Nutrition Promotion to Prevent Obesity in Young Adults
Abstract
:1. Introduction
2. Background
3. Individual Food Behaviours Distinctive of Young Adults
4. Readiness of Young Adults to Change Behaviours and Enablers and Barriers
5. Programs for Individual Behavior Change
Principal Investigator | Study Name | Population | Sample Size | Intervention | Comparison | Outcome |
---|---|---|---|---|---|---|
Leslie Lytle University of Minnesota | CHOICES | Community College students | 441 | One credit college course on behaviours for weight control. Web-based social network site with goal setting and tracking of weight and behaviours | Public Health information only and usual care | Change in BMI |
Laura Svetkey Duke University | CITY | Overweight/obese young adults | 365 | Two intervention arms
| Usual Care | Change in weight |
Christine Olsen Cornell University & Isabel Fernandez University of Rochester | e-MomsRoc | Pregnant women | 1691 |
| Non-weight related information on web site | Difference in proportion unhealthy gestational weight gain and weight retention post-partum |
John Jakicic University of Pittsburgh | IDEA | Overweight/obese young adults | 471 | Standard plus Enhanced weight loss intervention. Additional treatment are text messages, self- monitoring via web site plus wearable monitor to track activity/energy expenditure | Control Standard weight loss intervention; face-to-face plus phone calls | Change in weight |
Kevin Patrick University of California, San Diego | SMART | Overweight/obese 4 year college students | 404 | Intervention theory based content on physical activity diet and weight management via text messages, emails Facebook and Apps | Control web site with standard health information | Change in weight |
Rena Wing Brown University Deborah Tate University of North Carolina | SNAP | Young adults | 600 |
| Usual care | Change in weight |
Karen Johnson University of Tennessee | TARGIT | Young adult smokers | 330 | Tobacco quite line plus Behavioural weight gain prevention program with smoking cessation apps, self-monitoring, webinars and web site | Tobacco quit line | Change in weight |
Principal Investigator | Study Name | Population | Sample Size | Intervention | Comparison | Outcome |
---|---|---|---|---|---|---|
Margaret Allman-Farinelli University of Sydney [49] | TXT2BFiT | Overweight young adults 18 to 35 years | 250 | Lifestyle behavioural intervention with text messages, 5 coaching calls, email, apps and web site for self-monitoring and diet booklet. | 4 text messages 1 phone call Public health nutrition and physical activity guidelines | Change in weight |
Deborah Kerr Curtin University [50] | CHAT | 18 to 30 year olds | 300 | Two intervention arms. Mobile dietary food record
| Control arm Mobile dietary food record only | Change in fruit and vegetables intake |
Bianca Share Australian Catholic University [51] | 12 week multidisciplinary lifestyle intervention | 18 to 30 year old women with abdominal obesity | 68 | Physical activity sessions, nutrition education and cognitive behavioral therapy | Wait-list control | Waist circumference |
Melinda Hutchesson University of Newcastle [52] | Be Positive Be Healthe | 18 to 35 year old women Overweight/obese | 114 | Individual advice and goal setting for energy intake and expenditure e-tools web site, apps, text messages, newsletters | Wait list control | Weight change |
6. Medium for Program Delivery
7. Environmental Level Changes
8. Other Considerations
9. Conclusions
Acknowledgments
Conflicts of Interest
References
- Obesity Update. Available online: http://www.oecd.org/health/Obesity-Update-2014.pdf (accessed on 20 August 2015).
- Ogden, C.L.; Carroll, M.D.; Kit, B.K.; Flegal, K.M. Prevalence of childhood and adult obesity in the United States, 2011–2012. J. Am. Med. Assoc. 2014, 311, 806–814. [Google Scholar] [CrossRef] [PubMed]
- Allman-Farinelli, M.; Chey, T.; Bauman, A.; Gill, T.; James, P.W.T. Age, period and birth cohort effects on prevalence of overweight and obesity in Australian adults from 1990 to 2000. Eur. J. Clin. Nutr. 2008, 62, 898–907. [Google Scholar] [CrossRef] [PubMed]
- Reither, E.N.; Hauser, R.M.; Yang, Y. Do birth cohorts matter? Age-period-cohort analyses of the obesity epidemic in the United States. Soc. Sci. Med. 2009, 69, 1439–1448. [Google Scholar] [CrossRef] [PubMed]
- Jiang, T.; Gilthorpe, M.S.; Shiely, F.; Harrington, J.M.; Perry, I.J.; Kelleher, C.C.; Tu, Y. Age-period-cohort analysis for trends in body mass index in Ireland. BMC Public Health 2013. [Google Scholar] [CrossRef] [PubMed]
- Tanamas, S.K.; Magliano, D.J.; Lynch, B.; Sethi, P.; Willenberg, L.; Polkinghorne, K.R.; Chadban, S.; Dunstan, D.; Shaw, J.E. AusDiab 2012: The Australian Diabetes, Obesity and Lifestyle Study; Baker IDI Heart and Diabetes Institute: Melbourne, Australia, 2013. [Google Scholar]
- Gow, R.W.; Trace, S.E.; Mazzeo, S.E. Preventing weight gain in first year college students: An online intervention to prevent the “Freshman Fifteen”. Eat. Behav. 2010, 11, 33–39. [Google Scholar] [CrossRef] [PubMed]
- Tchernof, A.; Despres, J.P. Pathophysiology of human visceral obesity: An update. Pathophysiol. Rev. 2013, 93, 359–404. [Google Scholar] [CrossRef] [PubMed]
- Monteiro, C.A.; Moubarac, J.C.; Cannon, G.; Ng, S.W.; Popkin, B. Ultra-processed products are becoming dominant in the global food system. Obes. Rev. 2013, 14, 21–28. [Google Scholar] [CrossRef] [PubMed]
- Adams, K.F.; Leitzmann, M.F.; Ballard-Barbash, R.; Albans, D.; Harris, T.B.; Hollenback, A.; Kipnios, V. Body mass and weight change in adults in relation to mortality risk. Am. J. Epidemiol. 2014, 179, 135–144. [Google Scholar] [CrossRef] [PubMed]
- Yarnell, J.W.; Patterson, C.C.; Thomas, H.F.; Sweetnam, P.M. Comparison of weight in middle age, weight at 18 years, and weight change between, in predicting subsequent 14 year mortality and coronary events: Caerphilly Prospective Study. J. Epidemiol. Community Health 2000, 54, 344–348. [Google Scholar] [CrossRef] [PubMed]
- Shimazu, T.; Kuriyama, S.; Ohmori-Matsuda, K.; Kikuchi, N.; Nakaya, N.; Tsuji, I. Increase in body mass index category since age 20 years and all-cause mortality: A prospective cohort study (the Ohsaki Study). Int. J. Obes. 2009, 33, 490–496. [Google Scholar] [CrossRef] [PubMed]
- Taing, K.Y.; Ardern, C.I.; Kuk, J.L. Effect of the timing of weight cycling during adulthood on mortality risk in overweight and obese postmenopausal women. Obesity 2012, 20, 407–413. [Google Scholar] [CrossRef] [PubMed]
- Aitken, R.; Allman-Farinelli, M.A.; Bauman, A.E.; King, L. A birth cohort comparison of the costs of illness attributable to obesity in Australia. Asia Pac. J. Clin. Nutr. 2009, 18, 63–70. [Google Scholar] [PubMed]
- Australian Bureau of Statistics. 4364.0.55.007—Australian Health Survey: Nutrition First Results—Foods and Nutrients, 2011–2012; ABS: Canberra, Australia, 2014.
- Briggs, A.D.; Mytton, O.T.; Kehlbacher, A.; Tiffin, R.; Rayner, M.; Scarborough, P. Overall and income specific effect on prevalence of overweight and obesity of 20% sugar sweetened drink tax in UK: Econometric and comparative risk assessment modelling study. Br. Med. J. 2013. [Google Scholar] [CrossRef] [PubMed]
- Kit, B.; Fakhouri, T.H.; Park, S.; Nielsen, S.J.; Ogden, C.L. Trends in sugar sweetened beverage consumption among youth and adults in the United States: 1999–2010. Am. J. Clin. Nutr. 2013, 98, 180–188. [Google Scholar] [CrossRef] [PubMed]
- Smith, C.; Gray, A.R.; Mainvil, L.A.; Fleming, E.A.; Parnell, W.R. Secular changes in intakes of foods among New Zealand adults from 1997 to 2008/09. Public Health Nutr. 2015, 10, 1–11. [Google Scholar]
- Greenwood, D.C.; Threapleton, D.E.; Evans, C.E.; Cleghorn, C.L.; Nykjaer, C.; Woodhead, C.; Burley, V.J. Association between sugar-sweetened and artificially sweetened soft drinks and type 2 diabetes: Systematic review and dose-response meta-analysis of prospective studies. Br. J. Nutr. 2014, 112, 725–734. [Google Scholar] [CrossRef] [PubMed]
- Malik, V.S.; Popkin, B.M.; Bray, G.A.; Després, J.P.; Willett, W.C.; Hu, F.B. Sugar-sweetened beverages and risk of metabolic syndrome and type 2 diabetes: A meta-analysis. Diabetes Care 2010, 33, 2477–2483. [Google Scholar] [CrossRef] [PubMed]
- Malik, V.S.; Popkin, B.; Bray, G.A.; Després, J.P.; Hu, F.B. Sugar-sweetened beverages, obesity, type 2 diabetes mellitus, and cardiovascular disease risk. Circulation 2010, 121, 1356–1364. [Google Scholar] [CrossRef] [PubMed]
- Tamers, S.L.; Agurs-Collins, T.; Dodd, K.W.; Nebeling, L. US and France adult fruit and vegetable consumption patterns: An international comparison. Eur. J. Clin. Nutr. 2009, 63, 11–17. [Google Scholar] [CrossRef] [PubMed]
- Tapsell, L.C.; Dunning, A.; Warensjo, E.; Lyons-Wall, P.; Dehlsen, K. Effects of vegetables consumption on weight loss: A review of the evidence with implications for design of randomized controlled trials. Crit. Rev. Food Sci. Nutr. 2014, 54, 1529–1538. [Google Scholar] [CrossRef] [PubMed]
- Mohr, P.; Wilson, C.; Dunn, K.; Brindal, E.; Wittert, G. Personal and lifestyle characteristics predictive of the consumption of fast foods in Australia. Public Health Nutr. 2007, 10, 1456–1463. [Google Scholar] [CrossRef] [PubMed]
- Powell, L.M.; Nguyen, B.T.; Han, E. Energy Intake from restaurants: Demographics and socioeconomics, 2003–2008. Am. J. Prev. Med. 2012, 43, 498–504. [Google Scholar] [CrossRef] [PubMed]
- Pereira, M.; Kartashov, A.; Ebbeling, C.B.; van Horn, L.; Slattery, M.L.; Jacobs, D.R., Jr.; Ludwig, D.S. Fast-food habits, weight gain, and insulin resistance (the CARDIA study): 15-year prospective analysis. Lancet 2005, 365, 36–42. [Google Scholar] [CrossRef]
- Smith, K.J.; Blizzard, L.; McNaughton, S.A.; Gall, S.L.; Dwyer, T.; Venn, A.J. Takeaway food consumption and cardio-metabolic risk factors in young adults. Eur. J. Clin. Nutr. 2012, 66, 577–584. [Google Scholar] [CrossRef] [PubMed]
- Nago, E.S.; Lachat, C.K.; Dossa, R.A.; Kolsteren, P.W. Association of out-of-home eating with anthropometric changes: A systematic review of prospective studies. Crit. Rev. Food Sci. Nutr. 2014, 54, 1103–1116. [Google Scholar] [CrossRef] [PubMed]
- Han, E.; Powell, L.M. Consumption patterns of sugar-sweetened beverages in the United States. J. Acad. Nutr. Diet. 2013, 113, 45–53. [Google Scholar] [CrossRef] [PubMed]
- Singh, G.M.; Micha, R.; Khatibzadeh, S.; Shi, P.; Lim, S.; Andrews, K.G.; Engell, R.E.; Ezzati, M.; Mozaffarian, D. Global, Regional, and National consumption of sugar-sweetened beverages, fruit juices and milk: A systematic assessment of beverage intake in 187 countries. PLoS ONE 2015, 10, e0124845. [Google Scholar] [CrossRef] [PubMed]
- Miura, K.; Giskes, K.; Turrell, G. Contribution of take-out food consumption to socioeconomic differences in fruit and vegetable intake: A mediation analysis. J. Am. Diet. Assoc. 2011, 111, 1556–1562. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Smith, C.; Gray, A.R.; Fleming, E.A.; Parnell, W.R. Characteristics of fast-food/takeaway-food and restaurant/café-food consumers among New Zealand adults. Public Health Nutr. 2014, 17, 2368–2377. [Google Scholar] [CrossRef] [PubMed]
- Fung, M.D.T.; Canning, K.L.; Mirdamadi, P.; Ardern, C.I.; Kuk, J.L. Lifestyle and weight predictors of a healthy overweight profile over a 20-year follow-up. Obesity 2015, 23, 1320–1325. [Google Scholar] [CrossRef] [PubMed]
- Steffen, L.M.; van Horn, L.; Daviglus, M.L.; Zhou, X.; Reis, J.P.; Loria, C.M.; Jacobs, D.R.; Duffey, K.J. A modified Mediterranean diet score is associated with a lower risk of incident metabolic syndrome over 25 years among young adults: The CARDIA (Coronary Artery Risk Development In young Adults) study. Br. J. Nutr. 2014, 112, 1654–1661. [Google Scholar] [CrossRef] [PubMed]
- Di Noia, J.; Prochaska, J.O. Dietary stages of change and decisional balance: A meta-analytic review. Am. J. Health Behav. 2010, 34, 618–632. [Google Scholar] [CrossRef] [PubMed]
- Nitzke, S.; Kritsch, K.; Boeckner, L.; Greene, G.; Hoerr, S.; Horacek, T.; Kattelmann, K.; Lohse, B.; Oakland, M.J.; Beatrice, P.; White, A. A stage-tailored multi-modal intervention increases fruit and vegetable intakes of low-income young adults. Am. J. Health Promot. 2007, 22, 6–14. [Google Scholar] [CrossRef] [PubMed]
- Kattelmann, K.K.; Bredbenner, C.B.; White, A.A.; Greene, G.W.; Hoerr, S.L.; Kidd, T.; Colby, S.; Horacek, T.M.; Phillips, B.W.; Koenings, M.M.; et al. The effects of Young Adults Eating and Active for Health (YEAH): A theory-based Web-delivered intervention. J. Nutr. Educ. Behav. 2014, 46, S27–S41. [Google Scholar] [CrossRef] [PubMed]
- Cook, A.; O’Leary, F.; Allman-Farinelli, M. Behavioural and cognitive processes adults use to change their fruit and vegetable consumption. Nutr. Diet. 2014. [Google Scholar] [CrossRef]
- Wyker, B.A.; Davison, K.K. Behavioral change theories can inform the prediction of young adults’ adoption of a plant-based diet. J. Nutr. Educ. Behav. 2010, 42, 168–177. [Google Scholar] [CrossRef] [PubMed]
- Hattersley, L.; Irwin, M.; King, L.; Allman-Farinelli, M.A. Determinants and patterns of soft drink consumption in young adults: A qualitative analysis. Public Health Nutr. 2009, 12, 1816–1822. [Google Scholar] [CrossRef] [PubMed]
- O’Leary, F.; Hattersley, L.; King, L.; Allman-Farinelli, M. Sugary drink consumption behaviours among young adults at university. Nutr. Diet. 2012, 13, 692–710. [Google Scholar] [CrossRef]
- Hackman, C.L.; Knowlden, A.P. Theory of reasoned action and theory of planned behaviour-based dietary interventions in adolescents and young adults: A systematic review. Adolesc. Health Med. Ther. 2014, 5, 101–114. [Google Scholar] [CrossRef] [PubMed]
- Poobalan, A.S.; Aucott, L.S.; Clarke, A.; Smith, W.C. Diet behaviour among young people in transition to adulthood (18–25 year olds): A mixed method study. Health Psychol. Behav. Med. 2014, 2, 909–928. [Google Scholar] [CrossRef] [PubMed]
- Kvaavik, E.; Lien, N.; Tell, G.S.; Klepp, K.I. Psychosocial predictors of eating habits among adults in their mid-30s: The Oslo Youth Study follow-up 1991–1999. Int. J. Behav. Nutr. Phys. Act. 2005. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hebden, L.; Chey, T.; Allman-Farinelli, M. Lifestyle intervention for preventing weight gain in young adults: A systematic review and meta-analysis of RCTs. Obes. Rev. 2012, 13, 692–710. [Google Scholar] [CrossRef] [PubMed]
- Laska, M.N.; Pelletier, J.E.; Larson, N.I.; Story, M. Interventions for weight gain prevention during the transition to young adulthood: A review of the literature. J. Adolesc. Health 2012, 50, 324–333. [Google Scholar] [CrossRef] [PubMed]
- Partridge, S.R.; Juan, S.J.; McGeechan, K.; Bauman, A.; Allman-Farinelli, M. Poor quality of external validity reporting limits generalizability of overweight and/or obesity lifestyle prevention interventions in young adults: A systematic review. Obes. Rev. 2015, 16, 13–31. [Google Scholar] [CrossRef] [PubMed]
- Lytle, L.A.; Svetkey, L.P.; Patrick, K.; Belle, S.H.; Fernandez, I.D.; Jakicic, J.M.; Johnson, K.C.; Olson, C.M.; Tate, D.F.; Wing, R.; et al. The EARLY trials: A consortium of studies targeting weight control in young adults. Transl. Behav. Med. 2014, 4, 304–313. [Google Scholar] [CrossRef] [PubMed]
- Hebden, L.; Balestracci, K.; McGeechan, K.; Denney-Wilson, E.; Harris, M.; Bauman, A.; Allman-Farinelli, M. “TXT2BFiT” a mobile phone-based healthy lifestyle program for preventing unhealthy weight gain in young adults: Study protocol for a randomized controlled trial. Trials 2013. [Google Scholar] [CrossRef] [PubMed]
- Kerr, D.A.; Pollard, C.M.; Howat, P.; Delp, E.J.; Pickering, M.; Kerr, K.R.; Dhaliwal, S.S.; Pratt, I.S.; Wright, J.; Boushey, C.J. Connecting Health and Technology (CHAT): Protocol of a randomized controlled trial to improve nutrition behaviours using mobile devices and tailored text messaging in young adults. Public Health 2012. [Google Scholar] [CrossRef] [PubMed]
- Hutchesson, M. Evaluating a Weight Loss Program for Young Women Delivered Using Technology: Be Positive Be Healthe. Available online: https://www.anzctr.org.au/Trial/Registration/TrialReview.aspx?id=368150 (accessed on 18 April 2015).
- Share, B. The Young Women’s Heart Health Study: The Effects of a Lifestyle Intervention on Cardiovascular Disease Risk Factors in Overweight Women Aged 18-30 Years. Available online: https://www.anzctr.org.au/Trial/Registration/TrialReview.aspx?id=363050 (accessed on 18 April 2015).
- Partridge, S.R.; McGeechan, K.; Hebden, L.; Balestracci, K.; Wong, A.; Denney-Wilson, E.; Harris, M.F.; Phongsavan, P.; Bauman, A.; Allman-Farinelli, M. Effectiveness of a mhealth lifestyle program with telephone support (TXT2BFiT) prevents unhealthy weight gain in young adults: Randomised controlled trial. JMIR MHealth UHealth 2015. [Google Scholar] [CrossRef] [PubMed]
- Share, B.L.; Naughton, G.A.; Obert, P.; Peat, J.K.; Aumund, E.A.; Kemp, J.G. Effects of a multidisciplinary lifestyle intervention on cardiometabolic risk factors in young women with abdominal obesity: A randomized controlled trial. PLoS ONE 2015, 10, e0130270. [Google Scholar] [CrossRef] [PubMed]
- Kelly, N.R.; Mazzeo, S.E.; Bean, M.K. Systematic review of dietary interventions with college students: Directions for future research and practice. J. Nutr. Educ. Behav. 2013, 45, 304–313. [Google Scholar] [CrossRef] [PubMed]
- Siopis, G.; Chey, T.; Allman-Farinelli, M. A systematic review and meta-analysis of interventions for weight management using text messaging. J. Hum. Nutr. Diet. 2015, 28, S1–S15. [Google Scholar] [CrossRef] [PubMed]
- Shaw, R.; Bosworth, H. Short message service (SMS) text messaging as an intervention medium for weight loss: A literature review. Health Inform. J. 2012, 18, 235–250. [Google Scholar] [CrossRef] [PubMed]
- Hebden, L.; Cook, A.; van der Ploegg, H.; Allman-Farinelli, M. Development of smartphone applications for nutrition and physical activity behaviour change. J. Med. Internet Res. Protoc. 2012. [Google Scholar] [CrossRef]
- Mobile Technology Fact Sheets. Available online: http://www.pewinternet.org/fact-sheets/mobile-technology-fact-sheet/ (accessed on 19 January 2015).
- Grech, A.; Allman-Farinelli, M. A systematic literature review of nutrition interventions in vending machines that encourage consumers to make healthier choices. Obes. Rev. 2015, in press. [Google Scholar]
- Hoefkens, C.; Pieniak, Z.; van Camp, J.; Verbeke, W. Explaining the effects of a point-of-purchase nutrition-information intervention in university canteens: A structural equation modelling analysis. Int. J. Behav. Nutr. Phys. Act. 2012. [Google Scholar] [CrossRef] [PubMed]
- Sinclair, S.E.; Cooper, M.; Mansfield, E.D. The influence of menu labelling on calories selected or consumed: A systematic review and meta-analysis. J. Acad. Nutr. Diet. 2014, 114, 1375–1388. [Google Scholar] [CrossRef] [PubMed]
- Powell, L.M.; Chriqui, J.F.; Khan, T.; Wada, R.; Chaloupka, F.J. Assessing the potential effectiveness of food and beverage taxes and subsidies for improving public health: A systematic review of prices, demand and body weight outcomes. Obes. Rev. 2013, 14, 110–128. [Google Scholar] [CrossRef] [PubMed]
- Williams, L.K.; Abbott, G.; Thornton, L.E.; Worsley, A.; Ball, K.; Crawford, D. Improving perceptions of healthy food affordability: Results from a pilot intervention. Int. J. Behav. Nutr. Phys. Act. 2014. [Google Scholar] [CrossRef] [PubMed]
- Seymour, J.; Yaroch, A.L.; Serdula, M.; Blanck, H.M.; Khan, L.K. Impact of nutrition environmental interventions on point-of-purchase behavior in adults: A review. Prev. Med. 2004, 39, S108–S136. [Google Scholar] [CrossRef] [PubMed]
- Roy, R.; Kelly, B.; Rangan, A.; Allman-Farinelli, M. Food environment interventions to improve the dietary behavior of young adults in tertiary education settings: A systematic literature review. J. Acad. Nutr. Diet. 2015. [Google Scholar] [CrossRef] [PubMed]
- Gordon, C.; Hayes, R. Counting calories: Resident perspectives on calorie labelling in New York City. J. Nutr. Educ. Behav. 2012, 44, 454–458. [Google Scholar] [CrossRef] [PubMed]
- Lucan, S.C. Concerning limitations of food-environment research: A narrative review and commentary framed around obesity and diet-related diseases in youth. J. Acad. Nutr. Diet. 2015, 115, 205–212. [Google Scholar] [CrossRef] [PubMed]
- Brown, W.J.; Trost, S.G. Life transitions and changing physical activity patterns in young women. Am. J. Prev. Med. 2003, 25, 140–143. [Google Scholar] [CrossRef]
- Kjonniksen, L.; Torsheim, T.; Wold, B. Tracking of leisure-time physical activity during adolescence and young adulthood: A 10-year longitudinal study. Int. J. Behav. Nutr. Phys. Act. 2008. [Google Scholar] [CrossRef] [PubMed]
- Kao, M.J.; Jaroz, R.; Goldin, M.; Patel, A.; Smuck, M. Determinants of physical activity in America: A First characterization of physical activity profile using the National Health and Nutrition Examintaion Survey (NHANES). PMR 2014, 6, 882–892. [Google Scholar] [CrossRef] [PubMed]
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Allman-Farinelli, M.A. Nutrition Promotion to Prevent Obesity in Young Adults. Healthcare 2015, 3, 809-821. https://doi.org/10.3390/healthcare3030809
Allman-Farinelli MA. Nutrition Promotion to Prevent Obesity in Young Adults. Healthcare. 2015; 3(3):809-821. https://doi.org/10.3390/healthcare3030809
Chicago/Turabian StyleAllman-Farinelli, Margaret A. 2015. "Nutrition Promotion to Prevent Obesity in Young Adults" Healthcare 3, no. 3: 809-821. https://doi.org/10.3390/healthcare3030809
APA StyleAllman-Farinelli, M. A. (2015). Nutrition Promotion to Prevent Obesity in Young Adults. Healthcare, 3(3), 809-821. https://doi.org/10.3390/healthcare3030809