Microbialites: Organisms, Processes and Products in Modern and Fossil Ecosystems

A special issue of Geosciences (ISSN 2076-3263). This special issue belongs to the section "Biogeosciences".

Deadline for manuscript submissions: closed (31 October 2018) | Viewed by 20844

Special Issue Editors


E-Mail Website
Guest Editor
Dipartimento di Biologia, Ecologia e Scienze della Terra, Università della Calabria, Ponte Bucci 15b, Rende, CS, Italy
Interests: geomicrobiology; carbonate sedimentology and diagenesis

E-Mail Website
Guest Editor
School of Earth Sciences, University of Bristol, Bristol BS8 1RJ, UK
Interests: carbonate sedimentology and diagenesis

Special Issue Information

Dear Colleagues,

This Special Issue of Geosciences aspires to take advantage of the recent increase in attention being given to modern and fossil microbialites. Microbialites record the evidence of the evolution of life on Earth (and probably on other planets too), as they preserve the relics of the earliest life-forms, descendants of which continue to dominate the Earth today and are the focus of ever-increasing attention. Moreover, the micro-organisms involved in the formation of microbial minerals and rocks have generated significant amounts of biomediated sedimentary deposits, mainly consisting of microbial carbonates, especially stromatolites and thrombolites.

Many methodological approaches are used in the study of modern and fossil microbialites, from field-work to textural and nano-structural/compositional analyses, including lab culture of the micro-organisms and reproduction of the complex micro-ecosystems. These research methods have the aim of unravelling the complex chemical and physical interactions between: the organic components (bacteria, fungi, viruses, extracellular substances and vesicles) forming the microbial community, the environmental conditions, and the mineral products.

Thus, we would like to invite you to submit an article regarding your recent work, experimental research, case studies or reviews, on modern or fossil microbialites of any type from marine, terrestrial or subsurface environments.

Please let us know if you would like to submit an article by sending us a short abstract, in order to verify (at an early stage) if the contribution you intend to submit fits with the objectives of the Special Issue.

Thanks in advance for you contribution.

Dr. Edoardo Perri
Prof. Maurice E. Tucker
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Geosciences is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 1800 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • Microbialite
  • Microbial rock
  • Microbial community
  • Organominerals
  • Bacteria
  • Extracellular Polymeric Substance
  • Virus
  • Stromatolite

Published Papers (4 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

31 pages, 51301 KiB  
Article
Mechanistic Morphogenesis of Organo-Sedimentary Structures Growing Under Geochemically Stressed Conditions: Keystone to Proving the Biogenicity of Some Archaean Stromatolites?
by Keyron Hickman-Lewis, Pascale Gautret, Laurent Arbaret, Stéphanie Sorieul, Rutger De Wit, Frédéric Foucher, Barbara Cavalazzi and Frances Westall
Geosciences 2019, 9(8), 359; https://doi.org/10.3390/geosciences9080359 - 16 Aug 2019
Cited by 17 | Viewed by 5458
Abstract
Morphologically diverse organo-sedimentary structures (including microbial mats and stromatolites) provide a palaeobiological record through more than three billion years of Earth history. Since understanding much of the Archaean fossil record is contingent upon proving the biogenicity of such structures, mechanistic interpretations of well-preserved [...] Read more.
Morphologically diverse organo-sedimentary structures (including microbial mats and stromatolites) provide a palaeobiological record through more than three billion years of Earth history. Since understanding much of the Archaean fossil record is contingent upon proving the biogenicity of such structures, mechanistic interpretations of well-preserved fossil microbialites can reinforce our understanding of their biogeochemistry and distinguish unambiguous biological characteristics in these structures, which represent some of the earliest records of life. Mechanistic morphogenetic understanding relies upon the analysis of geomicrobiological experiments. Herein, we report morphological-biogeochemical comparisons between micromorphologies observed in growth experiments using photosynthetic mats built by the cyanobacterium Coleofasciculus chthonoplastes (formerly Microcoleus) and green anoxygenic phototrophic Chloroflexus spp. (i.e., ColeofasciculusChloroflexus mats), and Precambrian organo-sedimentary structures, demonstrating parallels between them. In elevated ambient concentrations of Cu (toxic to Coleofasciculus), ColeofasciculusChloroflexus mats respond by forming centimetre-scale pinnacle-like structures (supra-lamina complexities) associated with large quantities of EPS at their surfaces. µPIXE mapping shows that Cu and other metals become concentrated within surficial sheath-EPS-Chloroflexus-rich layers, producing density-differential micromorphologies with distinct fabric orientations that are detectable using X-ray computed micro-tomography (X-ray µCT). Similar micromorphologies are also detectable in stromatolites from the 3.481 Ga Dresser Formation (Pilbara, Western Australia). The cause and response link between the presence of toxic elements (geochemical stress) and the development of multi-layered topographical complexities in organo-sedimentary structures may thus be considered an indicator of biogenicity, being an indisputably biological and predictable morphogenetic response reflecting, in this case, the differential responses of Coleofasciculus and Chloroflexus to Cu. Growth models for microbialite morphogenesis rely upon linking morphology to intrinsic (biological) and extrinsic (environmental) influences. Since the pinnacles of ColeofasciculusChloroflexus mats have an unambiguously biological origin linked to extrinsic geochemistry, we suggest that similar micromorphologies observed in ancient organo-sedimentary structures are indicative of biogenesis. An identical ColeofasciculusChloroflexus community subjected to salinity stress also produced supra-lamina complexities (tufts) but did not produce identifiable micromorphologies in three dimensions since salinity seems not to negatively impact either organism, and therefore cannot be used as a morphogenetic tool for the interpretation of density-homogeneous micro-tufted mats—for example, those of the 3.472 Ga Middle Marker horizon. Thus, although correlative microscopy is the keystone to confirming the biogenicity of certain Precambrian stromatolites, it remains crucial to separately interrogate each putative trace of ancient life, ideally using three-dimensional analyses, to determine, where possible, palaeoenvironmental influences on morphologies. Widespread volcanism and hydrothermal effusion into the early oceans likely concentrated toxic elements in early biomes. Morphological diversity in fossil microbialites could, therefore, reflect either (or both of) differential exposure to ambient fluids enriched in toxic elements and/or changing ecosystem structure and tolerance to elements through evolutionary time—for example, after incorporation into enzymes. Proof of biogenicity by deducing morphogenesis (i.e., a process preserved in the fossil record) overcomes many of the shortcomings inherent to the proof of biogenicity by descriptions of morphology alone. Full article
Show Figures

Figure 1

31 pages, 6229 KiB  
Article
The Taphonomy of Proterozoic Microbial Mats and Implications for Early Diagenetic Silicification
by Ashley R. Manning-Berg, R. Seth Wood, Kenneth H. Williford, Andrew D. Czaja and Linda C. Kah
Geosciences 2019, 9(1), 40; https://doi.org/10.3390/geosciences9010040 - 14 Jan 2019
Cited by 22 | Viewed by 5107
Abstract
The complex nature of growth and decomposition in microbial mats results in a broad range of microbial preservation. Such taphonomic variability complicates both the description of microbial elements preserved within geologic materials and the potential interpretation of microbial biomarkers. This study uses a [...] Read more.
The complex nature of growth and decomposition in microbial mats results in a broad range of microbial preservation. Such taphonomic variability complicates both the description of microbial elements preserved within geologic materials and the potential interpretation of microbial biomarkers. This study uses a taphonomic assessment to explore the preservation of different microbial components within silicified microbial mats of the late Mesoproterozoic (~1.0 Ga) Angmaat Formation, Bylot Supergroup, Baffin Island. The Angmaat Formation consists of unmetamorphosed and essentially undeformed strata that represent intertidal to supratidal deposition within an evaporative microbial flat. Early diagenetic silicification preserved microbial communities across a range of environments, from those episodically exposed to persistently submerged. Here, we present the development of a new methodology involving the use of high-resolution image mosaics to investigate the taphonomy of microfossils preserved in these mats. A taphonomic grade is assigned using a modified classification that accounts for both the taphonomic preservation state (good, fair, poor) of individual microfossils, as well as the degree of compaction of the overall mat. We show that although various taphonomic states occur within each of the silicified mats, the overall taphonomic assessment differentiates between well-preserved mats that are interpreted to have been silicified during active growth, to highly degraded and compacted mats that are interpreted to represent preservation during later stages of biological decomposition. These data indicate that even small changes in the timing of silicification may have substantial implications on our identification of microbial biomarkers and, therefore, our interpretation of early Earth ecosystems. Full article
Show Figures

Figure 1

21 pages, 8230 KiB  
Article
Autochthonous Micrite to Aphanodolomite: The Microbialites in the Dolomitization Processes
by Adriano Guido, Franco Russo, Domenico Miriello and Adelaide Mastandrea
Geosciences 2018, 8(12), 451; https://doi.org/10.3390/geosciences8120451 - 03 Dec 2018
Cited by 14 | Viewed by 3771
Abstract
In the present paper, we examine the influence of micrite types, autochthonous or allochthonous, on the dolomitization processes. The recrystallized and dolomitized Carnian samples from Rifugio Vallandro and Alpe di Specie erratic boulders (South Tyrol, Italy) offer a unique example for studying the [...] Read more.
In the present paper, we examine the influence of micrite types, autochthonous or allochthonous, on the dolomitization processes. The recrystallized and dolomitized Carnian samples from Rifugio Vallandro and Alpe di Specie erratic boulders (South Tyrol, Italy) offer a unique example for studying the relationship between microbialites and dolomitization processes. The comparison between the carbonates of the well-preserved erratic boulders of Alpe di Specie and the isochronous, recrystallized, and dolomitized, samples of Rifugio Vallandro, allows for hypothesizing the role of microbialites on dolomitization processes. The Rifugio Vallandro samples represent variously dolomitized boundstone (made of corals, sponges, and peloidal crusts) with a fine texture (aphanodolomite) which contain organic matter relics, suggesting microbial-mediated mineralization. Geomicrobiological characterization of the microbialites from Alpe di Specie indicates that they formed through microbial metabolic activity of sulfate-reducing bacteria, which thrive on organic matter accumulated in the suboxic to anoxic interspaces of the skeletal framework. Similar processes can be hypothesized for the microbialite precursor of Rifugio Vallandro. Extracellular polymeric substance (EPS) and other organic compounds trapped inside the fine crystal matrix can have a role in the dolomitization processes of the microbialites. High pH and high alkalinity, derived from the degradation of organic matter, may be critical in promoting the dolomitization of microbialites because the high pH increases the concentration and activity of the dissolved CO32−, thereby increasing the dolomite supersaturation and reaction rates. This process produces very fine dolomite (aphanodolomite) that replaces the original organic-rich micrite, while the fine crystalline dolomite forming larger euhedral crystals seems to derive from the allochthonous micrite due to the presence of a large amount of siliciclastics and the absence of organic remains. Full article
Show Figures

Figure 1

17 pages, 3256 KiB  
Article
Living Dendrolitic Microbial Mats in Hamelin Pool, Shark Bay, Western Australia
by Erica P. Suosaari, Stanley M. Awramik, R. Pamela Reid, John F. Stolz and Kathleen Grey
Geosciences 2018, 8(6), 212; https://doi.org/10.3390/geosciences8060212 - 11 Jun 2018
Cited by 24 | Viewed by 5770
Abstract
Hamelin Pool, Shark Bay, Western Australia, is home to the largest and most diverse assemblage of living marine stromatolites, with shapes and sizes comparable to ancient structures. A recent field-intensive program revealed seasonally ephemeral occurrences of modern dendrolitic microbial mats forming in intertidal, [...] Read more.
Hamelin Pool, Shark Bay, Western Australia, is home to the largest and most diverse assemblage of living marine stromatolites, with shapes and sizes comparable to ancient structures. A recent field-intensive program revealed seasonally ephemeral occurrences of modern dendrolitic microbial mats forming in intertidal, low energy settings. Dominated by filamentous cyanobacteria, dendrolitic microbial mats are formed when filaments provide a supporting framework as a result of gliding mobility, to build a shrubby morphology. Dendrolites, known throughout the rock record, refer to macroscopic microbialites with mesostuctures composed of unlaminated arborescent structures called shrubs. In these modern examples, thick filaments of Lyngbya aestuarii form the “trunk” of the bush, with finer filaments of Lyngbya fragilis, Phormidium sp. and Schizothrix sp. forming the “branches” These biologically-influenced dendrolitic structures provide insight into the complex interplay of microbial communities and the environment, broadening our understanding of shrub and dendrolite formation throughout the rock record. Full article
Show Figures

Figure 1

Back to TopTop