Editor’s Choice Articles

Editor’s Choice articles are based on recommendations by the scientific editors of MDPI journals from around the world. Editors select a small number of articles recently published in the journal that they believe will be particularly interesting to readers, or important in the respective research area. The aim is to provide a snapshot of some of the most exciting work published in the various research areas of the journal.

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
8 pages, 1907 KiB  
Article
Homochiral or Heterochiral: A Systematic Study of Threonine Clusters Using a FT ICR Mass Spectrometer
by Luyang Jiao, Mengying Du, Yameng Hou, Yuan Ma and Xianglei Kong
Symmetry 2022, 14(1), 86; https://doi.org/10.3390/sym14010086 - 06 Jan 2022
Cited by 2 | Viewed by 1633
Abstract
The strong chiral preferences of some magic clusters of amino acids have attracted continually increasing interests due to their unique structures, properties and possible roles in homochirogenesis. However, how chirality can influence the generation and stability of cluster ions in a wild range [...] Read more.
The strong chiral preferences of some magic clusters of amino acids have attracted continually increasing interests due to their unique structures, properties and possible roles in homochirogenesis. However, how chirality can influence the generation and stability of cluster ions in a wild range of cluster sizes is still unknown for most amino acids. In this study, the preference for threonine clusters to form homochiral and heterochiral complex ions has been investigated by electrospray ionization (ESI) mass spectrometry. Abundant cluster [Thrn+mH]m+ ions (7 ≤ n ≤ 78, 1 ≤ m ≤ 5) have been observed for both samples of enantiopure (100% L) and racemic (50:50 L:D) threonine solutions. Further analyses of the spectra show that the [Thr14+2H]2+ ion is characterized by its most outstanding homochiral preference, and [Thr7+H]+ and [Thr8+H]+ ions also clearly exhibit their homochiral preferences. Although most of the triply charged clusters (20 ≤ n ≤ 36) are characterized by heterochiral preferences, the quadruply charged [Thrn+4H]4+ ions (40 ≤ n ≤ 59) have no obvious chiral preference in general. On the other hand, a weak homochiral preference exists for most of the quintuply charged ions observed in the experiment. Full article
(This article belongs to the Special Issue Chiral Molecules: Properties, Synthesis and Analysis)
Show Figures

Figure 1

15 pages, 573 KiB  
Review
Time-like Proton Form Factors with Initial State Radiation Technique
by Dexu Lin, Alaa Dbeyssi and Frank Maas
Symmetry 2022, 14(1), 91; https://doi.org/10.3390/sym14010091 - 06 Jan 2022
Cited by 5 | Viewed by 1693
Abstract
Electromagnetic form factors are fundamental quantities describing the internal structure of hadrons. They can be measured with scattering processes in the space-like region and annihilation processes in the time-like region. The two regions are connected by crossing symmetry. The measurements of the proton [...] Read more.
Electromagnetic form factors are fundamental quantities describing the internal structure of hadrons. They can be measured with scattering processes in the space-like region and annihilation processes in the time-like region. The two regions are connected by crossing symmetry. The measurements of the proton electromagnetic form factors in the time-like region using the initial state radiation technique are reviewed. Recent experimental studies have shown that initial state radiation processes at high luminosity electron-positron colliders can be effectively used to probe the electromagnetic structure of hadrons. The BABAR experiment at the B-factory PEP-II in Stanford and the BESIII experiment at BEPCII (an electron positron collider in the τ-charm mass region) in Beijing have measured the time-like form factors of the proton using the initial state radiation process e+epp¯γ. The two kinematical regions where the photon is emitted from the initial state at small and large polar angles have been investigated. In the first case, the photon is in the region not covered by the detector acceptance and is not detected. The Born cross section and the proton effective form factor have been measured over a wide and continuous range of the the momentum transfer squared q2 from the threshold up to 42 (GeV/c)2. The ratio of electric and magnetic form factors of the proton has been also determined. In this report, the theoretical aspect and the experimental studies of the initial state radiation process e+epp¯γ are described. The measurements of the Born cross section and the proton form factors obtained in these analyses near the threshold region and in the relatively large q2 region are examined. The experimental results are compared to the predictions from theory and models. Their impact on our understanding of the nucleon structure is discussed. Full article
(This article belongs to the Special Issue Baryon Structure: Form Factors and Polarization)
Show Figures

Figure 1

21 pages, 3956 KiB  
Article
A 3D Agent-Based Model of Lung Fibrosis
by Nicolò Cogno, Roman Bauer and Marco Durante
Symmetry 2022, 14(1), 90; https://doi.org/10.3390/sym14010090 - 06 Jan 2022
Cited by 4 | Viewed by 3461
Abstract
Understanding the pathophysiology of lung fibrosis is of paramount importance to elaborate targeted and effective therapies. As it onsets, the randomly accumulating extracellular matrix (ECM) breaks the symmetry of the branching lung structure. Interestingly, similar pathways have been reported for both idiopathic pulmonary [...] Read more.
Understanding the pathophysiology of lung fibrosis is of paramount importance to elaborate targeted and effective therapies. As it onsets, the randomly accumulating extracellular matrix (ECM) breaks the symmetry of the branching lung structure. Interestingly, similar pathways have been reported for both idiopathic pulmonary fibrosis and radiation-induced lung fibrosis (RILF). Individuals suffering from the disease, the worldwide incidence of which is growing, have poor prognosis and a short mean survival time. In this context, mathematical and computational models have the potential to shed light on key underlying pathological mechanisms, shorten the time needed for clinical trials, parallelize hypotheses testing, and improve personalized drug development. Agent-based modeling (ABM) has proven to be a reliable and versatile simulation tool, whose features make it a good candidate for recapitulating emergent behaviors in heterogeneous systems, such as those found at multiple scales in the human body. In this paper, we detail the implementation of a 3D agent-based model of lung fibrosis using a novel simulation platform, namely, BioDynaMo, and prove that it can qualitatively and quantitatively reproduce published results. Furthermore, we provide additional insights on late-fibrosis patterns through ECM density distribution histograms. The model recapitulates key intercellular mechanisms, while cell numbers and types are embodied by alveolar segments that act as agents and are spatially arranged by a custom algorithm. Finally, our model may hold potential for future applications in the context of lung disorders, ranging from RILF (by implementing radiation-induced cell damage mechanisms) to COVID-19 and inflammatory diseases (such as asthma or chronic obstructive pulmonary disease). Full article
(This article belongs to the Special Issue Networks in Cancer: From Symmetry Breaking to Targeted Therapy)
Show Figures

Figure 1

16 pages, 328 KiB  
Article
On the Unique Solvability of Incomplete Cauchy Type Problems for a Class of Multi-Term Equations with the Riemann–Liouville Derivatives
by Vladimir E. Fedorov, Wei-Shih Du and Mikhail M. Turov
Symmetry 2022, 14(1), 75; https://doi.org/10.3390/sym14010075 - 05 Jan 2022
Cited by 12 | Viewed by 1353
Abstract
Incomplete Cauchy-type problems are considered for linear multi-term equations solved with respect to the highest derivative in Banach spaces with fractional Riemann–Liouville derivatives and with linear closed operators at them. Some new existence and uniqueness theorems for solutions are presented explicitly and the [...] Read more.
Incomplete Cauchy-type problems are considered for linear multi-term equations solved with respect to the highest derivative in Banach spaces with fractional Riemann–Liouville derivatives and with linear closed operators at them. Some new existence and uniqueness theorems for solutions are presented explicitly and the analyticity of the solutions of the homogeneous equations are also shown. The asymmetry of the Cauchy-type problem under study is expressed in the presence of a so-called defect, which shows the number of lower-order initial conditions that should not be set when setting the problem. As applications, our abstract results are used in the study of a class of initial-boundary value problems for multi-term equations with Riemann–Liouville derivatives in time and with polynomials of a self-adjoint elliptic differential operator with respect to spatial variables. Full article
12 pages, 274 KiB  
Article
Best Dominants and Subordinants for Certain Sandwich-Type Theorems
by Adriana Cătaş, Emilia Borşa and Loredana Iambor
Symmetry 2022, 14(1), 62; https://doi.org/10.3390/sym14010062 - 03 Jan 2022
Cited by 3 | Viewed by 1285
Abstract
In this paper, we aim to present a survey on subordination and superordination theorems related to the class of analytic functions defined in a symmetric domain, which is the open unit disc. The results were deduced by making use of a new differential [...] Read more.
In this paper, we aim to present a survey on subordination and superordination theorems related to the class of analytic functions defined in a symmetric domain, which is the open unit disc. The results were deduced by making use of a new differential operator. We present two properties of this operator from which we constructed the final results. Moreover, based on the obtained outcomes, we give two sandwich-type theorems. Some interesting further consequences are also taken into consideration. Full article
(This article belongs to the Special Issue Symmetry in Functional Equations and Analytic Inequalities II)
9 pages, 314 KiB  
Article
Energetic Particle Superdiffusion in Solar System Plasmas: Which Fractional Transport Equation?
by Gaetano Zimbardo, Francesco Malara and Silvia Perri
Symmetry 2021, 13(12), 2368; https://doi.org/10.3390/sym13122368 - 08 Dec 2021
Cited by 5 | Viewed by 2867
Abstract
Superdiffusive transport of energetic particles in the solar system and in other plasma environments is often inferred; while this can be described in terms of Lévy walks, a corresponding transport differential equation still calls for investigation. Here, we propose that superdiffusive transport can [...] Read more.
Superdiffusive transport of energetic particles in the solar system and in other plasma environments is often inferred; while this can be described in terms of Lévy walks, a corresponding transport differential equation still calls for investigation. Here, we propose that superdiffusive transport can be described by means of a transport equation for pitch-angle scattering where the time derivative is fractional rather than integer. We show that this simply leads to superdiffusion in the direction parallel to the magnetic field, and we discuss some advantages with respect to approaches based on transport equations with symmetric spatial fractional derivates. Full article
(This article belongs to the Special Issue Solar Physics and Plasma Physics: Topics and Advances)
Show Figures

Figure 1

11 pages, 5229 KiB  
Communication
2-Pyridylselenenyl versus 2-Pyridyltellurenyl Halides: Symmetrical Chalcogen Bonding in the Solid State and Reactivity towards Nitriles
by Ivan V. Buslov, Alexander S. Novikov, Victor N. Khrustalev, Mariya V. Grudova, Alexey S. Kubasov, Zhanna V. Matsulevich, Alexander V. Borisov, Julia M. Lukiyanova, Maria M. Grishina, Anatoly A. Kirichuk, Tatiyana V. Serebryanskaya, Andreii S. Kritchenkov and Alexander G. Tskhovrebov
Symmetry 2021, 13(12), 2350; https://doi.org/10.3390/sym13122350 - 07 Dec 2021
Cited by 17 | Viewed by 2791
Abstract
The synthesis of 2-pyridyltellurenyl bromide via Br2 oxidative cleavage of the Te–Te bond of dipyridylditelluride is reported. Single-crystal X-ray diffraction analysis of 2-pyridyltellurenyl bromide demonstrated that the Te atom of 2-pyridyltellurenyl bromide was involved in four different noncovalent contacts: Te⋯Te interactions, two [...] Read more.
The synthesis of 2-pyridyltellurenyl bromide via Br2 oxidative cleavage of the Te–Te bond of dipyridylditelluride is reported. Single-crystal X-ray diffraction analysis of 2-pyridyltellurenyl bromide demonstrated that the Te atom of 2-pyridyltellurenyl bromide was involved in four different noncovalent contacts: Te⋯Te interactions, two Te⋯Br ChB, and one Te⋯N ChB contact forming 3D supramolecular symmetrical framework. In contrast to 2-pyridylselenenyl halides, the Te congener does not react with nitriles furnishing cyclization products. 2-Pyridylselenenyl chloride was demonstrated to easily form the corresponding adduct with benzonitrile. The cyclization product was studied by the single-crystal X-ray diffraction analysis, which revealed that in contrast to earlier studied cationic 1,2,4-selenadiazoles, here we observed that the adduct with benzonitrile formed supramolecular dimers via Se⋯Se interactions in the solid state, which were never observed before for 1,2,4-selenadiazoles. Full article
(This article belongs to the Section Chemistry: Symmetry/Asymmetry)
Show Figures

Figure 1

6 pages, 683 KiB  
Article
New Light H± Discovery Channels at the LHC
by Abdesslam Arhrib, Rachid Benbrik, Mohamed Krab, Bouzid Manaut, Stefano Moretti, Yan Wang and Qi-Shu Yan
Symmetry 2021, 13(12), 2319; https://doi.org/10.3390/sym13122319 - 04 Dec 2021
Cited by 10 | Viewed by 1645
Abstract
A light charged Higgs boson has been searched for at the Large Hadron Collider (LHC) via top (anti)quark decay, i.e., tbH+, if kinematically allowed. In this contribution, we propose new channels for light charged Higgs boson searches via [...] Read more.
A light charged Higgs boson has been searched for at the Large Hadron Collider (LHC) via top (anti)quark decay, i.e., tbH+, if kinematically allowed. In this contribution, we propose new channels for light charged Higgs boson searches via the pair productions ppH±h/A and ppH+H at the LHC in the context of the Two-Higgs Doublet Model (2HDM) Type-I. By focusing on a case where the heavy H state is the Standard Model (SM)-like one already observed, we investigate the production of the aforementioned charged Higgs bosons and their bosonic decay channels, namely, H±W±h and/or H±W±A. We demonstrate that such production and decay channels can yield substantial alternative discovery channels for H± bosons at the LHC. Finally, we propose eight benchmark points (BPs) to motivate the search for such signatures. Full article
(This article belongs to the Special Issue Symmetry, Collider Phenomenology and High Energy Physics)
Show Figures

Figure 1

15 pages, 5719 KiB  
Article
On the Semi-Analytical Solutions in Hydrodynamics of Ideal Fluid Flows Governed by Large-Scale Coherent Structures of Spiral-Type
by Sergey V. Ershkov, Alla Rachinskaya, Evgenii Yu. Prosviryakov and Roman V. Shamin
Symmetry 2021, 13(12), 2307; https://doi.org/10.3390/sym13122307 - 03 Dec 2021
Cited by 5 | Viewed by 1772
Abstract
We have presented here a clearly formulated algorithm or semi-analytical solving procedure for obtaining or tracing approximate hydrodynamical fields of flows (and thus, videlicet, their trajectories) for ideal incompressible fluids governed by external large-scale coherent structures of spiral-type, which can be [...] Read more.
We have presented here a clearly formulated algorithm or semi-analytical solving procedure for obtaining or tracing approximate hydrodynamical fields of flows (and thus, videlicet, their trajectories) for ideal incompressible fluids governed by external large-scale coherent structures of spiral-type, which can be recognized as special invariant at symmetry reduction. Examples of such structures are widely presented in nature in “wind-water-coastline” interactions during a long-time period. Our suggested mathematical approach has obvious practical meaning as tracing process of formation of the paths or trajectories for material flows of fallout descending near ocean coastlines which are forming its geometry or bottom surface of the ocean. In our presentation, we explore (as first approximation) the case of non-stationary flows of Euler equations for incompressible fluids, which should conserve the Bernoulli-function as being invariant for the aforementioned system. The current research assumes approximated solution (with numerical findings), which stems from presenting the Euler equations in a special form with a partial type of approximated components of vortex field in a fluid. Conditions and restrictions for the existence of the 2D and 3D non-stationary solutions of the aforementioned type have been formulated as well. Full article
(This article belongs to the Special Issue Applied Mathematics and Fluid Dynamics)
Show Figures

Figure 1

10 pages, 249 KiB  
Review
Chaos in the Real World: Recent Applications to Communications, Computing, Distributed Sensing, Robotic Motion, Bio-Impedance Modelling and Encryption Systems
by Giuseppe Grassi
Symmetry 2021, 13(11), 2151; https://doi.org/10.3390/sym13112151 - 11 Nov 2021
Cited by 28 | Viewed by 2496
Abstract
Most of the papers published so far in literature have focused on the theoretical phenomena underlying the formation of chaos, rather than on the investigation of potential applications of chaos to the real world. This paper aims to bridge the gap between chaos [...] Read more.
Most of the papers published so far in literature have focused on the theoretical phenomena underlying the formation of chaos, rather than on the investigation of potential applications of chaos to the real world. This paper aims to bridge the gap between chaos theory and chaos applications by presenting a survey of very recent applications of chaos. In particular, the manuscript covers the last three years by describing different applications of chaos as reported in the literature published during the years 2018 to 2020, including the matter related to the symmetry properties of chaotic systems. The topics covered herein include applications of chaos to communications, to distributed sensing, to robotic motion, to bio-impedance modelling, to hardware implementation of encryption systems, to computing and to random number generation. Full article
(This article belongs to the Special Issue Chaotic Systems and Nonlinear Dynamics)
16 pages, 310 KiB  
Article
On the Fekete–Szegö Problem for Meromorphic Functions Associated with p,q-Wright Type Hypergeometric Function
by Adriana Cătaş
Symmetry 2021, 13(11), 2143; https://doi.org/10.3390/sym13112143 - 10 Nov 2021
Cited by 15 | Viewed by 1789
Abstract
Making use of a post-quantum derivative operator, we define two classes of meromorphic analytic functions. For the considered family of functions, we aim to investigate the sharp bounds’ values in the case of the Fekete–Szegö problem. The study of the well-known Fekete–Szegö functional [...] Read more.
Making use of a post-quantum derivative operator, we define two classes of meromorphic analytic functions. For the considered family of functions, we aim to investigate the sharp bounds’ values in the case of the Fekete–Szegö problem. The study of the well-known Fekete–Szegö functional in the post-quantum calculus case for meromorphic functions provides new outcomes for research in the field. With the extended p,q-operator, we establish certain inequalities’ relations concerning meromorphic functions. In the final part of the paper, a new p,q-analogue of the q-Wright type hypergeometric function is introduced. This function generalizes the classical and symmetrical Gauss hypergeometric function. All the obtained results are sharp. Full article
(This article belongs to the Special Issue Functional Equations and Inequalities 2021)
17 pages, 4728 KiB  
Review
On the Question of Stepwise [4+2] Cycloaddition Reactions and Their Stereochemical Aspects
by Radomir Jasiński
Symmetry 2021, 13(10), 1911; https://doi.org/10.3390/sym13101911 - 11 Oct 2021
Cited by 20 | Viewed by 3680
Abstract
Even at the end of the twentieth century, the view of the one-step [4+2] cycloaddition (Diels-Alder) reaction mechanism was widely accepted as the only possible one, regardless of the nature of the reaction components. Much has changed in the way these reactions are [...] Read more.
Even at the end of the twentieth century, the view of the one-step [4+2] cycloaddition (Diels-Alder) reaction mechanism was widely accepted as the only possible one, regardless of the nature of the reaction components. Much has changed in the way these reactions are perceived since then. In particular, multi-step mechanisms with zwitterionic or diradical intermediates have been proposed for a number of processes. This review provided a critical analysis of such cases. Full article
(This article belongs to the Special Issue Regio- and Stereoselectivity in Cycloaddition Reactions)
Show Figures

Figure 1

31 pages, 17655 KiB  
Article
Asymmetry of Plant Cell Divisions under Salt Stress
by Ekaterina N. Baranova and Alexander A. Gulevich
Symmetry 2021, 13(10), 1811; https://doi.org/10.3390/sym13101811 - 28 Sep 2021
Cited by 14 | Viewed by 3177
Abstract
Salt stress causes several damaging effects in plant cells. These commonly observed effects are the results of oxidative, osmotic, and toxic stresses. To ensure normal growth and development of tissues, the cellular compartments of multicellular plants have a unique system that provides the [...] Read more.
Salt stress causes several damaging effects in plant cells. These commonly observed effects are the results of oxidative, osmotic, and toxic stresses. To ensure normal growth and development of tissues, the cellular compartments of multicellular plants have a unique system that provides the specified parameters of growth and differentiation. The cell shape and the direction of division support the steady development of the organism, the habit, and the typical shape of the organs and the whole plant. When dividing, daughter cells evenly or unevenly distribute the components of cytoplasm. Factors such as impaired osmotic regulation, exposure to toxic compounds, and imbalance in the antioxidant system cause disorders associated with the moving of organelles, distribution transformations of the endoplasmic reticulum, and the vacuolar compartment. In some cases, one can observe a different degree of plasmolysis manifestation, local changes in the density of cytoplasm. Together, these processes can cause disturbances in the direction of cell division, the formation of a phragmoplast, the formation of nuclei of daughter cells, and a violation of their fine structural organization. These processes are often accompanied by significant damage to the cytoskeleton, the formation of nonspecific structures formed by proteins of the cytoskeleton. The consequences of these processes can lead to the death of some cells or to a significant change in their morphology and properties, deformation of newly formed tissues and organs, and changes in the plant phenotype. Thus, as a result of significant violations of the cytoskeleton, causing critical destabilization of the symmetric distribution of the cell content, disturbances in the distribution of chromosomes, especially in polyploid cells, may occur, resulting in the appearance of micronuclei. Hence, the asymmetry of a certain component of the plant cell is a marker of susceptibility to abiotic damage. Full article
Show Figures

Figure 1

14 pages, 7386 KiB  
Article
Brain Symmetry Analysis during the Use of a BCI Based on Motor Imagery for the Control of a Lower-Limb Exoskeleton
by Laura Ferrero, Mario Ortiz, Vicente Quiles, Eduardo Iáñez, José A. Flores and José M. Azorín
Symmetry 2021, 13(9), 1746; https://doi.org/10.3390/sym13091746 - 19 Sep 2021
Cited by 8 | Viewed by 3241
Abstract
Brain–Computer Interfaces (BCI) are systems that allow external devices to be controlled by means of brain activity. There are different such technologies, and electroencephalography (EEG) is an example. One of the most common EEG control methods is based on detecting changes in sensorimotor [...] Read more.
Brain–Computer Interfaces (BCI) are systems that allow external devices to be controlled by means of brain activity. There are different such technologies, and electroencephalography (EEG) is an example. One of the most common EEG control methods is based on detecting changes in sensorimotor rhythms (SMRs) during motor imagery (MI). The aim of this study was to assess the laterality of cortical function when performing MI of the lower limb. Brain signals from five subjects were analyzed in two conditions, during exoskeleton-assisted gait and while static. Three different EEG electrode configurations were evaluated: covering both hemispheres, covering the non-dominant hemisphere and covering the dominant hemisphere. In addition, the evolution of performance and laterality with practice was assessed. Although sightly superior results were achieved with information from all electrodes, differences between electrode configurations were not statistically significant. Regarding the evolution during the experimental sessions, the performance of the BCI generally evolved positively the higher the experience was. Full article
(This article belongs to the Special Issue Neuroscience, Neurophysiology and Asymmetry)
Show Figures

Figure 1

20 pages, 355 KiB  
Article
Quadratic Stabilization of Linear Uncertain Positive Discrete-Time Systems
by Dušan Krokavec and Anna Filasová
Symmetry 2021, 13(9), 1725; https://doi.org/10.3390/sym13091725 - 17 Sep 2021
Cited by 6 | Viewed by 1643
Abstract
The paper provides extended methods for control linear positive discrete-time systems that are subject to parameter uncertainties, reflecting structural system parameter constraints and positive system properties when solving the problem of system quadratic stability. By using an extension of the Lyapunov approach, system [...] Read more.
The paper provides extended methods for control linear positive discrete-time systems that are subject to parameter uncertainties, reflecting structural system parameter constraints and positive system properties when solving the problem of system quadratic stability. By using an extension of the Lyapunov approach, system quadratic stability is presented to become apparent in pre-existing positivity constraints in the design of feedback control. The approach prefers constraints representation in the form of linear matrix inequalities, reflects the diagonal stabilization principle in order to apply to positive systems the idea of matrix parameter positivity, applies observer-based linear state control to assert closed-loop system quadratic stability and projects design conditions, allowing minimization of an undesirable impact on matching parameter uncertainties. The method is utilised in numerical examples to illustrate the technique when applying the above strategy. Full article
(This article belongs to the Special Issue Symmetry in Dynamic Systems)
16 pages, 730 KiB  
Article
Gravitational Decoupling in Higher Order Theories
by Joseph Sultana
Symmetry 2021, 13(9), 1598; https://doi.org/10.3390/sym13091598 - 31 Aug 2021
Cited by 16 | Viewed by 2278
Abstract
Gravitational decoupling via the Minimal Geometric Deformation (MGD) approach has been used extensively in General Relativity (GR), mainly as a simple method for generating exact anisotropic solutions from perfect fluid seed solutions. Recently this method has also been used to generate exact spherically [...] Read more.
Gravitational decoupling via the Minimal Geometric Deformation (MGD) approach has been used extensively in General Relativity (GR), mainly as a simple method for generating exact anisotropic solutions from perfect fluid seed solutions. Recently this method has also been used to generate exact spherically symmetric solutions of the Einstein-scalar system from the Schwarzschild vacuum metric. This was then used to investigate the effect of scalar fields on the Schwarzschild black hole solution. We show that this method can be extended to higher order theories. In particular, we consider fourth order Einstein–Weyl gravity, and in this case by using the Schwarzschild metric as a seed solution to the associated vacuum field equations, we apply the MGD method to generate a solution to the Einstein–Weyl scalar theory representing a hairy black hole solution. This solution is expressed in terms of a series using the Homotopy Analysis Method (HAM). Full article
(This article belongs to the Special Issue Physics and Mathematics of the Dark Universe)
Show Figures

Figure 1

14 pages, 297 KiB  
Article
Null Homology Groups and Stable Currents in Warped Product Submanifolds of Euclidean Spaces
by Yanlin Li, Pişcoran Laurian-Ioan, Akram Ali and Ali H. Alkhaldi
Symmetry 2021, 13(9), 1587; https://doi.org/10.3390/sym13091587 - 28 Aug 2021
Cited by 6 | Viewed by 1728
Abstract
In this paper, we prove that, for compact warped product submanifolds Mn in an Euclidean space En+k, there are no stable p-currents, homology groups are vanishing, and M3 is homotopic to the Euclidean sphere S3 [...] Read more.
In this paper, we prove that, for compact warped product submanifolds Mn in an Euclidean space En+k, there are no stable p-currents, homology groups are vanishing, and M3 is homotopic to the Euclidean sphere S3 under various extrinsic restrictions, involving the eigenvalue of the warped function, integral Ricci curvature, and the Hessian tensor. The results in this paper can be considered an extension of Xin’s work in the framework of a compact warped product submanifold, when the base manifold is minimal in ambient manifolds. Full article
11 pages, 277 KiB  
Article
On Special Differential Subordinations Using Fractional Integral of Sălăgean and Ruscheweyh Operators
by Alina Alb Lupaş and Georgia Irina Oros
Symmetry 2021, 13(9), 1553; https://doi.org/10.3390/sym13091553 - 24 Aug 2021
Cited by 15 | Viewed by 1741
Abstract
In the present paper, a new operator denoted by DzλLαn is defined by using the fractional integral of Sălăgean and Ruscheweyh operators. By means of the newly obtained operator, the subclass [...] Read more.
In the present paper, a new operator denoted by DzλLαn is defined by using the fractional integral of Sălăgean and Ruscheweyh operators. By means of the newly obtained operator, the subclass Snδ,α,λ of analytic functions in the unit disc is introduced, and various properties and characteristics of this class are derived by applying techniques specific to the differential subordination concept. By studying the operator DzλLαn, some interesting differential subordinations are also given. Full article
(This article belongs to the Section Mathematics)
43 pages, 11181 KiB  
Article
Neurofunctional Symmetries and Asymmetries during Voluntary out-of- and within-Body Vivid Imagery Concurrent with Orienting Attention and Visuospatial Detection
by Amedeo D’Angiulli, Darren Kenney, Dao Anh Thu Pham, Etienne Lefebvre, Justin Bellavance and Derrick Matthew Buchanan
Symmetry 2021, 13(8), 1549; https://doi.org/10.3390/sym13081549 - 23 Aug 2021
Cited by 5 | Viewed by 3619
Abstract
We explored whether two visual mental imagery experiences may be differentiated by electroencephalographic (EEG) and performance interactions with concurrent orienting external attention (OEA) to stimulus location and subsequent visuospatial detection. We measured within-subject (N = 10) event-related potential (ERP) changes during out-of-body imagery [...] Read more.
We explored whether two visual mental imagery experiences may be differentiated by electroencephalographic (EEG) and performance interactions with concurrent orienting external attention (OEA) to stimulus location and subsequent visuospatial detection. We measured within-subject (N = 10) event-related potential (ERP) changes during out-of-body imagery (OBI)—vivid imagery of a vertical line outside of the head/body—and within-body imagery (WBI)—vivid imagery of the line within one’s own head. Furthermore, we measured ERP changes and line offset Vernier acuity (hyperacuity) performance concurrent with those imagery, compared to baseline detection without imagery. Relative to OEA baseline, OBI yielded larger N200 and P300, whereas WBI yielded larger P50, P100, N400, and P800. Additionally, hyperacuity dropped significantly when concurrent with both imagery types. Partial least squares analysis combined behavioural performance, ERPs, and/or event-related EEG band power (ERBP). For both imagery types, hyperacuity reduction correlated with opposite frontal and occipital ERP amplitude and polarity changes. Furthermore, ERP modulation and ERBP synchronizations for all EEG frequencies correlated inversely with hyperacuity. Dipole Source Localization Analysis revealed unique generators in the left middle temporal gyrus (WBI) and in the right frontal middle gyrus (OBI), whereas the common generators were in the left precuneus and middle occipital cortex (cuneus). Imagery experiences, we conclude, can be identified by symmetric and asymmetric combined neurophysiological-behavioural patterns in interactions with the width of attentional focus. Full article
(This article belongs to the Special Issue Symmetry and Asymmetry in Brain Behavior and Perception II)
Show Figures

Figure 1

9 pages, 4288 KiB  
Article
Individual Laterality in Ghost Crabs (Ocypode saratan) Influences Burrowing Behavior
by Reuven Yosef, Michal Daraby, Alexei Semionovikh and Jakub Z. Kosicki
Symmetry 2021, 13(8), 1512; https://doi.org/10.3390/sym13081512 - 17 Aug 2021
Cited by 5 | Viewed by 2838
Abstract
Behavioral handedness is known to enhance an individual’s handling capabilities. However, the ecological advantages in brachyuran crustaceans remain unclear, despite the Ocypode species having been studied extensively. Thus, in this study, we analyzed the laterality of the endemic Red Sea ghost crab on [...] Read more.
Behavioral handedness is known to enhance an individual’s handling capabilities. However, the ecological advantages in brachyuran crustaceans remain unclear, despite the Ocypode species having been studied extensively. Thus, in this study, we analyzed the laterality of the endemic Red Sea ghost crab on one beach in Eilat, Israel. We successfully documented the laterality of the large cheliped in 125 crabs; in 60 (48.0%), the right cheliped was larger, and in 64 (51.2%), the left. We also observed temporal segregation between the right- and left-clawed crabs. The right-handed crabs start activity just after sunrise, while left-handed crabs appear ca. 40 min after it. Similarly, temporal segregations were also observed in the evening. The right-clawed crab activity peaked ca. 20 min before sunset, while the left-clawed crabs were active uniformly. Additionally, burrow entrances corresponded to the larger cheliped of the resident individual and is probably a self-defense-related behavior. We conclude that cheliped laterality in O. saratan populations should be considered as a bimodal trait, where left- and right-handedness is not under natural selection pressure. Full article
Show Figures

Graphical abstract

18 pages, 550 KiB  
Article
New Conservation Laws and Exact Cosmological Solutions in Brans–Dicke Cosmology with an Extra Scalar Field
by Antonios Mitsopoulos, Michael Tsamparlis, Genly Leon and Andronikos Paliathanasis
Symmetry 2021, 13(8), 1364; https://doi.org/10.3390/sym13081364 - 27 Jul 2021
Cited by 10 | Viewed by 2350
Abstract
The derivation of conservation laws and invariant functions is an essential procedure for the investigation of nonlinear dynamical systems. In this study, we consider a two-field cosmological model with scalar fields defined in the Jordan frame. In particular, we consider a Brans–Dicke scalar [...] Read more.
The derivation of conservation laws and invariant functions is an essential procedure for the investigation of nonlinear dynamical systems. In this study, we consider a two-field cosmological model with scalar fields defined in the Jordan frame. In particular, we consider a Brans–Dicke scalar field theory and for the second scalar field we consider a quintessence scalar field minimally coupled to gravity. For this cosmological model, we apply for the first time a new technique for the derivation of conservation laws without the application of variational symmetries. The results are applied for the derivation of new exact solutions. The stability properties of the scaling solutions are investigated and criteria for the nature of the second field according to the stability of these solutions are determined. Full article
(This article belongs to the Section Physics)
Show Figures

Figure 1

26 pages, 2979 KiB  
Review
Nanofluids for the Next Generation Thermal Management of Electronics: A Review
by Ana Moita, António Moreira and José Pereira
Symmetry 2021, 13(8), 1362; https://doi.org/10.3390/sym13081362 - 27 Jul 2021
Cited by 28 | Viewed by 6852
Abstract
Nowadays, the thermal management of electronic components, devices and systems is one of the most important challenges of this technological field. The ever-increasing miniaturization also entails the pressing need for the dissipation of higher power energy under the form of heat per unit [...] Read more.
Nowadays, the thermal management of electronic components, devices and systems is one of the most important challenges of this technological field. The ever-increasing miniaturization also entails the pressing need for the dissipation of higher power energy under the form of heat per unit of surface area by the cooling systems. The current work briefly describes the use on those cooling systems of the novel heat transfer fluids named nanofluids. Although not intensively applied in our daily use of electronic devices and appliances, the nanofluids have merited an in-depth research and investigative focus, with several recently published papers on the subject. The development of this cooling approach should give a sustained foothold to go on to further studies and developments on continuous miniaturization, together with more energy-efficient cooling systems and devices. Indeed, the superior thermophysical properties of the nanofluids, which are highlighted in this review, make those innovative fluids very promising for the aforementioned purpose. Moreover, the present work intends to contribute to the knowledge of the nanofluids and its most prominent results from the typical nanoparticles/base fluid mixtures used and combined in technical and functional solutions, based on fluid-surface interfacial flows. Full article
(This article belongs to the Special Issue Liquid-Solid Interfacial Phenomena on Complex Surfaces)
Show Figures

Figure 1

15 pages, 1791 KiB  
Article
Feature Ranking and Differential Evolution for Feature Selection in Brushless DC Motor Fault Diagnosis
by Chun-Yao Lee and Chen-Hsu Hung
Symmetry 2021, 13(7), 1291; https://doi.org/10.3390/sym13071291 - 18 Jul 2021
Cited by 11 | Viewed by 2561
Abstract
A fault diagnosis system with the ability to recognize many different faults obviously has a certain complexity. Therefore, improving the performance of similar systems has attracted much research interest. This article proposes a system of feature ranking and differential evolution for feature selection [...] Read more.
A fault diagnosis system with the ability to recognize many different faults obviously has a certain complexity. Therefore, improving the performance of similar systems has attracted much research interest. This article proposes a system of feature ranking and differential evolution for feature selection in BLDC fault diagnosis. First, this study used the Hilbert–Huang transform (HHT) to extract the features of four different types of brushless DC motor Hall signal. When there is a fault, the symmetry of the Hall signal will be influenced. Second, we used feature selection based on a distance discriminant (FSDD) to calculate the feature factors which base on the category separability of features to select the features which have a positive correlation with the types. The features were entered sequentially into the two supervised classifiers: backpropagation neural network (BPNN) and linear discriminant analysis (LDA), and the identification results were then evaluated. The feature input for the classifier was derived from the FSDD, and then we optimized the feature rank using differential evolution (DE). Finally, the results were verified from the BLDC motor’s operating environment simulation with the same features by adding appropriate signal-to-noise ratio magnitudes. The identification system obtained an accuracy rate of 96% when there were 14 features. Additionally, the experimental results show that the proposed system has a robust anti-noise ability, and the accuracy rate is 92.04%, even when 20 dB of white Gaussian noise is added to the signal. Moreover, compared with the systems established from the discrete wavelet transform (DWT) and a variety of classifiers, our proposed system has a higher accuracy with fewer features. Full article
(This article belongs to the Special Issue Complex Systems and Its Applications)
Show Figures

Figure 1

20 pages, 1059 KiB  
Article
Building a Fuzzy Classifier Based on Whale Optimization Algorithm to Detect Network Intrusions
by Nikolay Koryshev, Ilya Hodashinsky and Alexander Shelupanov
Symmetry 2021, 13(7), 1211; https://doi.org/10.3390/sym13071211 - 06 Jul 2021
Cited by 11 | Viewed by 2462
Abstract
The quantity of network attacks and the harm from them is constantly increasing, so the detection of these attacks is an urgent task in the information security field. In this paper, we investigate an approach to building intrusion detection systems using a classifier [...] Read more.
The quantity of network attacks and the harm from them is constantly increasing, so the detection of these attacks is an urgent task in the information security field. In this paper, we investigate an approach to building intrusion detection systems using a classifier based on fuzzy rules. The process of creating a fuzzy classifier based on a given set of input and output data can be presented as a solution to the problems of clustering, informative features selection, and the parameters of the rule antecedents optimization. To solve these problems, the whale optimization algorithm is used. The performance of algorithms for constructing a fuzzy classifier based on this metaheuristic is estimated using the KDD Cup 1999 intrusion detection dataset. On average, the resulting classifiers have a type I error of 0.92% and a type II error of 1.07%. The obtained results are also compared with the results of other classifiers. The comparison shows the competitiveness of the proposed method. Full article
(This article belongs to the Special Issue Information Technologies and Electronics Ⅱ)
Show Figures

Figure 1

17 pages, 356 KiB  
Article
Symmetric Ground States for Doubly Nonlocal Equations with Mass Constraint
by Silvia Cingolani, Marco Gallo and Kazunaga Tanaka
Symmetry 2021, 13(7), 1199; https://doi.org/10.3390/sym13071199 - 02 Jul 2021
Cited by 17 | Viewed by 2263
Abstract
We prove the existence of a spherically symmetric solution for a Schrödinger equation with a nonlocal nonlinearity of Choquard type. This term is assumed to be subcritical and satisfy almost optimal assumptions. The mass of of the solution, described by its norm in [...] Read more.
We prove the existence of a spherically symmetric solution for a Schrödinger equation with a nonlocal nonlinearity of Choquard type. This term is assumed to be subcritical and satisfy almost optimal assumptions. The mass of of the solution, described by its norm in the Lebesgue space, is prescribed in advance. The approach to this constrained problem relies on a Lagrange formulation and new deformation arguments. In addition, we prove that the obtained solution is also a ground state, which means that it realizes minimal energy among all the possible solutions to the problem. Full article
(This article belongs to the Special Issue Recent Advance in Mathematical Physics)
12 pages, 1652 KiB  
Article
Use of the Molecular Dynamics Method to Investigate the Stability of α-α-Corner Structural Motifs in Proteins
by Vladimir R. Rudnev, Liudmila I. Kulikova, Anna L. Kaysheva, Alexander V. Efimov and Dmitry A. Tikhonov
Symmetry 2021, 13(7), 1193; https://doi.org/10.3390/sym13071193 - 02 Jul 2021
Cited by 5 | Viewed by 2527
Abstract
This study investigated the stability of structural motifs via molecular dynamics, using α-α-corners as an example. A molecular dynamics experiment was performed on a sample of α-α-corners selected by the authors from the PDB database. For the first time during a molecular dynamics [...] Read more.
This study investigated the stability of structural motifs via molecular dynamics, using α-α-corners as an example. A molecular dynamics experiment was performed on a sample of α-α-corners selected by the authors from the PDB database. For the first time during a molecular dynamics experiment, we investigated the characteristics of structural motifs by describing their geometry, including the interplanar distance, area of polygon of the helices projections intersection, and torsion angles between axes of helices in helical pairs. The torsion angles for the constriction amino acids in the equilibrium portion of the molecular dynamics trajectory were analyzed. Using the molecular dynamics method, α-α-corners were found to be autonomous structures that are stable in aquatic environments. Full article
(This article belongs to the Special Issue Medicinal Chemistry: Topics and Advances)
Show Figures

Figure 1

11 pages, 2290 KiB  
Article
Monitoring Spin-Crossover Properties by Diffused Reflectivity
by Gelu-Marius Rotaru, Epiphane Codjovi, Pierre-Richard Dahoo, Isabelle Maurin, Jorge Linares and Aurelian Rotaru
Symmetry 2021, 13(7), 1148; https://doi.org/10.3390/sym13071148 - 27 Jun 2021
Cited by 4 | Viewed by 1969
Abstract
In this work we present a detailed study showing the importance of the Kubelka-Munk (KM) correction in the analysis of diffuse reflectivity measurements to characterize spin crossover compounds. Combined reflectance and magnetic susceptibility measurements are carried out as a function of temperature or [...] Read more.
In this work we present a detailed study showing the importance of the Kubelka-Munk (KM) correction in the analysis of diffuse reflectivity measurements to characterize spin crossover compounds. Combined reflectance and magnetic susceptibility measurements are carried out as a function of temperature or time to highlight the conditions under which this correction becomes critical. In particular, we investigate the influence of the color contrast between the two spin states on the reflectance measurements. Interestingly, the samples’ contrast seems to play an important role on the spin-like domain structure as suggested by the symmetry of the FORC diagrams. These latest results are discussed within the framework of Classical Preisach model (CPM). Full article
(This article belongs to the Section Physics)
Show Figures

Figure 1

19 pages, 2155 KiB  
Article
Get a Grip: Variation in Human Hand Grip Strength and Implications for Human Evolution
by Ameline Bardo, Tracy L. Kivell, Katie Town, Georgina Donati, Haiko Ballieux, Cosmin Stamate, Trudi Edginton and Gillian S. Forrester
Symmetry 2021, 13(7), 1142; https://doi.org/10.3390/sym13071142 - 26 Jun 2021
Cited by 20 | Viewed by 9437
Abstract
Although hand grip strength is critical to the daily lives of humans and our arboreal great ape relatives, the human hand has changed in form and function throughout our evolution due to terrestrial bipedalism, tool use, and directional asymmetry (DA) such as handedness. [...] Read more.
Although hand grip strength is critical to the daily lives of humans and our arboreal great ape relatives, the human hand has changed in form and function throughout our evolution due to terrestrial bipedalism, tool use, and directional asymmetry (DA) such as handedness. Here we investigate how hand form and function interact in modern humans to gain an insight into our evolutionary past. We measured grip strength in a heterogeneous, cross-sectional sample of human participants (n = 662, 17 to 83 years old) to test the potential effects of age, sex, asymmetry (hand dominance and handedness), hand shape, occupation, and practice of sports and musical instruments that involve the hand(s). We found a significant effect of sex and hand dominance on grip strength, but not of handedness, while hand shape and age had a greater influence on female grip strength. Females were significantly weaker with age, but grip strength in females with large hands was less affected than those with long hands. Frequent engagement in hand sports significantly increased grip strength in the non-dominant hand in both sexes, while only males showed a significant effect of occupation, indicating different patterns of hand dominance asymmetries and hand function. These results improve our understanding of the link between form and function in both hands and offer an insight into the evolution of human laterality and dexterity. Full article
(This article belongs to the Special Issue Symmetry in Human Evolution, from Biology to Behaviours)
Show Figures

Figure 1

21 pages, 11979 KiB  
Article
Extreme Poisson’s Ratios of Honeycomb, Re-Entrant, and Zig-Zag Crystals of Binary Hard Discs
by Mikołaj Bilski, Paweł M. Pigłowski and Krzysztof W. Wojciechowski
Symmetry 2021, 13(7), 1127; https://doi.org/10.3390/sym13071127 - 24 Jun 2021
Cited by 13 | Viewed by 2882
Abstract
Two-dimensional (2D) crystalline structures based on a honeycomb geometry are analyzed by computer simulations using the Monte Carlo method in the isobaric-isothermal ensemble. The considered crystals are formed by hard discs (HD) of two different diameters which are very close to each other. [...] Read more.
Two-dimensional (2D) crystalline structures based on a honeycomb geometry are analyzed by computer simulations using the Monte Carlo method in the isobaric-isothermal ensemble. The considered crystals are formed by hard discs (HD) of two different diameters which are very close to each other. In contrast to equidiameter HD, which crystallize into a homogeneous solid which is elastically isotropic due to its six-fold symmetry axis, the systems studied in this work contain artificial patterns and can be either isotropic or anisotropic. It turns out that the symmetry of the patterns obtained by the appropriate arrangement of two types of discs strongly influences their elastic properties. The Poisson’s ratio (PR) of each of the considered structures was studied in two aspects: (a) its dependence on the external isotropic pressure and (b) in the function of the direction angle, in which the deformation of the system takes place, since some of the structures are anisotropic. In order to accomplish the latter, the general analytic formula for the orientational dependence of PR in 2D systems was used. The PR analysis at extremely high pressures has shown that for the vast majority of the considered structures it is approximately direction independent (isotropic) and tends to the upper limit for isotropic 2D systems, which is equal to +1. This is in contrast to systems of equidiameter discs for which it tends to 0.13, i.e., a value almost eight times smaller. Full article
(This article belongs to the Special Issue Metamaterials and Symmetry)
Show Figures

Figure 1

15 pages, 2837 KiB  
Article
In Silico Investigation on the Interaction of Chiral Phytochemicals from Opuntia ficus-indica with SARS-CoV-2 Mpro
by Caterina Vicidomini, Valentina Roviello and Giovanni N. Roviello
Symmetry 2021, 13(6), 1041; https://doi.org/10.3390/sym13061041 - 09 Jun 2021
Cited by 35 | Viewed by 5534
Abstract
Opuntia ficus-indica is a cactaceous plant native to America but, nowadays, widely found worldwide, having been the most common domesticated species of cactus grown as a crop plant in semiarid and arid parts of the globe, including several Mediterranean basin countries. Opuntia ficus-indica [...] Read more.
Opuntia ficus-indica is a cactaceous plant native to America but, nowadays, widely found worldwide, having been the most common domesticated species of cactus grown as a crop plant in semiarid and arid parts of the globe, including several Mediterranean basin countries. Opuntia ficus-indica can be regarded as a medicinal plant, being source of numerous bioactive phytochemicals such as vitamins, polyphenols, and amino acids. The urgent need for therapeutic treatments for the COronaVIrus Disease 19 (COVID-19), caused by the Severe Acute Respiratory Syndrome (SARS)-Coronavirus (CoV)-2, justifies the great attention currently being paid not only to repurposed antiviral drugs, but also to natural products and herbal medications. In this context, the anti-COVID-19 utility of Opuntia ficus-indica as source of potential antiviral drugs was investigated in this work on the basis of the activity of some of its phytochemical constituents. The antiviral potential was evaluated in silico in docking experiments with Mpro, i.e., the main protease of SARS-CoV-2, that is one of the most investigated protein targets of therapeutic strategies for COVID-19. By using two web-based molecular docking programs (1-Click Mcule and COVID-19 Docking Server), we found, for several flavonols and flavonol glucosides isolated from Opuntia ficus-indica, good binding affinities for Mpro, and in particular, binding energies lower than −7.0 kcal/mol were predicted for astragalin, isorhamnetin, isorhamnetin 3-O-glucoside, 3-O-caffeoyl quinic acid, and quercetin 5,4′-dimethyl ether. Among these compounds, the chiral compound astragalin showed in our in silico studies the highest affinity for Mpro (−8.7 kcal/mol) and also a low toxicity profile, emerging, thus, as an interesting protease inhibitor candidate for anti-COVID-19 strategies. Full article
Show Figures

Figure 1

15 pages, 1552 KiB  
Article
The Association among Autistic Traits, Interactional Synchrony and Typical Pattern of Motor Planning and Execution in Neurotypical Individuals
by Michal Granner-Shuman, Anat Dahan, Roi Yozevitch and Hila Zahava Gvirts Problovski
Symmetry 2021, 13(6), 1034; https://doi.org/10.3390/sym13061034 - 08 Jun 2021
Cited by 6 | Viewed by 2484
Abstract
Autism spectrum disorder (ASD) is characterized by deficits in interactional synchrony and motor performance, but little is known about the association between them. The current study investigated the association among aberrant interactional synchrony (as measured by interactors’ symmetry in the form of the [...] Read more.
Autism spectrum disorder (ASD) is characterized by deficits in interactional synchrony and motor performance, but little is known about the association between them. The current study investigated the association among aberrant interactional synchrony (as measured by interactors’ symmetry in the form of the hand at each time-point along movement’s execution), motor functioning and the level of Autistic traits. In this study, autistic traits were evaluated by the Autistic Spectrum Quotient (AQ). Two tasks were used: (1) an interactional synchrony task where participants and the research assistant were instructed to move their hands together; and (2) a motor planning task which allows for continuous monitoring of natural hand movements. Pearson correlation analysis indicated a significant association between lower communication skills (i.e., higher AQ communication scores) and lower intentional synchrony rates. In addition, lower communication skills were found associated with typical patterns of motor planning and execution characterized by shorter time to start the movement and higher value of max speed. Mediator analyses supported the notion that aberrant intentional synchrony in individuals with low communication skills is partially mediated through typical patterns of motor planning and execution. These results suggest typical patterns of motor functions may account for intentional synchrony difficulties. Full article
(This article belongs to the Special Issue Symmetry and Asymmetry: From Evolution to Neuroscience)
Show Figures

Figure 1

44 pages, 3475 KiB  
Review
Handedness Development: A Model for Investigating the Development of Hemispheric Specialization and Interhemispheric Coordination
by George F. Michel
Symmetry 2021, 13(6), 992; https://doi.org/10.3390/sym13060992 - 02 Jun 2021
Cited by 14 | Viewed by 4839
Abstract
The author presents his perspective on the character of science, development, and handedness and relates these to his investigations of the early development of handedness. After presenting some ideas on what hemispheric specialization of function might mean for neural processing and how handedness [...] Read more.
The author presents his perspective on the character of science, development, and handedness and relates these to his investigations of the early development of handedness. After presenting some ideas on what hemispheric specialization of function might mean for neural processing and how handedness should be assessed, the neuroscience of control of the arms/hands and interhemispheric communication and coordination are examined for how developmental processes can affect these mechanisms. The author’s work on the development of early handedness is reviewed and placed within a context of cascading events in which different forms of handedness emerge from earlier forms but not in a deterministic manner. This approach supports a continuous rather than categorical distribution of handedness and accounts for the predominance of right-handedness while maintaining a minority of left-handedness. Finally, the relation of the development of handedness to the development of several language and cognitive skills is examined. Full article
(This article belongs to the Special Issue Symmetry and Asymmetry: From Evolution to Neuroscience)
Show Figures

Figure 1

29 pages, 1453 KiB  
Article
IDM Benchmarks for the LHC and Future Colliders
by Jan Kalinowski, Tania Robens, Dorota Sokołowska and Aleksander Filip Żarnecki
Symmetry 2021, 13(6), 991; https://doi.org/10.3390/sym13060991 - 02 Jun 2021
Cited by 33 | Viewed by 2617
Abstract
We present cross-section expectations for various processes and collider options, for benchmark scenarios of the Inert Doublet Model, a Two Higgs Doublet Model with a dark matter candidate. The proposed scenarios are consistent with current dark matter constraints, including the most recent bounds [...] Read more.
We present cross-section expectations for various processes and collider options, for benchmark scenarios of the Inert Doublet Model, a Two Higgs Doublet Model with a dark matter candidate. The proposed scenarios are consistent with current dark matter constraints, including the most recent bounds from the XENON1T experiment and relic density, as well as with known collider and low-energy limits. These benchmarks, chosen in earlier work for studies at e+e colliders, exhibit a variety of kinematic features that should be explored at current and future runs of the LHC. We provide cross sections for all relevant production processes at 13 TeV, 27 TeV and 100 TeV proton collider, as well as for a possible 10 TeV and 30 TeV muon collider. Full article
(This article belongs to the Special Issue Higher Order Radiative Corrections in QCD)
Show Figures

Figure 1

9 pages, 237 KiB  
Article
An Application of the Principle of Differential Subordination to Analytic Functions Involving Atangana–Baleanu Fractional Integral of Bessel Functions
by Alina Alb Lupaş and Adriana Cătaş
Symmetry 2021, 13(6), 971; https://doi.org/10.3390/sym13060971 - 31 May 2021
Cited by 11 | Viewed by 1835
Abstract
The aim of this paper is to establish certain subordination results for analytic functions involving Atangana–Baleanu fractional integral of Bessel functions. Studying subordination properties by using various types of operators is a technique that is widely used. Full article
(This article belongs to the Section Mathematics)
21 pages, 325 KiB  
Article
Different Faces of Generalized Holographic Dark Energy
by Shin’ichi Nojiri, Sergei D. Odintsov and Tanmoy Paul
Symmetry 2021, 13(6), 928; https://doi.org/10.3390/sym13060928 - 23 May 2021
Cited by 107 | Viewed by 2871
Abstract
In the formalism of generalized holographic dark energy (HDE), the holographic cut-off is generalized to depend upon [...] Read more.
In the formalism of generalized holographic dark energy (HDE), the holographic cut-off is generalized to depend upon LIR=LIRLp,L˙p,L¨p,,Lf,L˙f,,a with Lp and Lf being the particle horizon and the future horizon, respectively (moreover, a is the scale factor of the Universe). Based on such formalism, in the present paper, we show that a wide class of dark energy (DE) models can be regarded as different candidates for the generalized HDE family, with respective cut-offs. This can be thought as a symmetry between the generalized HDE and different DE models. In this regard, we considered several entropic dark energy models—such as the Tsallis entropic DE, the Rényi entropic DE, and the Sharma–Mittal entropic DE—and found that they are indeed equivalent with the generalized HDE. Such equivalence between the entropic DE and the generalized HDE is extended to the scenario where the respective exponents of the entropy functions are allowed to vary with the expansion of the Universe. Besides the entropic DE models, the correspondence with the generalized HDE was also established for the quintessence and for the Ricci DE model. In all the above cases, the effective equation of state (EoS) parameter corresponding to the holographic energy density was determined, by which the equivalence of various DE models with the respective generalized HDE models was further confirmed. The equivalent holographic cut-offs were determined by two ways: (1) in terms of the particle horizon and its derivatives, (2) in terms of the future horizon horizon and its derivatives. Full article
(This article belongs to the Special Issue Symmetry: Feature Papers 2022)
14 pages, 1223 KiB  
Article
The Qualitative and Quantitative Study of Radiation Sources with a Model Configuration of the Electrode System
by Victor V. Kuzenov and Sergei V. Ryzhkov
Symmetry 2021, 13(6), 927; https://doi.org/10.3390/sym13060927 - 23 May 2021
Cited by 26 | Viewed by 2503
Abstract
This research is devoted to the calculation and theoretical analysis of physical processes in the powerful electric discharge sources of UV radiation and shock waves with required and controlled technical and physical characteristics. Based on the calculations, the processes of converting the initially [...] Read more.
This research is devoted to the calculation and theoretical analysis of physical processes in the powerful electric discharge sources of UV radiation and shock waves with required and controlled technical and physical characteristics. Based on the calculations, the processes of converting the initially stored electromagnetic energy into internal, kinetic, magnetic and radiation energy formed in the electro-discharge plasma sources of plasma formation were studied, and the interactions of discharged plasma and its radiation with matter in different aggregate states were also studied. All the main magneto-plasma dynamic and radiative parameters of plasma formation in the electric discharge sources of UV radiation and shock waves are obtained. Full article
(This article belongs to the Special Issue Plasma and Thermal Physics)
Show Figures

Figure 1

16 pages, 2937 KiB  
Article
A Topology Optimization Method Based on Non-Uniform Rational Basis Spline Hyper-Surfaces for Heat Conduction Problems
by Marco Montemurro and Khalil Refai
Symmetry 2021, 13(5), 888; https://doi.org/10.3390/sym13050888 - 17 May 2021
Cited by 18 | Viewed by 3216
Abstract
This work deals with heat conduction problems formulation in the framework of a CAD-compatible topology optimization method based on a pseudo-density field as a topology descriptor. In particular, the proposed strategy relies, on the one hand, on the use of CAD-compatible Non-Uniform Rational [...] Read more.
This work deals with heat conduction problems formulation in the framework of a CAD-compatible topology optimization method based on a pseudo-density field as a topology descriptor. In particular, the proposed strategy relies, on the one hand, on the use of CAD-compatible Non-Uniform Rational Basis Spline (NURBS) hyper-surfaces to represent the pseudo-density field and, on the other hand, on the well-known Solid Isotropic Material with Penalization (SIMP) approach. The resulting method is then referred to as NURBS-based SIMP method. In this background, heat conduction problems have been reformulated by taking advantage of the properties of the NURBS entities. The influence of the integer parameters, involved in the definition of the NURBS hyper-surface, on the optimized topology is investigated. Furthermore, symmetry constraints, as well as a manufacturing requirement related to the minimum allowable size, are also integrated into the problem formulation without introducing explicit constraint functions, thanks to the NURBS blending functions properties. Finally, since the topological variable is represented by means of a NURBS entity, the geometrical representation of the boundary of the topology is available at each iteration of the optimization process and its reconstruction becomes a straightforward task. The effectiveness of the NURBS-based SIMP method is shown on 2D and 3D benchmark problems taken from the literature. Full article
(This article belongs to the Special Issue Mathematical Theory, Methods, and Its Applications for Industry)
Show Figures

Figure 1

52 pages, 4723 KiB  
Review
Phosphorus Compounds of Natural Origin: Prebiotic, Stereochemistry, Application
by Oleg I. Kolodiazhnyi
Symmetry 2021, 13(5), 889; https://doi.org/10.3390/sym13050889 - 17 May 2021
Cited by 23 | Viewed by 10097
Abstract
Organophosphorus compounds play a vital role as nucleic acids, nucleotide coenzymes, metabolic intermediates and are involved in many biochemical processes. They are part of DNA, RNA, ATP and a number of important biological elements of living organisms. Synthetic compounds of this class have [...] Read more.
Organophosphorus compounds play a vital role as nucleic acids, nucleotide coenzymes, metabolic intermediates and are involved in many biochemical processes. They are part of DNA, RNA, ATP and a number of important biological elements of living organisms. Synthetic compounds of this class have found practical application as agrochemicals, pharmaceuticals, bioregulators, and othrs. In recent years, a large number of phosphorus compounds containing P-O, P-N, P-C bonds have been isolated from natural sources. Many of them have shown interesting biological properties and have become the objects of intensive scientific research. Most of these compounds contain asymmetric centers, the absolute configurations of which have a significant effect on the biological properties of the products of their transformations. This area of research on natural phosphorus compounds is still little-studied, that prompted us to analyze and discuss it in our review. Moreover natural organophosphorus compounds represent interesting models for the development of new biologically active compounds, and a number of promising drugs and agrochemicals have already been obtained on their basis. The review also discusses the history of the development of ideas about the role of organophosphorus compounds and stereochemistry in the origin of life on Earth, starting from the prebiotic period, that allows us in a new way to consider this most important problem of fundamental science. Full article
(This article belongs to the Collection Feature Papers in Chemistry)
Show Figures

Graphical abstract

17 pages, 5508 KiB  
Article
Protein Helical Structures: Defining Handedness and Localization Features
by Alla E. Sidorova, Ekaterina V. Malyshko, Aleksey O. Lutsenko, Denis K. Shpigun and Olga E. Bagrova
Symmetry 2021, 13(5), 879; https://doi.org/10.3390/sym13050879 - 15 May 2021
Cited by 9 | Viewed by 2489
Abstract
The quantitative evaluation of the chirality of macromolecule structures remains one of the exciting issues in biophysics. In this paper, we propose methods for quantitative analysis of the chirality of protein helical and superhelical structures. The analysis of the chirality sign of the [...] Read more.
The quantitative evaluation of the chirality of macromolecule structures remains one of the exciting issues in biophysics. In this paper, we propose methods for quantitative analysis of the chirality of protein helical and superhelical structures. The analysis of the chirality sign of the protein helical structures (α-helices and 310-helices) is based on determining the mixed product of every three consecutive vectors between neighboring reference points—α-carbons atoms. The method for evaluating the chirality sign of coiled-coil structures is based on determining the direction and value of the angle between the coiled-coil axis and the α-helices axes. The chirality sign of the coiled coil is calculated by averaging the value of the cosine of the corresponding angle for all helices forming the superhelix. Chirality maps of helical and superhelical protein structures are presented. Furthermore, we propose an analysis of the distributions of helical and superhelical structures in polypeptide chains of several protein classes. The features common to all studied classes and typical for each protein class are revealed. The data obtained, in all likelihood, can reflect considerations about molecular machines as chiral formations. Full article
(This article belongs to the Special Issue Symmetry in Biophysics)
Show Figures

Figure 1

15 pages, 813 KiB  
Article
Cyclic Control Optimization Algorithm for Stirling Engines
by Raphael Paul and Karl Heinz Hoffmann
Symmetry 2021, 13(5), 873; https://doi.org/10.3390/sym13050873 - 13 May 2021
Cited by 22 | Viewed by 3412
Abstract
The ideal Stirling cycle describes a specific way to operate an equilibrium Stirling engine. This cycle consists of two isothermal and two isochoric strokes. For non-equilibrium Stirling engines, which may feature various irreversibilities and whose dynamics is characterized by a set of coupled [...] Read more.
The ideal Stirling cycle describes a specific way to operate an equilibrium Stirling engine. This cycle consists of two isothermal and two isochoric strokes. For non-equilibrium Stirling engines, which may feature various irreversibilities and whose dynamics is characterized by a set of coupled ordinary differential equations, a control strategy that is based on the ideal cycle will not necessarily yield the best performance—for example, it will not generally lead to maximum power. In this paper, we present a method to optimize the engine’s piston paths for different objectives; in particular, power and efficiency. Here, the focus is on an indirect iterative gradient algorithm that we use to solve the cyclic optimal control problem. The cyclic optimal control problem leads to a Hamiltonian system that features a symmetry between its state and costate subproblems. The symmetry manifests itself in the existence of mutually related attractive and repulsive limit cycles. Our algorithm exploits these limit cycles to solve the state and costate problems with periodic boundary conditions. A description of the algorithm is provided and it is explained how the control can be embedded in the system dynamics. Moreover, the optimization results obtained for an exemplary Stirling engine model are discussed. For this Stirling engine model, a comparison of the optimized piston paths against harmonic piston paths shows significant gains in both power and efficiency. At the maximum power point, the relative power gain due to the power-optimal control is ca. 28%, whereas the relative efficiency gain due to the efficiency-optimal control at the maximum efficiency point is ca. 10%. Full article
(This article belongs to the Special Issue Mathematical Aspects in Non-equilibrium Thermodynamics)
Show Figures

Figure 1

14 pages, 6389 KiB  
Article
An Auxetic System Based on Interconnected Y-Elements Inspired by Islamic Geometric Patterns
by Teik-Cheng Lim
Symmetry 2021, 13(5), 865; https://doi.org/10.3390/sym13050865 - 12 May 2021
Cited by 12 | Viewed by 2667
Abstract
A 2D mechanical metamaterial exhibiting perfectly auxetic behavior, i.e., Poisson’s ratio of 1, is proposed in this paper drawing upon inspiration from an Islamic star formed by circumferential arrangement of eight squares, such as the one found at the exterior of [...] Read more.
A 2D mechanical metamaterial exhibiting perfectly auxetic behavior, i.e., Poisson’s ratio of 1, is proposed in this paper drawing upon inspiration from an Islamic star formed by circumferential arrangement of eight squares, such as the one found at the exterior of the Ghiyathiyya Madrasa in Khargird, Iran (built 1438–1444 AD). Each unit of the metamaterial consists of eight pairs of pin-jointed Y-shaped rigid elements, whereby every pair of Y-elements is elastically restrained by a spiral spring. Upon intermediate stretching, each metamaterial unit resembles the north dome of Jameh Mosque, Iran (built 1087–1088 AD), until the attainment of the fully opened configuration, which resembles a structure in Agra, India, near the Taj Mahal. Both infinitesimal and finite deformation models of the effective Young’s modulus for the metamaterial structure were established using strain energy approach in terms of the spiral spring stiffness and geometrical parameters, with assumptions to preserve the eight-fold symmetricity of every metamaterial unit. Results indicate that the prescription of strain raises the effective Young’s modulus in an exponential manner until full extension is attained. This metamaterial is useful for applications where the overall shape of the structure must be conserved in spite of uniaxial application of load, and where deformation is permitted under limited range, which is quickly arrested as the deformation progresses. Full article
(This article belongs to the Special Issue Metamaterials and Symmetry)
Show Figures

Graphical abstract

25 pages, 347 KiB  
Article
Hermite Functions and Fourier Series
by Enrico Celeghini, Manuel Gadella and Mariano A. del Olmo
Symmetry 2021, 13(5), 853; https://doi.org/10.3390/sym13050853 - 11 May 2021
Cited by 9 | Viewed by 3023
Abstract
Using normalized Hermite functions, we construct bases in the space of square integrable functions on the unit circle (L2(C)) and in l2(Z), which are related to each other by means of the [...] Read more.
Using normalized Hermite functions, we construct bases in the space of square integrable functions on the unit circle (L2(C)) and in l2(Z), which are related to each other by means of the Fourier transform and the discrete Fourier transform. These relations are unitary. The construction of orthonormal bases requires the use of the Gramm–Schmidt method. On both spaces, we have provided ladder operators with the same properties as the ladder operators for the one-dimensional quantum oscillator. These operators are linear combinations of some multiplication- and differentiation-like operators that, when applied to periodic functions, preserve periodicity. Finally, we have constructed riggings for both L2(C) and l2(Z), so that all the mentioned operators are continuous. Full article
(This article belongs to the Special Issue Special Functions and Polynomials)
22 pages, 1051 KiB  
Article
Higgs and BSM Physics at the Future Muon Collider
by Roberto Franceschini and Mario Greco
Symmetry 2021, 13(5), 851; https://doi.org/10.3390/sym13050851 - 11 May 2021
Cited by 31 | Viewed by 3188
Abstract
We describe recent work on the physics of the Higgs boson and breaking of the electroweak symmetry at future muon colliders. Starting from the low-energy muon collider at the Higgs boson pole we extend our discussion to the multi-TeV muon collider and outline [...] Read more.
We describe recent work on the physics of the Higgs boson and breaking of the electroweak symmetry at future muon colliders. Starting from the low-energy muon collider at the Higgs boson pole we extend our discussion to the multi-TeV muon collider and outline the physics case for such machines about the properties of the Higgs boson and physics beyond the Standard Model that can be possibly discovered. Full article
(This article belongs to the Special Issue Physics Potential of the Muon Collider)
Show Figures

Figure 1

18 pages, 341 KiB  
Article
Applications of Banach Limit in Ulam Stability
by Roman Badora, Janusz Brzdęk and Krzysztof Ciepliński
Symmetry 2021, 13(5), 841; https://doi.org/10.3390/sym13050841 - 10 May 2021
Cited by 11 | Viewed by 1809
Abstract
We show how to get new results on Ulam stability of some functional equations using the Banach limit. We do this with the examples of the linear functional equation in single variable and the Cauchy equation. Full article
(This article belongs to the Special Issue Symmetry in Functional Equations and Inequalities)
29 pages, 8366 KiB  
Article
Elastic Origin of the Unsymmetrical Thermal Hysteresis in Spin Crossover Materials: Evidence of Symmetry Breaking
by Mamadou Ndiaye, Nour El Islam Belmouri, Jorge Linares and Kamel Boukheddaden
Symmetry 2021, 13(5), 828; https://doi.org/10.3390/sym13050828 - 09 May 2021
Cited by 12 | Viewed by 2200
Abstract
The jungle of experimental behaviors of spin-crossover materials contains a tremendous number of unexpected behaviors, among which, the unsymmetrical hysteresis loops having different shapes on heating and cooling, that we often encounter in literature. Excluding an extra effect of crystallographic phase transitions, we [...] Read more.
The jungle of experimental behaviors of spin-crossover materials contains a tremendous number of unexpected behaviors, among which, the unsymmetrical hysteresis loops having different shapes on heating and cooling, that we often encounter in literature. Excluding an extra effect of crystallographic phase transitions, we study here these phenomena from the point of view of elastic modeling and we demonstrate that a simple model accounting for the bond lengths misfits between the high-spin and low-spin states is sufficient to describe the situation of unsymmetrical hysteresis showing plateaus at the transition only on cooling or on heating branches. The idea behind this effect relates to the existence of a discriminant elastic frustration in the lattice, which expresses only along the high-spin to low-spin transition or in the opposite side. The obtained two-step transitions showed characteristics of self-organization of the spin states under the form of stripes, which we explain as an emergence process of antagonist directional elastic interactions inside the lattice. The analysis of the spin state transformation inside the plateau on cooling in terms of two sublattices demonstrated that the elastic-driven self-organization of the spin states is accompanied with a symmetry breaking. Full article
Show Figures

Figure 1

13 pages, 4906 KiB  
Article
On the Relationship between Generalization and Robustness to Adversarial Examples
by Anibal Pedraza, Oscar Deniz and Gloria Bueno
Symmetry 2021, 13(5), 817; https://doi.org/10.3390/sym13050817 - 07 May 2021
Cited by 7 | Viewed by 2483
Abstract
One of the most intriguing phenomenons related to deep learning is the so-called adversarial examples. These samples are visually equivalent to normal inputs, undetectable for humans, yet they cause the networks to output wrong results. The phenomenon can be framed as a symmetry/asymmetry [...] Read more.
One of the most intriguing phenomenons related to deep learning is the so-called adversarial examples. These samples are visually equivalent to normal inputs, undetectable for humans, yet they cause the networks to output wrong results. The phenomenon can be framed as a symmetry/asymmetry problem, whereby inputs to a neural network with a similar/symmetric appearance to regular images, produce an opposite/asymmetric output. Some researchers are focused on developing methods for generating adversarial examples, while others propose defense methods. In parallel, there is a growing interest in characterizing the phenomenon, which is also the focus of this paper. From some well known datasets of common images, like CIFAR-10 and STL-10, a neural network architecture is first trained in a normal regime, where training and validation performances increase, reaching generalization. Additionally, the same architectures and datasets are trained in an overfitting regime, where there is a growing disparity in training and validation performances. The behaviour of these two regimes against adversarial examples is then compared. From the results, we observe greater robustness to adversarial examples in the overfitting regime. We explain this simultaneous loss of generalization and gain in robustness to adversarial examples as another manifestation of the well-known fitting-generalization trade-off. Full article
Show Figures

Figure 1

32 pages, 2412 KiB  
Article
Copulaesque Versions of the Skew-Normal and Skew-Student Distributions
by Christopher Adcock
Symmetry 2021, 13(5), 815; https://doi.org/10.3390/sym13050815 - 06 May 2021
Cited by 4 | Viewed by 1997
Abstract
A recent paper presents an extension of the skew-normal distribution which is a copula. Under this model, the standardized marginal distributions are standard normal. The copula itself depends on the familiar skewing construction based on the normal distribution function. This paper is concerned [...] Read more.
A recent paper presents an extension of the skew-normal distribution which is a copula. Under this model, the standardized marginal distributions are standard normal. The copula itself depends on the familiar skewing construction based on the normal distribution function. This paper is concerned with two topics. First, the paper presents a number of extensions of the skew-normal copula. Notably these include a case in which the standardized marginal distributions are Student’s t, with different degrees of freedom allowed for each margin. In this case the skewing function need not be the distribution function for Student’s t, but can depend on certain of the special functions. Secondly, several multivariate versions of the skew-normal copula model are presented. The paper contains several illustrative examples. Full article
(This article belongs to the Special Issue Symmetry and Asymmetry in Multivariate Statistics and Data Science)
Show Figures

Figure 1

44 pages, 4717 KiB  
Article
Extending the Model-Based Controller Design to Higher-Order Plant Models and Measurement Noise
by Mikulas Huba and Damir Vrancic
Symmetry 2021, 13(5), 798; https://doi.org/10.3390/sym13050798 - 04 May 2021
Cited by 15 | Viewed by 2718
Abstract
The article extends a model-based controller design to higher-order systems, focusing on the speed and shapes of the closed loop responses, including the noise attenuation. It shows that, to obtain simple but reliable results, it is necessary to pay attention to the initial [...] Read more.
The article extends a model-based controller design to higher-order systems, focusing on the speed and shapes of the closed loop responses, including the noise attenuation. It shows that, to obtain simple but reliable results, it is necessary to pay attention to the initial process identification and modelling and also to modify the target closed-loop transfer functions, which must remain causal. To attenuate high initial control signal peaks, appropriate pre-filters are introduced. In order to work with as few parameters as possible, all higher-order transfer functions (process models, target closed loops, pre-filters and noise-attenuation filters) are selected in the form of binomial filters with multiple time constants. Consequently, the so-called “half-rule”, used to reduce too complex process transfer functions, has been modified accordingly. Because derived controllers can lead to different transient dynamics depending on the context of use, the article recalls the need to introduce dynamic classes of control to clarify the mission of individual types of controllers. Consequently, also the performance evaluation using the total variation (TV) criterion had to be refined. Indeed, in its original version, TV is not suitable to distinguish between reasonable and excessive control effort due to improper tuning and noise. The modified TVs allow evaluating higher order systems with multiple changes in direction of their control signal increase without contributing to the excessive control increments. The advantages of the proposed modifications, compared to the traditional approaches, are made clear through simulation examples. Full article
(This article belongs to the Special Issue PID Control and Symmetry)
Show Figures

Figure 1

19 pages, 5042 KiB  
Article
Nanofluids Characterization for Spray Cooling Applications
by Miguel Sanches, Guido Marseglia, Ana P. C. Ribeiro, António L. N. Moreira and Ana S. Moita
Symmetry 2021, 13(5), 788; https://doi.org/10.3390/sym13050788 - 02 May 2021
Cited by 17 | Viewed by 2385
Abstract
In this paper the mathematical and physical correlation between fundamental thermophysical properties of materials, with their structure, for nanofluid thermal performance in spray cooling applications is presented. The present work aims at clarifying the nanofluid characteristics, especially the geometry of their nanoparticles, leading [...] Read more.
In this paper the mathematical and physical correlation between fundamental thermophysical properties of materials, with their structure, for nanofluid thermal performance in spray cooling applications is presented. The present work aims at clarifying the nanofluid characteristics, especially the geometry of their nanoparticles, leading to heat transfer enhancement at low particle concentration. The base fluid considered is distilled water with the surfactant cetyltrimethylammonium bromide (CTAB). Alumina and silver are used as nanoparticles. A systematic analysis addresses the effect of nanoparticles concentration and shape in spray hydrodynamics and heat transfer. Spray dynamics is mainly characterized using phase Doppler interferometry. Then, an extensive processing procedure is performed to thermal and spacetime symmetry images obtained with a high-speed thermographic camera to analyze the spray impact on a heated, smooth stainless-steel foil. There is some effect on the nanoparticles’ shape, which is nevertheless minor when compared to the effect of the nanoparticles concentration and to the change in the fluid properties caused by the addition of the surfactant. Hence, increasing the nanoparticles concentration results in lower surface temperatures and high removed heat fluxes. In terms of the effect of the resulting thermophysical properties, increasing the nanofluids concentration resulted in the increase in the thermal conductivity and dynamic viscosity of the nanofluids, which in turn led to a decrease in the heat transfer coefficients. On the other hand, nanofluids specific heat capacity is increased which correlates positively with the spray cooling capacity. The analysis of the parameters that determine the structure, evolution, physics and both spatial and temporal symmetry of the spray is interesting and fundamental to shed light to the fact that only knowledge based in experimental data can guarantee a correct setting of the model numbers. Full article
(This article belongs to the Special Issue Materials Science: Synthesis, Structure, Properties)
Show Figures

Figure 1

15 pages, 3042 KiB  
Article
Cooperation/Competition between Halogen Bonds and Hydrogen Bonds in Complexes of 2,6-Diaminopyridines and X-CY3 (X = Cl, Br; Y = H, F)
by Barbara Bankiewicz and Marcin Palusiak
Symmetry 2021, 13(5), 766; https://doi.org/10.3390/sym13050766 - 28 Apr 2021
Cited by 6 | Viewed by 2363
Abstract
The DFT calculations have been performed on a series of two-element complexes formed by substituted 2,6-diaminopyridine (R−PDA) and pyridine (R−Pyr) with X−CY3 molecules (where X = Cl, Br and Y = H, F). The primary aim of this study was to examine [...] Read more.
The DFT calculations have been performed on a series of two-element complexes formed by substituted 2,6-diaminopyridine (R−PDA) and pyridine (R−Pyr) with X−CY3 molecules (where X = Cl, Br and Y = H, F). The primary aim of this study was to examine the intermolecular hydrogen and halogen bonds in the condition of their mutual coexistence. Symmetry/antisymmetry of the interrelation between three individual interactions is addressed. It appears that halogen bonds play the main role in the stabilization of the structures of the selected systems. However, the occurrence of one or two hydrogen bonds was associated with the favourable geometry of the complexes. Moreover, the impact of different substituent groups attached in the para position to the aromatic ring of the 2,6-diaminopyridine and pyridine on the character of the intermolecular hydrogen and halogen bonds was examined. The results indicate that the presence of electron-donating substituents strengthens the bonds. In turn, the presence of electron-withdrawing substituents reduces the strength of halogen bonds. Additionally, when hydrogen and halogen bonds lose their leading role in the complex formation, the nonspecific electrostatic interactions between dipole moments take their place. Analysis was based on geometric, energetic, and topological parameters of the studied systems. Full article
Show Figures

Graphical abstract

Back to TopTop