Transcriptomic Investigation in CRISPR/Cas9-Mediated GRIK1-, GRIK2-, and GRIK4-Gene-Knockout Human Neuroblastoma Cells
Abstract
:1. Introduction
2. Results
2.1. Generation of the Isogenic Kainate-Receptor-Gene-Knockout (KO) SH-SY5Y Cell Lines with CRISPR/Cas9 Editing
2.2. RNA-seq of the GRIK1-KO, GRIK2-KO, GRIK4-KO SH-SY5Y Cell Lines
2.3. Confirmation of Schizophrenia-Associated Genes in GRIK1-KO, GRIK2-KO, and GRIK4-KO SH-SY5Y Cell Lines with RT-qPCR
2.4. Cell Morphology of GRIK1-KO, GRIK2-KO, and GRIK4-KO SH-SY5Y Differentiated Cell Lines
3. Discussion
3.1. Genetic Deletion of GRIK1, GRIK2, and GRIK4 Disturbed Several Signal Pathways and Was Involved in Neuropsychiatric Disorders
3.2. Synaptic Membrane and Schizophrenia-Associated Genes in GRIK1-KO, GRIK2-KO, and GRIK4-KO SH-SY5Y Cells
3.3. F-Actin Abnormalities in GRIK1-KO, GRIK2-KO, and GRIK4-KO SH-SY5Y Cells
4. Materials and Methods
4.1. CRISPR/Cas9-Directed Genome Editing of the Isogenic SH-SY5Y Cell Lines and a Single Edited Cell Isolation
4.2. Human Cell Line Identification
4.3. Total RNA Preparation, RNA-seq, DEG Identification, Bioinformatic Analysis, and Real-Time Quantitative PCR (RT-qPCR)
4.4. Differentiation of the SH-SY5Y Cells
4.5. Immunocytochemistry
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Yuan, H.; Low, C.M.; Moody, O.A.; Jenkins, A.; Traynelis, S.F. Ionotropic GABA and glutamate receptor mutations and Human neurologic diseases. Mol. Pharmacol. 2015, 88, 203–217. [Google Scholar] [CrossRef] [PubMed]
- Iasevoli, F.; Tomasetti, C.; Buonaguro, E.F.; de Bartolomeis, A. The glutamatergic aspects of schizophrenia molecular pathophysiology: Role of the postsynaptic density, and implications for treatment. Curr. Neuropharmacol. 2014, 12, 219–238. [Google Scholar] [CrossRef] [PubMed]
- Traynelis, S.F.; Wollmuth, L.P.; McBain, C.J.; Menniti, F.S.; Vance, K.M.; Ogden, K.K.; Hansen, K.B.; Yuan, H.; Myers, S.J.; Dingledine, R. Glutamate receptor ion channels: Structure, regulation, and function. Pharmacol. Rev. 2010, 62, 405–496. [Google Scholar] [CrossRef] [PubMed]
- Bortolotto, Z.A.; Clarke, V.R.; Delany, C.M.; Parry, M.C.; Smolders, I.; Vignes, M.; Ho, K.H.; Miu, P.; Brinton, B.T.; Fantaske, R.; et al. Kainate receptors are involved in synaptic plasticity. Nature 1999, 402, 297–301. [Google Scholar] [CrossRef] [PubMed]
- Hollmann, M.; Heinemann, S. Cloned Glutamate Receptors. Annu. Rev. Neurosci. 1994, 17, 31–108. [Google Scholar] [CrossRef] [PubMed]
- Collingridge, G.L.; Olsen, R.W.; Peters, J.; Spedding, M. A nomenclature for ligand-gated ion channels. Neuropharmacology 2009, 56, 2–5. [Google Scholar] [CrossRef] [PubMed]
- Kamboj, R.K.; Schoepp, D.D.; Nutt, S.; Shekter, L.; Korczak, B.; True, R.A.; Rampersad, V.; Zimmerman, D.M.; Wosnick, M.A. Molecular cloning, expression, and pharmacological characterization of humEAA1, a human kainate receptor subunit. J. Neurochem. 1994, 62, 1–9. [Google Scholar] [CrossRef]
- Lowry, E.R.; Kruyer, A.; Norris, E.H.; Cederroth, C.R.; Strickland, S. The GluK4 kainate receptor subunit regulates memory, mood, and excitotoxic neurodegeneration. Neuroscience 2013, 235, 215–225. [Google Scholar] [CrossRef]
- Scarr, E.; Beneyto, M.; Meador-Woodruff, J.H.; Dean, B. Cortical glutamatergic markers in schizophrenia. Neuropsychopharmacology 2005, 30, 1521–1531. [Google Scholar] [CrossRef]
- Beneyto, M.; Kristiansen, L.V.; Oni-Orisan, A.; McCullumsmith, R.E.; Meador-Woodruff, J.H. Abnormal glutamate receptor expression in the medial temporal lobe in schizophrenia and mood disorders. Neuropsychopharmacology 2007, 32, 1888–1902. [Google Scholar] [CrossRef]
- Meador-Woodruff, J.H.; Davis, K.L.; Haroutunian, V. Abnormal kainate receptor expression in prefrontal cortex in schizophrenia. Neuropsychopharmacology 2001, 24, 545–552. [Google Scholar] [CrossRef] [PubMed]
- Porter, R.H.; Eastwood, S.L.; Harrison, P.J. Distribution of kainate receptor subunit mRNAs in human hippocampus, neocortex and cerebellum, and bilateral reduction of hippocampal GluR6 and KA2 transcripts in schizophrenia. Brain Res. 1997, 751, 217–231. [Google Scholar] [CrossRef] [PubMed]
- Sokolov, B.P. Expression of NMDAR1, GluR1, GluR7, and KA1 glutamate receptor mRNAs is decreased in frontal cortex of “neuroleptic-free” schizophrenics: Evidence on reversible up-regulation by typical neuroleptics. J. Neurochem. 1998, 71, 2454–2464. [Google Scholar] [CrossRef] [PubMed]
- Kirov, G.; Pocklington, A.J.; Holmans, P.; Ivanov, D.; Ikeda, M.; Ruderfer, D.; Moran, J.; Chambert, K.; Toncheva, D.; Georgieva, L.; et al. De novo CNV analysis implicates specific abnormalities of postsynaptic signalling complexes in the pathogenesis of schizophrenia. Mol. Psychiatry 2012, 17, 142–153. [Google Scholar] [CrossRef] [PubMed]
- Begni, S.; Popoli, M.; Moraschi, S.; Bignotti, S.; Tura, G.B.; Gennarelli, M. Association between the ionotropic glutamate receptor kainate 3 (GRIK3) ser310ala polymorphism and schizophrenia. Mol. Psychiatry 2002, 7, 416–418. [Google Scholar] [CrossRef]
- Djurovic, S.; Kahler, A.K.; Kulle, B.; Jonsson, E.G.; Agartz, I.; Le Hellard, S.; Hall, H.; Jakobsen, K.D.; Hansen, T.; Melle, I.; et al. A possible association between schizophrenia and GRIK3 polymorphisms in a multicenter sample of Scandinavian origin (SCOPE). Schizophr. Res. 2009, 107, 242–248. [Google Scholar] [CrossRef]
- Shibata, H.; Joo, A.; Fujii, Y.; Tani, A.; Makino, C.; Hirata, N.; Kikuta, R.; Ninomiya, H.; Tashiro, N.; Fukumaki, Y. Association study of polymorphisms in the GluR5 kainate receptor gene (GRIK1) with schizophrenia. Psychiatr. Genet. 2001, 11, 139–144. [Google Scholar] [CrossRef]
- Pickard, B.S.; Malloy, M.P.; Christoforou, A.; Thomson, P.A.; Evans, K.L.; Morris, S.W.; Hampson, M.; Porteous, D.J.; Blackwood, D.H.; Muir, W.J. Cytogenetic and genetic evidence supports a role for the kainate-type glutamate receptor gene, GRIK4, in schizophrenia and bipolar disorder. Mol. Psychiatry 2006, 11, 847–857. [Google Scholar] [CrossRef]
- Hu, T.M.; Wu, C.L.; Hsu, S.H.; Tsai, H.Y.; Cheng, F.Y.; Cheng, M.C. Ultrarare loss-of-function mutations in the genes encoding the ionotropic glutamate receptors of kainate subtypes associated with schizophrenia disrupt the interaction with PSD95. J. Pers. Med. 2022, 12, 783. [Google Scholar] [CrossRef]
- Kurishev, A.O.; Karpov, D.S.; Nadolinskaia, N.I.; Goncharenko, A.V.; Golimbet, V.E. CRISPR/Cas-based approaches to study schizophrenia and other neurodevelopmental disorders. Int. J. Mol. Sci. 2023, 24, 241. [Google Scholar] [CrossRef]
- Fischer, M.; Kaech, S.; Wagner, U.; Brinkhaus, H.; Matus, A. Glutamate receptors regulate actin-based plasticity in dendritic spines. Nat. Neurosci. 2000, 3, 887–894. [Google Scholar] [CrossRef]
- Christensen, R.N.; Ha, B.K.; Sun, F.; Bresnahan, J.C.; Beattie, M.S. Kainate induces rapid redistribution of the actin cytoskeleton in ameboid microglia. J. Neurosci. Res. 2006, 84, 170–181. [Google Scholar] [CrossRef]
- Yang, L.; Yang, J.L.; Byrne, S.; Pan, J.; Church, G.M. CRISPR/Cas9-directed genome editing of cultured cells. Curr. Protoc. Mol. Biol. 2014, 107, 31.1.1–31.1.17. [Google Scholar] [CrossRef]
- Ran, F.A.; Hsu, P.D.; Wright, J.; Agarwala, V.; Scott, D.A.; Zhang, F. Genome engineering using the CRISPR-Cas9 system. Nat. Protoc. 2013, 8, 2281–2308. [Google Scholar] [CrossRef]
- Pennisi, E. The CRISPR craze. Science 2013, 341, 833–836. [Google Scholar] [CrossRef]
- Shah, R.R.; Cholewa-Waclaw, J.; Davies, F.C.; Paton, K.M.; Chaligne, R.; Heard, E.; Abbott, C.M.; Bird, A.P. Efficient and versatile CRISPR engineering of human neurons in culture to model neurological disorders. Wellcome Open Res. 2016, 1, 13. [Google Scholar] [CrossRef]
- Pham, X.; Song, G.; Lao, S.; Goff, L.; Zhu, H.; Valle, D.; Avramopoulos, D. The DPYSL2 gene connects mTOR and schizophrenia. Transl. Psychiatry 2016, 6, e933. [Google Scholar] [CrossRef] [PubMed]
- Wang, P.; Lin, M.; Pedrosa, E.; Hrabovsky, A.; Zhang, Z.; Guo, W.; Lachman, H.M.; Zheng, D. CRISPR/Cas9-mediated heterozygous knockout of the autism gene CHD8 and characterization of its transcriptional networks in neurodevelopment. Mol. Autism. 2015, 6, 55. [Google Scholar] [CrossRef] [PubMed]
- Kizner, V.; Naujock, M.; Fischer, S.; Jager, S.; Reich, S.; Schlotthauer, I.; Zuckschwerdt, K.; Geiger, T.; Hildebrandt, T.; Lawless, N.; et al. CRISPR/Cas9-mediated knockout of the neuropsychiatric risk gene KCTD13 causes developmental deficits in Human cortical neurons derived from induced pluripotent stem cells. Mol. Neurobiol. 2020, 57, 616–634. [Google Scholar] [CrossRef] [PubMed]
- Nagalakshmi, U.; Waern, K.; Snyder, M. RNA-Seq: A method for comprehensive transcriptome analysis. Curr. Protoc. Mol. Biol. 2010, 89, 4.11.1–4.11.13. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Kahraman, O.; Haselwandter, C.A. Stochastic lattice model of synaptic membrane protein domains. Phys. Rev. E 2017, 95, 052406. [Google Scholar] [CrossRef]
- Chuang, Y.A.; Hu, T.M.; Chen, C.H.; Hsu, S.H.; Tsai, H.Y.; Cheng, M.C. Rare mutations and hypermethylation of the ARC gene associated with schizophrenia. Schizophr. Res. 2016, 176, 106–113. [Google Scholar] [CrossRef]
- Purcell, S.M.; Moran, J.L.; Fromer, M.; Ruderfer, D.; Solovieff, N.; Roussos, P.; O’Dushlaine, C.; Chambert, K.; Bergen, S.E.; Kahler, A.; et al. A polygenic burden of rare disruptive mutations in schizophrenia. Nature 2014, 506, 185–190. [Google Scholar] [CrossRef]
- Rees, E.; Carrera, N.; Morgan, J.; Hambridge, K.; Escott-Price, V.; Pocklington, A.J.; Richards, A.L.; Pardiñas, A.F.; McDonald, C.; Donohoe, G.; et al. Targeted sequencing of 10,198 samples confirms abnormalities in neuronal activity and implicates voltage-gated sodium channels in schizophrenia pathogenesis. Biol. Psychiatry 2019, 85, 554–562. [Google Scholar] [CrossRef]
- Wang, Y.Y.; Hsu, S.H.; Tsai, H.Y.; Cheng, F.Y.; Cheng, M.C. Transcriptomic and proteomic analysis of CRISPR/Cas9-mediated ARC-knockout HEK293 cells. Int. J. Mol. Sci. 2022, 23, 4498. [Google Scholar] [CrossRef] [PubMed]
- Ibrahim, H.M.; Hogg, A.J., Jr.; Healy, D.J.; Haroutunian, V.; Davis, K.L.; Meador-Woodruff, J.H. Ionotropic glutamate receptor binding and subunit mRNA expression in thalamic nuclei in schizophrenia. Am. J. Psychiatry 2000, 157, 1811–1823. [Google Scholar] [CrossRef] [PubMed]
- Lin, K.H.; Hu, T.M.; Hsu, S.H.; Tsai, H.Y.; Cheng, M.C. Identification of rare missense mutations in the glutamate ionotropic receptor AMPA type subunit genes in schizophrenia. Psychiatr. Genet. 2023, 33, 20–25. [Google Scholar] [CrossRef] [PubMed]
- Frajman, A.; Maggio, N.; Muler, I.; Haroutunian, V.; Katsel, P.; Yitzhaky, A.; Weiser, M.; Hertzberg, L. Gene expression meta-analysis reveals the down-regulation of three GABA receptor subunits in the superior temporal gyrus of patients with schizophrenia. Schizophr. Res. 2020, 220, 29–37. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Ju, K.; Li, Z.; He, K.; Chen, J.; Wang, Q.; Yang, B.; An, L.; Feng, G.; Sun, W.; et al. Significant association of GRM7 and GRM8 genes with schizophrenia and major depressive disorder in the Han Chinese population. Eur. Neuropsychopharmacol. 2016, 26, 136–146. [Google Scholar] [CrossRef] [PubMed]
- Yamada, K.; Iwayama, Y.; Toyota, T.; Ohnishi, T.; Ohba, H.; Maekawa, M.; Yoshikawa, T. Association study of the KCNJ3 gene as a susceptibility candidate for schizophrenia in the Chinese population. Hum. Genet. 2012, 131, 443–451. [Google Scholar] [CrossRef]
- Dhingra, S.; Yadav, J.; Kumar, J. Structure, function, and regulation of the kainate receptor. Subcell. Biochem. 2022, 99, 317–350. [Google Scholar] [CrossRef] [PubMed]
- Mehta, S.; Wu, H.; Garner, C.C.; Marshall, J. Molecular mechanisms regulating the differential association of kainate receptor subunits with SAP90/PSD-95 and SAP97. J. Biol. Chem. 2001, 276, 16092–16099. [Google Scholar] [CrossRef] [PubMed]
- Lerma, J.; Marques, J.M. Kainate receptors in health and disease. Neuron 2013, 80, 292–311. [Google Scholar] [CrossRef] [PubMed]
- Koromina, M.; Flitton, M.; Blockley, A.; Mellor, I.R.; Knight, H.M. Damaging coding variants within kainate receptor channel genes are enriched in individuals with schizophrenia, autism and intellectual disabilities. Sci. Rep. 2019, 9, 19215. [Google Scholar] [CrossRef] [PubMed]
- McGlashan, T.H.; Hoffman, R.E. Schizophrenia as a disorder of developmentally reduced synaptic connectivity. Arch. Gen. Psychiatry 2000, 57, 637–648. [Google Scholar] [CrossRef] [PubMed]
- Glantz, L.A.; Lewis, D.A. Decreased dendritic spine density on prefrontal cortical pyramidal neurons in schizophrenia. Arch. Gen. Psychiatry 2000, 57, 65–73. [Google Scholar] [CrossRef]
- Hotulainen, P.; Hoogenraad, C.C. Actin in dendritic spines: Connecting dynamics to function. J. Cell Biol. 2010, 189, 619–629. [Google Scholar] [CrossRef]
- Matus, A. Actin-based plasticity in dendritic spines. Science 2000, 290, 754–758. [Google Scholar] [CrossRef]
- Mattila, P.K.; Lappalainen, P. Filopodia: Molecular architecture and cellular functions. Nat. Rev. Mol. Cell Biol. 2008, 9, 446–454. [Google Scholar] [CrossRef]
- Bhambhvani, H.P.; Mueller, T.M.; Simmons, M.S.; Meador-Woodruff, J.H. Actin polymerization is reduced in the anterior cingulate cortex of elderly patients with schizophrenia. Transl. Psychiatry 2017, 7, 1278. [Google Scholar] [CrossRef]
- Kimoto, S.; Hashimoto, T.; Berry, K.J.; Tsubomoto, M.; Yamaguchi, Y.; Enwright, J.F.; Chen, K.; Kawabata, R.; Kikuchi, M.; Kishimoto, T.; et al. Expression of actin- and oxidative phosphorylation-related transcripts across the cortical visuospatial working memory network in unaffected comparison and schizophrenia subjects. Neuropsychopharmacology 2022, 47, 2061–2070. [Google Scholar] [CrossRef]
- Glausier, J.R.; Lewis, D.A. Dendritic spine pathology in schizophrenia. Neuroscience 2013, 251, 90–107. [Google Scholar] [CrossRef]
- Kanehisa, M.; Sato, Y.; Furumichi, M.; Morishima, K.; Tanabe, M. New approach for understanding genome variations in KEGG. Nucleic Acids Res. 2019, 47, D590–D595. [Google Scholar] [CrossRef] [PubMed]
- Piñero, J.; Ramírez-Anguita, J.M.; Saüch-Pitarch, J.; Ronzano, F.; Centeno, E.; Sanz, F.; Furlong, L.I. The DisGeNET knowledge platform for disease genomics: 2019 update. Nucleic Acids Res. 2020, 48, D845–D855. [Google Scholar] [CrossRef] [PubMed]
- Hu, T.M.; Chung, H.S.; Ping, L.Y.; Hsu, S.H.; Tsai, H.Y.; Chen, S.J.; Cheng, M.C. Differential expression of multiple disease-related protein groups induced by valproic acid in Human SH-SY5Y neuroblastoma cells. Brain Sci. 2020, 10, 545. [Google Scholar] [CrossRef] [PubMed]
Group | Gene Count | Gene IDs | Adjusted p Value |
---|---|---|---|
GRIK1-KO vs. WT | 49 | LRRC7, SNCAIP, ACTN2, CHRNA3, IGSF9B, ERC1, RPH3A, NRCAM, GABRP, NRP1, SLC8A3, RIMS4, SLC6A2, APBA1, OPRD1, PCDH17, IQSEC3, GRIA3, FLRT3, KCNC1, CHRM3, CNTN6, LRP4, ARRB1, DLG5, GRIA4, GRIP1, SORCS3, LHFPL4, CACNA1D, CHRNB2, NTNG1, KCNJ9, LRRTM1, KCNJ3, ADORA1, GPER1, PRRT2, NSG1, DAG1, GRM8, GRID1, CHRM5, DCC, INSYN2A, NTNG2, ARC, DMD, GABBR1 | 0.00022 |
GRIK2-KO vs. WT | 62 | SNCAIP, ACTN2, IGSF9B, ERC1, LZTS3, RPH3A, NRCAM, GABRP, SLC8A3, RIMS4, GLRA2, CBLN1, SLC6A2, GRIN2D, APBA1, GRM6, CSPG5, STRN, OPRD1, DLGAP3, PCDH17, GRIA2, GRIA3, FLRT3, PRKCG, ADORA2A, KCNC1, SYT11, CNTN6, ARRB1, KCNH1, LRRC4C, ITGB1, DLG5, PTPRO, GRIA4, GRIP1, PSD3, SORCS3, CACNA1D, CLSTN2, CHRNB2, NTNG1, KCNJ3, ADORA1, GRIK2, GPER1, RAPSN, PRRT2, CTNNB1, NSG1, CDH2, DAG1, ZNRF2, GRID1, CHRM5, DCC, PCDHB13, PJA2, GABBR1, GRID2IP, GABRQ | 6.32 × 10−5 |
GRIK4-KO vs. WT | 116 | ITGA3, ADAM22, SYT7, GABRA3, ANK1, ATP2B4, SNCAIP, SNAP91, SYT1, ATP2B1, CACNG4, GPC4, ACTN2, ERC1, GABRP, NRP1, SLC8A3, SYP, DRP2, CBLN1, SLC6A2, STX1A, DNM1, NEURL1, CNTNAP1, OPRM1, CSPG5, ADAM23, OPRD1, DLGAP3, PLPPR4, PCDH17, GRIA2, IQSEC3, SLITRK3, GRIA3, PRKCG, LRFN1, KCNC1, UNC13A, SYNE1, PRR7, SLC6A11, SNAP25, SYT11, CHRM3, EPHB2, CNTN6, ANXA1, ARRB1, FXYD6, SLC16A3, KCNH1, GRIP2, TMEM108, LRRTM2, NLGN4X, DRD2, HTR3B, GRIK4, ITGB1, CACNA1C, DLG5, NRGN, GRIP1, PSD3, SORCS3, LRFN2, LHFPL4, ATP2B2, CACNA1D, DGKI, KCNB1, CHRNB2, SHANK1, SHANK2, NTNG1, NCSTN, KCNJ3, PDLIM5, ADORA1, GRIK2, FABP5, GPER1, GABRB3, CACNG2, CTNNB1, NSG1, NLGN1, SLC30A1, CDH2, KCND3, CLSTN1, SYNPO, DAG1, RIMS2, GRIN1, KCNA2, KCTD12, CHRM2, GABRG3, SLC8A1, KCTD16, CHRM5, PCDHB13, ERC2, GABRD, NLGN3, NTNG2, SLC6A9, SIPA1L1, DNM3, DLGAP2, ARC, PJA2, GABRQ | 8.41 × 10−18 |
Term | Concept ID | Gene Count | Gene IDs | p Value |
---|---|---|---|---|
GRIK1-KO vs. WT | ||||
Schizophrenia | C0036341 | 40 | GSK3B, BTG1, ABCB1, CHAT, GSTT2, ADARB1, THBS1, AGER, PCDH17, ERBB3, CCND1, GRM8, PLXNA2, MAGEC1, ST3GAL1, GRIA3, GRIA4, JAG2, GSTM2, JUN, GABBR1, GRID1, BCL11A, BDNF, ST8SIA2, PDE4D, PLEKHA6, GFRA3, MSS51, ESR2, GNAO1, CACNB2, ALDH3A1, EML5, CALY, BCL2, ESAM, CHRFAM7A, PDE7B, ASTN2 | 7.08 × 10−5 |
Mental Depression | C0011570 | 13 | GSK3B, ABCB1, GRID1, BDNF, DUSP1, PDE4D, CHAT, PER2, PER3, ERBB3, A2M, GRIA3, ATF3 | 0.01597 |
Major Depressive Disorder | C1269683 | 12 | GSK3B, ABCB1, TEF, ERBB3, CCND1, BDNF, NTM, PEA15, BDKRB2, RAPGEF5, CD34, ESR2 | 0.02756 |
Bipolar Disorder | C0005586 | 19 | GSK3B, GRID1, BDNF, CNTN6, ST8SIA2, STARD9, CACNA1D, ADARB1, PER2, CACNB2, PER3, ERBB3, BDKRB2, BCL2, CHRFAM7A, RAPGEF5, ASTN2, ST3GAL1, GRIA3 | 0.03086 |
GRIK2-KO vs. WT | ||||
Unipolar Depression | C0041696 | 17 | GRIA2, GSK3B, ENPEP, OXTR, ABCB1, RAPH1, GJA1, PINK1, TEF, CCND1, PEA15, GNB1, BDKRB2, GNB3, GHRL, RAPGEF5, CD34 | 0.00899 |
Major Depressive Disorder | C1269683 | 16 | GRIA2, GSK3B, ENPEP, OXTR, ABCB1, RAPH1, NR4A1, GJA1, PINK1, TEF, CCND1, PEA15, BDKRB2, GNB3, RAPGEF5, CD34 | 0.011333 |
Schizophrenia | C0036341 | 41 | GRIA2, GSK3B, OXTR, ABCB1, GSTT2, GRIK2, ADARB1, AGER, PCDH17, ALS2CL, CCND1, CTSK, PLXNA2, ST3GAL1, GRIA3, GRIA4, JAG2, GABRQ, GSTM2, GABBR1, GRID1, BCL11A, ST8SIA2, PDE4D, PLEKHA6, TAP1, GFRA3, GRIN2D, GNAO1, CACNB2, EML5, PINK1, PITPNM1, SYT11, BCL2, GNB3, CSPG5, ESAM, CHRFAM7A, PDE7B, ASTN2 | 0.01454 |
Depressive Disorder | C0011581 | 16 | DUSP4, GSK3B, OXTR, ABCB1, GRID1, PDE4D, BICC1, PER2, PER3, GNB1, BCL2, GNB3, GHRL, A2M, GRIA3, ATF3 | 0.04467 |
GRIK4-KO vs. WT | ||||
Schizophrenia | C0036341 | 181 | CHRM2, OXTR, VIPR2, MYT1L, CHRM5, DIXDC1, PLAT, CLU, RIMS2, RGS5, HTR6, CCND1, ADORA1, PIP4K2A, TEKT5, SOX5, PDGFRB, CHRNB2, SLC30A3, KCNH6, ACSL6, HLA-C, TAP1, LIFR, SLC6A11, UNC5C, PRKCA, PDZK1, HLA-E, UHMK1, EML5, ARC, KCNQ2, KCNQ3, KCTD12, STX1A, GRIA2, ADCYAP1R1, MAOB, CHAT, SLC1A1, CACNA1B, LPAR1, GSTT2, CACNA1C, CPLX2, ADAMTS12, CPLX1, PCDH17, NPAS3, HRH1, TSPAN8, BLOC1S1, PLXNA2, MAGEC1, KCNN3, DRD2, ST3GAL1, PAG1, GRIA3, ABCA1, NTNG1, NTNG2, NGFR, JUN, ACE, TGFB1, JAG1, TNFSF13, HSPA12A, CP, PHOX2B, QKI, DCLK1, GNAO1, SLC6A9, CALY, SP1, MYO5B, PAH, CSPG5, FXYD6, ESAM, CHRFAM7A, FGFR2, FGFR1, GABRB3, DDR1, GSK3B, CNTNAP2, TENM4, MEGF10, NCAN, MIR137HG, ARHGAP1, GRIK4, ATP2A2, GRIK2, STON2, SLC6A2, SIRPB1, ELAVL2, NRGN, CALB1, ADAMTS3, SH3PXD2A, PSD3, CASP4, NOS1, DLGAP2, SLC18A1, CGNL1, PSD, ARHGEF11, SREBF1, KREMEN1, NRG1, GFRA1, OPRM1, SYP, HTR3B, GFRA3, ADRA2A, SYN1, DNM1, TNFRSF1A, VSNL1, NRG3, IL3RA, NOS1AP, PPARA, PLCB1, TLR4, TLR3, SHANK1, GRN, NLGN1, LRP1, SEMA3D, CCDC68, SEMA3A, PTGER3, CRMP1, NRXN2, LRP8, THBS1, FSTL1, PTGS1, RELN, ERBB3, CBS, CCL2, SLIT3, IGF2BP2, PDLIM5, CACNG2, SNCB, GABRD, KCNJ3, NTRK1, GABRQ, CHGA, SLC12A2, NTRK2, GCH1, KCNB1, GAD1, ZNF804A, LSAMP, PLEKHA6, COL3A1, NFASC, PINK1, FABP5, PSAT1, SYT11, KCNS3, FAS, CTNNB1, PDE7B, VIP | 4.84 × 10−11 |
Bipolar Disorder | C0005586 | 96 | GABRB3, CHRM2, CNTNAP2, SNAP25, GSK3B, VIPR2, TENM4, DOCK9, NCAN, BHLHE41, DIXDC1, GRIK4, GRIK2, DBH, SLC6A2, NRGN, SYNE1, RGS4, CSRP1, BDKRB2, PIP4K2A, THSD7A, SLC18A1, SLC39A3, NRG1, HTR3B, SEZ6L, POU3F2, DUSP6, HLA-E, SFRP1, NRG3, PACS1, SCN8A, KCNQ2, KCNQ3, KCTD12, MFGE8, PLCB1, TLR4, SHANK2, GRIA2, GRN, NLGN1, DDC, MAOB, SLC1A1, CACNA1B, ATP1A3, CACNA1D, CACNA1C, ATP1A1, CPLX2, ADD3, RASGRP1, HIF1A, CPLX1, NPAS3, FSTL5, PROKR2, RELN, CUX2, ERBB3, TSPAN8, MAP2, CBS, KCNN3, DRD2, PDLIM5, ST3GAL1, GRIA3, S100A10, NTRK1, NTNG1, NTNG2, NTRK2, TGFB1, ACE, HSPA5, FZD4, WFS1, CNTN6, GAD1, GABRA3, ZNF804A, NR1D1, AGT, DCLK1, GRIN1, PER2, PDE10A, PPP2R2C, CHRFAM7A, VIP, FGFR2, FGFR1 | 7.70 × 10−6 |
Unipolar Depression | C0041696 | 57 | CNTNAP2, SNAP25, GSK3B, OXTR, PTPRR, MYT1L, SERPINE1, DIXDC1, GRIK4, ARRB1, DBH, SLC6A2, GJA1, CCND1, FTH1, BDKRB2, SOX9, NOS1, CD34, HTR3B, PLCB1, GRIA2, DDC, ENPEP, HLF, MAOB, LRP1, NTM, CACNA1C, HIF1A, KALRN, LRP8, EGFR, NPAS3, PDE11A, RELN, ERBB3, TERT, MAP2, ABI3BP, CCL2, SLIT3, DRD2, PDLIM5, S100A10, NTRK2, ACE, CDKN2A, GAD1, EDEM1, LSAMP, BMP7, QKI, SOD1, PINK1, TEF, FGFR1 | 5.98 × 10−5 |
Major Depressive Disorder | C1269683 | 54 | CNTNAP2, GSK3B, OXTR, PTPRR, MYT1L, SERPINE1, GRIK4, ARRB1, DBH, SLC6A2, IFI44L, GJA1, CCND1, BDKRB2, SOX9, CD34, EDN1, HTR3B, PLCB1, GRIA2, DDC, ENPEP, HLF, MAOB, LRP1, NTM, CACNA1C, HIF1A, KALRN, LRP8, EGFR, NPAS3, PDE11A, RELN, ERBB3, TERT, MAP2, ABI3BP, CCL2, SLIT3, DRD2, PDLIM5, S100A10, NTRK2, ACE, CDKN2A, GAD1, EDEM1, LSAMP, BMP7, QKI, PINK1, TEF, FGFR1 | 7.35 × 10−5 |
Manic Disorder | C0024713 | 22 | NTNG1, NTRK1, NTRK2, GSK3B, NTNG2, SNAP25, TENM4, GAD1, NCAN, DIXDC1, CACNA1D, CACNA1C, GRIK2, ADD3, CPLX2, POU3F2, CPLX1, FSTL5, RELN, PACS1, THSD7A, SHANK2 | 1.70 × 10−4 |
Manic | C0338831 | 23 | NTNG1, NTRK1, NTRK2, GSK3B, NTNG2, SNAP25, TENM4, GAD1, NCAN, DIXDC1, CACNA1D, CACNA1C, GRIK2, ADD3, CPLX2, POU3F2, CPLX1, FSTL5, RELN, PACS1, CCL2, THSD7A, SHANK2 | 2.56 × 10−4 |
Depression, Bipolar | C0005587 | 23 | NTNG1, NTRK1, NTRK2, GSK3B, NTNG2, SNAP25, TENM4, GAD1, NCAN, DIXDC1, GRIK4, CACNA1D, CACNA1C, GRIK2, ADD3, CPLX2, POU3F2, CPLX1, FSTL5, RELN, PACS1, THSD7A, SHANK2 | 3.13 × 10−4 |
Psychotic Disorders | C0033975 | 26 | SNAP25, TENM4, GRIK4, CACNA1C, CPLX2, CPLX1, NPAS3, ST3GAL1, CD34, SLC39A3, APOBEC3C, SLC12A2, NTRK1, TGFB1, KCNH6, GCH1, PRKCA, OPRM1, GRIN1, HLA-E, PDE10A, SLC6A9, SP1, PAH, FGFR2, SHANK1 | 8.84 × 10−4 |
Autism Spectrum Disorders | C1510586 | 21 | GABRB3, GABRQ, NLGN3, DPP10, RYR2, CNTNAP2, MEF2C, OXTR, NLGN4X, PCDH9, LRRN3, MYT1L, SLC1A1, NRXN2, FOXP1, UNC80, RELN, PAH, SOX9, TBL1X, SOX5 | 0.00518 |
Mental Depression | C0011570 | 46 | GABRB3, CHRM2, SNAP25, GSK3B, GRN, OXTR, MAOB, CHAT, SLC1A1, ATP1A3, ATP2A2, CACNA1C, DBH, CPLX2, SLC6A2, HIF1A, CPLX1, RELN, ERBB3, DRD2, SLC18A1, GRIA3, S100A10, NGFR, NTRK2, CDKN2A, WFS1, DUSP1, GAD1, GABRA3, NRG1, HTR3B, OPRM1, SYN1, ADRA2A, BICC1, AGT, DUSP6, TNFRSF1A, SOD1, PER2, SFRP1, ATF3, SLC29A3, FGFR2, FGFR1 | 0.01676 |
Depressive Disorder | C0011581 | 50 | GABRB3, CHRM2, SNAP25, GSK3B, OXTR, DIXDC1, ATP2A2, DBH, SLC6A2, FTH1, NOS1, SLC18A1, DUSP1, NRG1, HTR3B, OPRM1, ADRA2A, DUSP6, SYN1, TNFRSF1A, SFRP1, SLC29A3, ATF3, GRN, MAOB, CHAT, SLC1A1, ATP1A3, CACNA1C, CPLX2, CPLX1, RELN, DRD2, GRIA3, S100A10, NTRK2, NGFR, TGFB1, ACE, CDKN2A, WFS1, GAD1, GABRA3, NR1D1, AGT, BICC1, SOD1, PER2, FGFR2, FGFR1 | 0.02753 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hu, T.-M.; Hsu, S.-H.; Tsai, H.-Y.; Cheng, M.-C. Transcriptomic Investigation in CRISPR/Cas9-Mediated GRIK1-, GRIK2-, and GRIK4-Gene-Knockout Human Neuroblastoma Cells. SynBio 2024, 2, 56-69. https://doi.org/10.3390/synbio2010004
Hu T-M, Hsu S-H, Tsai H-Y, Cheng M-C. Transcriptomic Investigation in CRISPR/Cas9-Mediated GRIK1-, GRIK2-, and GRIK4-Gene-Knockout Human Neuroblastoma Cells. SynBio. 2024; 2(1):56-69. https://doi.org/10.3390/synbio2010004
Chicago/Turabian StyleHu, Tsung-Ming, Shih-Hsin Hsu, Hsin-Yao Tsai, and Min-Chih Cheng. 2024. "Transcriptomic Investigation in CRISPR/Cas9-Mediated GRIK1-, GRIK2-, and GRIK4-Gene-Knockout Human Neuroblastoma Cells" SynBio 2, no. 1: 56-69. https://doi.org/10.3390/synbio2010004