022, 46, 20719–20727. [Google Scholar] [CrossRef]
- Monastyrskyi, A.; Ostapenko, S.; Polupan, O.; Maeckel, H.; Vazquez, M. Resonance Ultrasonic Vibrations for In-Line Crack Detection in Silicon Wafers and Solar Cells. In Proceedings of the Conference Record of the IEEE Photovoltaic Specialists Conference, San Diego, CA, USA, 11–16 May 2008. [Google Scholar] [CrossRef]
- Zikulnig, J.; Muhleisen, W.; Simor, M.; Gevaerts, V.; De Biasio, M. Photoluminescence Imaging for Industrial Quality Control during Manufacturing of Thin-Film Solar Cells. In Proceedings of the IEEE Sensors, Dallas, TX, USA, 30 October–2 November 2022. [Google Scholar] [CrossRef]
- Waqar Akram, M.; Li, G.; Jin, Y.; Chen, X. Failures of Photovoltaic Modules and Their Detection: A Review. Appl. Energy 2022, 313, 118822. [Google Scholar] [CrossRef]
- Kunz, O.; Schlipf, J.; Fladung, A.; Khoo, Y.S.; Bedrich, K.; Trupke, T.; Hameiri, Z. Outdoor Luminescence Imaging of Field-Deployed PV Modules. Prog. Energy 2022, 4, 042014. [Google Scholar] [CrossRef]
- Redondo Plaza, A.; Ngungu, V.N.; Gallardo Saavedra, S.; Morales Aragonés, J.I.; Alonso Gómez, V.; Obregón, L.J.; Hernández Callejo, L. Partial Photoluminescence Imaging for Inspection of Photovoltaic Cells: Artificial LED Excitation and Sunlight Excitation. Energies 2023, 16, 4531. [Google Scholar] [CrossRef]
- Hassan, S.; Dhimish, M. Review of Current State-of-the-Art Research on Photovoltaic Soiling, Anti-Reflective Coating, and Solar Roads Deployment Supported by a Pilot Experiment on a PV Road. Energies 2022, 15, 9620. [Google Scholar] [CrossRef]
- Terrados, C.; González-Francés, D.; Alonso, V.; González, M.A.; Jiménez, J.; Martínez, O. Comparison of Outdoor and Indoor PL and EL Images in Si Solar Cells and Panels for Defect Detection and Classification. J. Electron. Mater. 2023, 52, 5189–5198. [Google Scholar] [CrossRef]
- Zhang, M.; Yin, L. Solar Cell Surface Defect Detection Based on Improved YOLO V5. IEEE Access 2022, 10, 80804–80815. [Google Scholar] [CrossRef]
- Koester, L.; Lindig, S.; Louwen, A.; Astigarraga, A.; Manzolini, G.; Moser, D. Review of Photovoltaic Module Degradation, Field Inspection Techniques and Techno-Economic Assessment. Renew. Sustain. Energy Rev. 2022, 165, 112616. [Google Scholar] [CrossRef]
- Meribout, M.; Kumar Tiwari, V.; Pablo Peña Herrera, J.; Najeeb Mahfoudh Awadh Baobaid, A. Solar Panel Inspection Techniques and Prospects. Measurement 2023, 209, 112466. [Google Scholar] [CrossRef]
- Morando, L.; Recchiuto, C.T.; Calla, J.; Scuteri, P.; Sgorbissa, A. Thermal and Visual Tracking of Photovoltaic Plants for Autonomous UAV Inspection. Drones 2022, 6, 347. [Google Scholar] [CrossRef]
- Bodnár, I.; Matusz-Kalász, D.; Boros, R.R.; Lipták, R. Condition Assessment of Solar Modules by Flash Test and Electroluminescence Test. Coatings 2021, 11, 1361. [Google Scholar] [CrossRef]
- Starzyński, J.; Zawadzki, P.; Harańczyk, D. Machine Learning in Solar Plants Inspection Automation. Energies 2022, 15, 5966. [Google Scholar] [CrossRef]
- Nazzicari, N.; Biscarini, F. Stacked Kinship CNN vs. GBLUP for Genomic Predictions of Additive and Complex Continuous Phenotypes. Sci. Rep. 2022, 12, 19889. [Google Scholar] [CrossRef] [PubMed]
- Tapeh, A.T.G.; Naser, M.Z. Artificial Intelligence, Machine Learning, and Deep Learning in Structural Engineering: A Scientometrics Review of Trends and Best Practices. Arch. Comput. Methods Eng. 2022, 30, 115–159. [Google Scholar] [CrossRef]
- Kim, E.C.; Hong, S.J.; Kim, S.Y.; Lee, C.H.; Kim, S.; Kim, H.J.; Kim, G. CNN-Based Object Detection and Growth Estimation of Plum Fruit (Prunus mume) Using RGB and Depth Imaging Techniques. Sci. Rep. 2022, 12, 20796. [Google Scholar] [CrossRef] [PubMed]
- Meng, J.; Zhuang, C.; Chen, P.; Wahib, M.; Schmidt, B.; Wang, X.; Lan, H.; Wu, D.; Deng, M.; Wei, Y.; et al. Automatic Generation of High-Performance Convolution Kernels on ARM CPUs for Deep Learning. IEEE Trans. Parallel Distrib. Syst. 2022, 33, 2885–2899. [Google Scholar] [CrossRef]
- Liu, W.; Wu, G.; Ren, F.; Kang, X. DFF-ResNet: An Insect Pest Recognition Model Based on Residual Networks. Big Data Min. Anal. 2020, 3, 300–310. [Google Scholar] [CrossRef]
- Sharma, V.; Mir, R.N. A Comprehensive and Systematic Look up into Deep Learning Based Object Detection Techniques: A Review. Comput. Sci. Rev. 2020, 38, 100301. [Google Scholar] [CrossRef]
- Su, Y.; Jiang, X. Prediction of Tide Level Based on Variable Weight Combination of LightGBM and CNN-BiGRU Model. Sci. Rep. 2023, 13, 9. [Google Scholar] [CrossRef]
- Hwang, I.C.; Choi, D.; Choi, Y.J.; Ju, L.; Kim, M.; Hong, J.E.; Lee, H.J.; Yoon, Y.E.; Park, J.B.; Lee, S.P.; et al. Differential Diagnosis of Common Etiologies of Left Ventricular Hypertrophy Using a Hybrid CNN-LSTM Model. Sci. Rep. 2022, 12, 9. [Google Scholar] [CrossRef] [PubMed]
- Fathi, A.; Masoudi, S.F. Combining CNN and Q-Learning for Increasing the Accuracy of Lost Gamma Source Finding. Sci. Rep. 2022, 12, 2644. [Google Scholar] [CrossRef] [PubMed]
- Cho, H.; Kim, Y.; Lee, E.; Choi, D.; Lee, Y.; Rhee, W. Basic Enhancement Strategies When Using Bayesian Optimization for Hyperparameter Tuning of Deep Neural Networks. IEEE Access 2020, 8, 52588–52608. [Google Scholar] [CrossRef]
- Shinde, B.; Wang, S.; Dehghanian, P.; Babakmehr, M. Real-Time Detection of Critical Generators in Power Systems: A Deep Learning HCP Approach. In Proceedings of the 2020 IEEE Texas Power and Energy Conference, TPEC, College Station, TX, USA, 6–7 February 2020. [Google Scholar] [CrossRef]
- Pei, Y.; Huang, Y.; Zou, Q.; Zhang, X.; Wang, S. Effects of Image Degradation and Degradation Removal to CNN-Based Image Classification. IEEE Trans. Pattern Anal. Mach. Intell. 2021, 43, 1239–1253. [Google Scholar] [CrossRef] [PubMed]
- Yadav, S.S.; Jadhav, S.M. Deep Convolutional Neural Network Based Medical Image Classification for Disease Diagnosis. J. Big Data 2019, 6, 113. [Google Scholar] [CrossRef]
- Ben Fredj, H.; Bouguezzi, S.; Souani, C. Face Recognition in Unconstrained Environment with CNN. Vis. Comput. 2021, 37, 217–226. [Google Scholar] [CrossRef]
- Li, X.; Xie, Z.; Deng, X.; Wu, Y.; Pi, Y. Traffic Sign Detection Based on Improved Faster R-CNN for Autonomous Driving. J. Supercomput. 2022, 78, 7982–8002. [Google Scholar] [CrossRef]
- Rajpurohit, K.; Sandhan, T. Improved Pneumonia Diagnosis of Radiological Images Using Hybrid Loss with Conventional CNN. In Proceedings of the 2023 International Conference on Microwave, Optical, and Communication Engineering (ICMOCE), Bhubaneswar, India, 26–28 May 2023; pp. 1–4. [Google Scholar] [CrossRef]
- Poonkuntran, S.; Abinaya, V.; Moorthi, S.M.; Oza, M.P. Efficient Classification of Satellite Image with Hybrid Approach Using CNN-CA. Int. J. Comput. Commun. Control. 2022, 17, 4485. [Google Scholar] [CrossRef]
- Stahl, R.; Hoffman, A.; Mueller-Gritschneder, D.; Gerstlauer, A.; Schlichtmann, U. DeeperThings: Fully Distributed CNN Inference on Resource-Constrained Edge Devices. Int. J. Parallel Program. 2021, 49, 600–624. [Google Scholar] [CrossRef]
- Hassan, S.; Dhimish, M. Enhancing Solar Photovoltaic Modules Quality Assurance through Convolutional Neural Network-Aided Automated Defect Detection. Renew. Energy 2023, 219, 119389. [Google Scholar] [CrossRef]
- Wang, Z.; Xie, X.; Zhao, Q.; Shi, G. Filter Clustering for Compressing CNN Model with Better Feature Diversity. In IEEE Transactions on Circuits and Systems for Video Technology; IEEE: Piscataway, NJ, USA, 2022. [Google Scholar] [CrossRef]
- Bhusal, A.; Alsadoon, A.; Prasad, P.W.C.; Alsalami, N.; Rashid, T.A. Deep Learning for Sleep Stages Classification: Modified Rectified Linear Unit Activation Function and Modified Orthogonal Weight Initialisation. Multimed. Tools Appl. 2022, 81, 9855–9874. [Google Scholar] [CrossRef]
- Jeevanantham, R.; Vignesh, D.; Abdul, R.A.; Angeljulie, J. Deep Learning Based Plant Diseases Monitoring and Detection System. In Proceedings of the 2nd International Conference on Sustainable Computing and Data Communication Systems, ICSCDS 2023—Proceedings, Erode, India, 23–25 March 2023; pp. 360–365. [Google Scholar] [CrossRef]
- Waheed, S.R.; Rahim, M.S.M.; Suaib, N.M.; Salim, A.A. CNN Deep Learning-Based Image to Vector Depiction. Multimed. Tools Appl. 2023, 82, 20283–20302. [Google Scholar] [CrossRef]
- Fan, C.L.; Chung, Y.J. Design and Optimization of CNN Architecture to Identify the Types of Damage Imagery. Mathematics 2022, 10, 3483. [Google Scholar] [CrossRef]
- Shahzad, A.; Raza, M.; Shah, J.H.; Sharif, M.; Nayak, R.S. Categorizing White Blood Cells by Utilizing Deep Features of Proposed 4B-AdditionNet-Based CNN Network with Ant Colony Optimization. Complex Intell. Syst. 2022, 8, 3143–3159. [Google Scholar] [CrossRef]
- Hussain, M.; Al-Aqrabi, H.; Hill, R. PV-CrackNet Architecture for Filter Induced Augmentation and Micro-Cracks Detection within a Photovoltaic Manufacturing Facility. Energies 2022, 15, 8667. [Google Scholar] [CrossRef]
- Akram, M.W.; Li, G.; Jin, Y.; Chen, X.; Zhu, C.; Zhao, X.; Khaliq, A.; Faheem, M.; Ahmad, A. CNN Based Automatic Detection of Photovoltaic Cell Defects in Electroluminescence Images. Energy 2019, 189, 116319. [Google Scholar] [CrossRef]
- Verma, S.; Scholar, P.D.; Kumar Taluja, H.; Chaudhary, P. Automatic Defect Classification of Electro-Luminescence Images of Photovoltaic Modules Based on Deep Learning CNN. Int. J. Mech. Eng. 2022, 6, 974–5823. [Google Scholar]
- Rahman, M.R.; Tabassum, S.; Haque, E.; Nishat, M.M.; Faisal, F.; Hossain, E. CNN-Based Deep Learning Approach for Micro-Crack Detection of Solar Panels. In Proceedings of the 2021 3rd International Conference on Sustainable Technologies for Industry 4.0, STI, Dhaka, Bangladesh, 8–19 December 2021. [Google Scholar] [CrossRef]
- Et-taleby, A.; Chaibi, Y.; Allouhi, A.; Boussetta, M.; Benslimane, M. A Combined Convolutional Neural Network Model and Support Vector Machine Technique for Fault Detection and Classification Based on Electroluminescence Images of Photovoltaic Modules. Sustain. Energy Grids Netw. 2022, 32, 100946. [Google Scholar] [CrossRef]
- Korkmaz, D.; Acikgoz, H. An Efficient Fault Classification Method in Solar Photovoltaic Modules Using Transfer Learning and Multi-Scale Convolutional Neural Network. Eng. Appl. Artif. Intell. 2022, 113, 104959. [Google Scholar] [CrossRef]
- Liu, L.; Zhu, Y.; Ur Rahman, M.R.; Zhao, P.; Chen, H. Surface Defect Detection of Solar Cells Based on Feature Pyramid Network and GA-Faster-RCNN. In Proceedings of the 2nd China Symposium on Cognitive Computing and Hybrid Intelligence, CCHI, Xi’an, China, 21–22 September 2019; pp. 292–297. [Google Scholar] [CrossRef]
- Hassan, S.; Dhimish, M. Dual Spin Max Pooling Convolutional Neural Network for Solar Cell Crack Detection. Sci. Rep. 2023, 13, 11099. [Google Scholar] [CrossRef]
- Le, M.; Le, D.V.; Ha Thi Vu, H. Thermal Inspection of Photovoltaic Modules with Deep Convolutional Neural Networks on Edge Devices in AUV. Measurement 2023, 218, 113135. [Google Scholar] [CrossRef]
- Benghanem, M.; Mellit, A.; Moussaoui, C. Embedded Hybrid Model (CNN–ML) for Fault Diagnosis of Photovoltaic Modules Using Thermographic Images. Sustainability 2023, 15, 7811. [Google Scholar] [CrossRef]
- Fu, H.; Cheng, G. Convolutional Neural Network Based Efficient Detector for Multicrystalline Photovoltaic Cells Defect Detection. Energy Sources Part A Recovery Util. Environ. Eff. 2023, 45, 8686–8702. [Google Scholar] [CrossRef]
- Kellil, N.; Aissat, A.; Mellit, A. Fault Diagnosis of Photovoltaic Modules Using Deep Neural Networks and Infrared Images under Algerian Climatic Conditions. Energy 2023, 263, 125902. [Google Scholar] [CrossRef]
- Pratt, L.; Govender, D.; Klein, R. Defect Detection and Quantification in Electroluminescence Images of Solar PV Modules Using U-Net Semantic Segmentation. Renew. Energy 2021, 178, 1211–1222. [Google Scholar] [CrossRef]
- Le, M.; Van Su, L.; Dang Khoa, N.; Dao, V.D.; Ngoc Hung, V.; Hong Ha Thi, V. Remote Anomaly Detection and Classification of Solar Photovoltaic Modules Based on Deep Neural Network. Sustain. Energy Technol. Assess. 2021, 48, 101545. [Google Scholar] [CrossRef]
- Hwang, H.P.C.; Ku, C.C.Y.; Chan, J.C.C. Detection of Malfunctioning Photovoltaic Modules Based on Machine Learning Algorithms. IEEE Access 2021, 9, 37210–37219. [Google Scholar] [CrossRef]
- Akram, M.W.; Li, G.; Jin, Y.; Chen, X.; Zhu, C.; Ahmad, A. Automatic Detection of Photovoltaic Module Defects in Infrared Images with Isolated and Develop-Model Transfer Deep Learning. Sol. Energy 2020, 198, 175–186. [Google Scholar] [CrossRef]
- Zhao, Y.; Zhan, K.; Wang, Z.; Shen, W. Deep Learning-Based Automatic Detection of Multitype Defects in Photovoltaic Modules and Application in Real Production Line. Prog. Photovolt. Res. Appl. 2021, 29, 471–484. [Google Scholar] [CrossRef]
- Chen, H.; Hu, Q.; Zhai, B.; Chen, H.; Liu, K. A Robust Weakly Supervised Learning of Deep Conv-Nets for Surface Defect Inspection. Neural Comput. Appl. 2020, 32, 11229–11244. [Google Scholar] [CrossRef]
Layer Name | Function | References |
---|---|---|
Input layer | Indicates the dimensions of the input image or volume, such as its height and width and the number of color channels. | [57] |
Convolutional layer | Consists of filters learned during the processing process and is smaller than the actual image. | [58] |
Normalization layer | maintains regularity and avoids excess fitting, while simultaneously speeding up computation by the CNN | [59] |
Rectified Linear Unit (ReLU) | Eliminates all negative digits and substitutes their values with zero. | [60] |
Pooling layer | Retrieves values from segments of images bounded by kernels. | [61] |
Fully connected layer | Linearly transforms input vectors are linearly using weight matrices in order to solve problems. | [62] |
SoftMax function Layer | Predicts a distribution of probabilities in a multiple-classification situation | [63] |
Classification layer | Utilizes a set of rules to classify inputs into categories. | [64] |
Architecture | Accuracy of Pre-Trained Networks and Ensemble Learning for Monocrystalline Solar Panels | Accuracy of Pre-Trained Networks and Ensemble Learning for Polycrystalline Solar Panels |
---|---|---|
VGG-16 | 90.9% | 91.2% |
VGG-19 | 96.9% | 88.2% |
Inception-v2 | 96.9% | 88.2% |
ResNet50-v2 | 90.9% | 88.2% |
ResNet-v2 | 96.9% | 94.1% |
Xception | 93.9% | 85.3% |
Ensemble | 96.9% | 97.1% |
CNN Algorithm | Description | Suitable for Detecting | Detection Accuracy | Detection Speed | Network Complexity |
---|---|---|---|---|---|
GoogLeNet | A deep CNN architecture with inception modules | Various types of cracks including microcracks, corner cracks, and edge cracks due to its ability to capture multi-scale features. | High | Moderate | Moderate |
SqueezeNet | A lightweight CNN architecture with fire modules | Surface-level cracks and defects. It efficiently processes images, making it suitable for real-time detection in large-scale PV installations. | Moderate | High | Low |
ResNet-50 | A deep CNN architecture with residual connections | Complex cracks and defects. Its deep structure allows it to capture intricate details and patterns in the images. | High | Moderate | High |
DarkNet-53 | A deep CNN architecture used in YOLO (You Only Look Once) object detection | Both micro- and macro-level cracks. It provides efficient object detection, which is crucial for identifying various types of cracks. | High | Moderate | High |
VGG-19 | A deep CNN architecture with 19 layers | Macro-level cracks and defects. Its depth allows it to capture significant features indicative of larger cracks. | High | Moderate | High |
AlexNet | A deep CNN architecture with 8 layers | Surface-level cracks and defects. It can efficiently process images and is suitable for real-time detection in large-scale PV installations. | Moderate | High | Moderate |
Inception-v3 | A deep CNN architecture with inception modules | Various types of cracks including microcracks, corner cracks, and edge cracks due to its ability to capture multi-scale features. | High | Moderate | Moderate |
Reference | Year | Architecture | Description | Dataset Size | Accuracy |
---|---|---|---|---|---|
[72] | 2023 | Custom | DSMP: three layers of convolutional connected with double layers of max pooling | 300 | 96.97% |
[73] | 2023 | Custom | A total of four blocks of convolutional layers, with each block having two 2D convolutional layers | 20,000 | 85.35% |
[74] | 2023 | Custom | A hybrid model based on CNNs and SVMs | 8548 | 94% |
[75] | 2023 | ELCN-YOLOv7 | Long-Range Convolutional Network (ELCN) module, designed to enhance defect-detection capabilities in EL images of PV cells, combined with YOLOv7 | 4500 | 94.34 |
[76] | 2023 | Custom | Three convolutional layers connected with three layers of max pooling. | - | 99.80% |
VGG-16 | Fine-tuned VGG-16 | 99.91% | |||
[69] | 2022 | SVM-VGG-16 | Hybrid model of pre-trained VGG-16 and Support vector machine | 2624 | 99.49% |
[71] | 2022 | R-CNN | Faster R-CNN modified to improve its accuracy by adding a feature pyramid network (FPN) | 5000 | 94.62% |
[65] | 2022 | Custom | CNN Architecture composed of two convolutional layers by connecting filter-induced augmentation(FIA) | 340 | 97.42% |
[68] | 2021 | Six Pre-trained architectures and combining them for ensemble learning | Six pre-trained networks: VGG-16, VGG-19, Inception- v2, ResNet50-v2, Resnet-v2 and Xception, assessed individually and aggregated by ensemble learning. | 2624 | VGG-16-91.2% ResNet-V2- 94.1% Ensemble 97.1% |
[77] | 2021 | U-NET | A semantic-segmentation model based on the u-net architecture for EL image analysis of PV modules | 30 | - |
[78] | 2021 | Custom | Multi-scale CNN networks, each built based on different techniques | 20,000 | 94.4% |
[79] | 2021 | Custom | CNN composed of multiple convolutional layers, pooling layers, rectified linear unit (ReLU) layers, loss layers and fully connected layers | 684 | 99% |
[80] | 2020 | Custom | Four layers of convolutional layers with 3 × 3 filters connected to four layers with max pooling | 893 | 99.23% |
[81] | 2020 | Mask-RCNN with ResNet | CNN architecture developed by Connecting RCNN to fine-tuned pre-trained ResNet | 5983 | 97.3% |
[82] | 2020 | Custom CNN with Random Forest | CNN architecture developed from four convolutional layers connected to four layers of max pooling by changing the fully connected layers to Random Forest | 11,939 | 98.14% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hassan, S.; Dhimish, M. A Survey of CNN-Based Approaches for Crack Detection in Solar PV Modules: Current Trends and Future Directions. Solar 2023, 3, 663-683. https://doi.org/10.3390/solar3040036
Hassan S, Dhimish M. A Survey of CNN-Based Approaches for Crack Detection in Solar PV Modules: Current Trends and Future Directions. Solar. 2023; 3(4):663-683. https://doi.org/10.3390/solar3040036
Chicago/Turabian StyleHassan, Sharmarke, and Mahmoud Dhimish. 2023. "A Survey of CNN-Based Approaches for Crack Detection in Solar PV Modules: Current Trends and Future Directions" Solar 3, no. 4: 663-683. https://doi.org/10.3390/solar3040036