Towards Investigating Global Warming Impact on Human Health Using Derivatives of Photoplethysmogram Signals
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Collection
Characteristic | Median | IQR |
---|---|---|
Age (years) | 34.0 | 9.0 |
Body Mass (kg) | 80.2 | 15.9 |
Height (cm) | 180 | 10 |
Body Mass Index () | 26.2 | 3.8 |
Resting Systolic Blood Pressure (mmHg) | 127.5 | 20.0 |
Resting Heart Rate (bpm) | 76.0 | 17.5 |
Resting Core Temperature (°C) | 37.4 | 0.6 |
After Exercise 1 Systolic Blood Pressure (mmHg) | 140.0 | 25.0 |
After Exercise 1 Heart Rate (bpm) | 132.0 | 44.3 |
After Exercise 1 Core Temperature (°C) | 38.3 | 0.8 |
After Exercise 2 Systolic Blood Pressure (mmHg) | 141.0 | 30.0 |
After Exercise 2 Heart Rate (bpm) | 145.5 | 40.3 |
After Exercise 2 Core Temperature (°C) | 38.2 | 1.2 |
After Exercise 3 Systolic Blood Pressure (mmHg) | 130.0 | 21.5 |
After Exercise 3 Heart Rate (bpm) | 143.0 | 40.2 |
After Exercise 3 Core Temperature (°C) | 38.0 | 1.2 |
2.2. Body Core Temperature
3. Methodology
3.1. Derivatives
3.2. Feature Extraction
3.3. Statistical Analysis
4. Results and Discussion
Energy-Unfiltered | Entropy-Unfiltered | Energy-Filtered | Entropy-Filtered | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Derivative | p1 | p2 | p3 | p1 | p2 | p3 | p1 | p2 | p3 | p1 | p2 | p3 | ||||
Order | (BE vs. E1) | (BE vs. E2) | (BE vs. E3) | (BE vs. E1) | (BE vs. E2) | (BE vs. E3) | (BE vs. E1) | (BE vs. E2) | (BE vs. E3) | (BE vs. E1) | (BE vs. E2) | (BE vs. E3) | ||||
0 | 2.1 | 6.4 | 1.1 | 7.5 | 2.5 | 2.6 | 1.9 | 1.8 | 1.4 | 8.4 | 1.6 | 5.3 | 1.4 | 8.1 | 2.2 | 7.3 |
1 | 6.1 | 2.9 | 9.6 | 6.2 | 9.7 | 9.0 | 5.3 | 5.3 | 1.2 | 2.1 | 9.7 | 4.3 | 1.5 | 1.9 | 8.7 | 5.1 |
2 | 7.3 | 6.5 | 6.1 | 2.8 | 7.3 | 6.5 | 6.1 | 2.8 | 5.7 | 1.0 | 7.8 | 2.0 | 4.8 | 6.9 | 3.5 | 1.6 |
3 | 7.3 | 6.5 | 6.1 | 2.8 | 6.8 | 6.5 | 6.1 | 2.7 | 4.4 | 4.9 | 5.2 | 1.5 | 4.2 | 4.6 | 7.3 | 1.4 |
4 | 7.3 | 6.5 | 6.5 | 2.9 | 7.3 | 6.5 | 6.5 | 2.9 | 6.0 | 5.2 | 4.6 | 2.0 | 5.7 | 6.2 | 7.3 | 2.0 |
5 | 7.3 | 8.2 | 7.0 | 2.9 | 7.3 | 8.2 | 7.0 | 2.9 | 8.3 | 2.1 | 7.9 | 6.1 | 9.8 | 9.8 | 4.7 | 5.1 |
6 | 7.8 | 8.8 | 7.6 | 3.2 | 7.8 | 8.8 | 7.6 | 3.2 | 7.3 | 9.5 | 8.2 | 3.0 | 7.3 | 8.8 | 7.6 | 3.0 |
7 | 7.8 | 1.0 | 7.6 | 3.2 | 7.8 | 1.0 | 7.6 | 3.2 | 7.3 | 7.0 | 6.1 | 2.9 | 7.3 | 7.0 | 6.1 | 2.9 |
8 | 9.0 | 1.3 | 9.5 | 3.7 | 9.7 | 1.3 | 1.0 | 4.0 | 7.3 | 6.5 | 6.1 | 2.8 | 7.3 | 6.5 | 6.1 | 2.8 |
9 | 1.8 | 7.6 | 4.3 | 1.0 | 3.1 | 1.4 | 1.4 | 2.0 | 7.3 | 6.5 | 6.1 | 2.8 | 7.3 | 6.5 | 6.1 | 2.8 |
10 | 1.5 | 2.2 | 2.2 | 1.9 | 8.0 | 7.1 | 1.1 | 5.4 | 7.3 | 6.5 | 6.1 | 2.8 | 7.3 | 6.5 | 6.1 | 2.8 |
11 | 1.8 | 1.7 | 2.7 | 7.0 | 7.4 | 4.5 | 7.3 | 2.0 | 7.3 | 6.5 | 6.1 | 2.8 | 7.3 | 6.5 | 6.1 | 2.8 |
12 | 1.9 | 1.7 | 1.6 | 6.4 | 1.9 | 1.7 | 1.0 | 6.2 | 7.3 | 6.5 | 6.1 | 2.8 | 7.3 | 6.5 | 6.1 | 2.8 |
13 | 2.5 | 7.3 | 1.9 | 3.1 | 3.9 | 4.7 | 2.8 | 2.6 | 7.3 | 6.5 | 6.1 | 2.8 | 7.3 | 6.5 | 6.1 | 2.8 |
14 | 1.4 | 1.8 | 7.5 | 3.6 | 1.2 | 2.4 | 5.8 | 3.1 | 7.3 | 6.5 | 6.1 | 2.8 | 7.3 | 6.5 | 6.1 | 2.8 |
15 | 4.3 | 5.5 | 6.4 | 3.8 | 3.0 | 6.8 | 7.8 | 3.8 | 7.3 | 6.5 | 6.1 | 2.8 | 7.3 | 6.5 | 6.1 | 2.8 |
16 | 7.1 | 2.0 | 3.9 | 3.7 | 7.0 | 1.5 | 3.8 | 3.6 | 7.3 | 6.5 | 6.1 | 2.8 | 7.3 | 6.5 | 6.1 | 2.8 |
17 | 8.2 | 1.2 | 2.6 | 3.6 | 8.7 | 1.1 | 2.3 | 3.7 | 7.3 | 6.5 | 6.1 | 2.8 | 7.3 | 6.5 | 6.1 | 2.8 |
18 | 8.5 | 1.1 | 2.3 | 3.6 | 8.7 | 1.2 | 2.2 | 3.6 | 7.3 | 6.5 | 6.1 | 2.8 | 7.3 | 6.5 | 6.1 | 2.8 |
19 | 8.6 | 1.2 | 2.3 | 3.6 | 8.1 | 1.2 | 2.4 | 3.5 | 7.3 | 6.5 | 6.1 | 2.8 | 7.3 | 6.5 | 6.1 | 2.8 |
20 | 8.2 | 1.3 | 2.9 | 3.8 | 8.0 | 1.3 | 2.7 | 3.6 | 7.3 | 6.5 | 6.1 | 2.8 | 7.3 | 6.5 | 6.1 | 2.8 |
Energy-Unfiltered | Entropy-Unfiltered | Energy-Filtered | Entropy-Filtered | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Order | (BE vs. E1) | (BE vs. E2) | (BE vs. E3) | OA | (BE vs. E1) | (BE vs. E2) | (BE vs. E3) | OA | (BE vs. E1) | (BE vs. E2) | (BE vs. E3) | OA | (BE vs. E1) | (BE vs. E2) | (BE vs. E3) | OA |
0 | 63.8 | 51.3 | 63.3 | 59.5 | 56.1 | 66.1 | 51.2 | 57.8 | 66.3 | 60.1 | 67.2 | 64.6 | 58.6 | 67.8 | 60.9 | 62.4 |
1 | 40.3 | 50.6 | 65.8 | 52.2 | 66.6 | 54.6 | 55.2 | 58.8 | 71.1 | 71.0 | 47.3 | 63.1 | 52.4 | 71.2 | 70.0 | 64.5 |
2 | 80.8 | 83.1 | 68.8 | 77.6 | 67.8 | 86.7 | 87.4 | 80.6 | 73.5 | 73.7 | 86.4 | 77.8 | 87.6 | 74.0 | 73.9 | 78.5 |
3 | 80.8 | 82.6 | 69.2 | 77.6 | 69.3 | 87.0 | 87.4 | 81.2 | 75.1 | 74.6 | 86.3 | 78.7 | 87.6 | 73.7 | 74.1 | 78.5 |
4 | 80.3 | 83.5 | 70.8 | 78.2 | 70.0 | 86.4 | 88.0 | 81.5 | 76.1 | 75.7 | 85.5 | 79.1 | 87.3 | 74.2 | 73.7 | 78.4 |
5 | 78.8 | 82.2 | 50.7 | 70.6 | 51.8 | 85.3 | 86.7 | 74.6 | 58.5 | 60.0 | 84.2 | 67.6 | 85.9 | 53.6 | 54.3 | 64.6 |
6 | 77.8 | 80.2 | 79.2 | 79.1 | 80.0 | 82.5 | 84.8 | 82.4 | 81.5 | 81.7 | 83.5 | 82.2 | 85.8 | 84.0 | 84.3 | 84.7 |
7 | 77.4 | 80.1 | 79.5 | 79.0 | 80.4 | 79.1 | 81.2 | 80.2 | 85.9 | 86.4 | 82.0 | 84.8 | 85.2 | 86.7 | 86.8 | 86.2 |
8 | 75.6 | 77.5 | 80.8 | 78.0 | 81.3 | 74.5 | 76.2 | 77.3 | 86.1 | 86.1 | 78.2 | 83.5 | 79.7 | 87.1 | 87.4 | 84.7 |
9 | 73.5 | 75.8 | 80.8 | 76.7 | 81.3 | 69.8 | 69.8 | 73.6 | 86.1 | 86.1 | 72.4 | 81.6 | 73.6 | 87.7 | 88.0 | 83.1 |
10 | 69.5 | 69.6 | 80.8 | 73.3 | 81.3 | 60.8 | 62.6 | 68.2 | 86.1 | 86.1 | 66.0 | 79.4 | 68.4 | 87.7 | 88.0 | 81.4 |
11 | 64.1 | 65.3 | 80.8 | 70.1 | 81.3 | 52.1 | 55.6 | 63.0 | 86.1 | 86.1 | 58.4 | 76.9 | 63.9 | 87.7 | 88.0 | 79.9 |
12 | 56.3 | 57.3 | 80.8 | 64.8 | 81.3 | 45.1 | 44.4 | 56.9 | 86.1 | 86.1 | 53.1 | 75.1 | 50.0 | 87.7 | 88.0 | 75.2 |
13 | 55.6 | 52.8 | 80.8 | 63.1 | 81.3 | 38.6 | 14.4 | 44.8 | 86.1 | 86.1 | 49.7 | 74.0 | 47.0 | 87.7 | 88.0 | 74.2 |
14 | 50.0 | 49.5 | 80.8 | 60.1 | 81.3 | 55.9 | 55.9 | 64.4 | 86.1 | 86.1 | 45.4 | 72.5 | 46.0 | 87.7 | 88.0 | 73.9 |
15 | 49.2 | 48.6 | 80.8 | 59.5 | 81.3 | 58.1 | 56.9 | 65.4 | 86.1 | 86.1 | 49.9 | 74.1 | 31.4 | 87.7 | 88.0 | 69.0 |
16 | 47.2 | 46.4 | 80.8 | 58.1 | 81.3 | 58.1 | 57.5 | 65.6 | 86.1 | 86.1 | 55.4 | 75.9 | 55.2 | 87.7 | 88.0 | 77.0 |
17 | 40.5 | 35.6 | 80.8 | 52.3 | 81.3 | 57.4 | 57.5 | 65.4 | 86.1 | 86.1 | 54.8 | 75.7 | 54.8 | 87.7 | 88.0 | 76.8 |
18 | 31.9 | 34.7 | 80.8 | 49.1 | 81.3 | 57.6 | 57.5 | 65.5 | 86.1 | 86.1 | 54.2 | 75.5 | 54.4 | 87.7 | 88.5 | 76.9 |
19 | 32.3 | 37.2 | 80.8 | 50.1 | 81.3 | 58.0 | 58.0 | 65.7 | 86.1 | 86.4 | 53.0 | 75.2 | 54.4 | 87.1 | 88.2 | 76.6 |
20 | 39.8 | 39.0 | 80.8 | 53.2 | 81.3 | 58.6 | 58.6 | 66.2 | 86.7 | 86.7 | 53.0 | 75.5 | 53.0 | 86.3 | 87.6 | 75.6 |
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- McMichael, A.; Kovats, S.; Edwards, S.; Wilkinson, P.; Wilson, T. Comparative Quantification of Health Risks: Global and Regional Burden of Disease due to Selected Major Risk Factors; Ezzati, M., Lopez, A., Rodgers, A., Murray, C.J.L., Eds.; Technical report; World Health Organization: Geneva, Switzerland, 2004. [Google Scholar]
- Baddour, L.M.; Wilson, W.R.; Bayer, A.S.; Fowler, V.G.; Bolger, A.F.; Levison, M.E.; Ferrieri, P.; Gerber, M.A.; Tani, L.Y.; Gewitz, M.H.; et al. Infective Endocarditis: Diagnosis, Antimicrobial Therapy, And Management of Complications: A Statement for Healthcare Professionals From the Committee on Rheumatic Fever, Endocarditis, and Kawasaki Disease, Council on Cardiovascular Disease in the Young, and the Councils on Clinical Cardiology, Stroke, and Cardiovascular Surgery and Anesthesia, American Heart Association: Endorsed by the Infectious Diseases Society of America. Circulation 2005, 111, e394–e434. [Google Scholar] [PubMed]
- Binkley, H.M.; Beckett, J.; Casa, D.J.; Kleiner, D.M.; Plummer, P.E. National Athletic Trainers’ Association position statement: Exertional heat illnesses. J. Athl. Train. 2002, 37, 329–343. [Google Scholar] [PubMed]
- Casa, D.J.; Becker, S.M.; Ganio, M.S.; Brown, C.M.; Yeargin, S.W.; Roti, M.W.; Siegler, J.; Blowers, J.A.; Glaviano, N.R.; Huggins, R.A.; et al. Validity of devices that assess body temperature during outdoor exercise in the heat. J. Athl. Train. 2007, 42, 333–342. [Google Scholar] [PubMed]
- Bruce-Low, S.S.; Cotterrell, D.; Jones, G.E. Heart rate variability during high ambient heat exposure. Aviat. Space Environ. Med. 2006, 77, 915–920. [Google Scholar] [PubMed]
- Jagomägi, K.; Ates, O.; Talts, J.; Raamat, R.; Cotuk, B.; Burk, A.; Karelson, K.; Ööpik, V.; Traks, T.; Kivastik, J. Effects of Heat Stress on the Blood Pressure and Heart Rate Variability in Young Men. In Proceedings of the International Symposium on Biomedical Engineering and Medical Physics, Riga, Latvia, 10–12 October 2012; Dekhtyar, Y., Katashev, A., Lancere, L., Eds.; Springer Berlin Heidelberg: Heidelberg, Germany, 2013; Volume 38, pp. 103–106. [Google Scholar]
- Flouris, A.; Bravi, A.; Wright-Beatty, H.; Green, G.; Seely, A.; Kenny, G. Heart rate variability during exertional heat stress: Effects of heat production and treatment. Eur. J. Appl. Physiol. 2014, 114, 785–792. [Google Scholar] [CrossRef] [PubMed]
- Chrife, R.; Pigott, V.; Spodick, D. Measurement of the left ventricular ejection time by digital plethysmography. Am. Heart J. 1971, 82, 222–227. [Google Scholar] [CrossRef]
- Kelly, R.; Hayward, C.; Avolio, A.; O’Rourke, M. Noninvasive determination of age-related changes in the human arterial pulse. Circ 1989, 80, 1652–1659. [Google Scholar] [CrossRef]
- O’Rourke, M.; Avolio, A.; Kelly, R. The Arterial Pulse; Lea & Febiger: Baltimore, MD, USA, 1992. [Google Scholar]
- Darne, B.; Girerd, X.; Safar, M.; Cambien, F.; Guize, L. Pulsatile versus steady component of blood pressure: A cross-sectional analysis and a prospective analysis on cardiovascular mortality. Hypertension 1989, 13, 392–400. [Google Scholar] [CrossRef] [PubMed]
- Barenbrock, M.; Spieker, C.; Kerber, S.; Vielhauer, C.; Hoeks, A.; Zidek, W.; Rahn, K. Different effects of hypertension, atherosclerosis and hyperlipidemia on arterial distensibility. Hypertension 1995, 13, 1712–1717. [Google Scholar]
- Shelley, K.H. Photoplethysmography: Beyond the calculation of arterial oxygen saturation and heart rate. Anesth. Analg. 2007, 105, S31–S36. [Google Scholar] [PubMed]
- Song, S.; Cho, J.; Oh, H.; Lee, J.; Kim, I. Estimation of blood pressure using Photoplethysmography on the wrist. In Proceedings of the IEEE Computers in Cardiology, Park City, UT, USA, 13–16 September 2009; pp. 741–744.
- Elgendi, M.; Jonkman, M.; de Boer, F. Measurement of a-a intervals at rest in the second derivative plethysmogram. In Proceedings of the IEEE 2009 International Symposium on Bioelectronics and Bioinformatics, RMIT University, Melbourne, Australia, 9–11 December 2009; pp. 75–79.
- Elgendi, M.; Jonkman, M.; de Boer, F. Applying the APG to measure heart rate variability. In Proceedings of the 2nd International Conference on Computer and Automation Engineering, Singapore, 26–28 February 2010; pp. 100–104.
- Ruiz-Rodríguez, J.C.; Ruiz-Sanmartín, A.; Ribas, V.; Caballero, J.; García-Roche, A.; Riera, J.; Nuvials, X.; de Nadal, M.; de Sola-Morales, O.; Serra, J.; et al. Innovative continuous non-invasive cuffless blood pressure monitoring based on photoplethysmography technology. Intensive Care Med. 2013, 39, 1618–1625. [Google Scholar] [CrossRef] [PubMed]
- Elgendi, M.; Fletcher, R.; Norton, I.; Brearley, M.; Abbott, D.; Lovell, N.H.; Schuurmans, D. On Time Domain Analysis of Photoplethysmogram Signals for Monitoring Heat Stress. Sensors 2015, 15, 24716–24734. [Google Scholar] [PubMed]
- Elgendi, M. On the analysis of fingertip photoplethysmogram signals. Curr. Cardiol. Rev. 2012, 8, 14–25. [Google Scholar] [CrossRef] [PubMed]
- Elgendi, M. Detection of c, d, and e waves in the acceleration photoplethysmogram. Comput. Methods Programs Biomed. 2014, 117, 125–136. [Google Scholar] [CrossRef] [PubMed]
- Millaseau, S.; Kelly, R.; Ritter, J.; Chowienczyk, P. Determination of age-related increases in large artery stiffness by digital pulse contour analysis. Clin. Sci. 2002, 103, 371–377. [Google Scholar] [CrossRef]
- Millaseau, S.; Ritter, J.; Takazawa, K.; Chowienczyk, P. Contour analysis of the photoplethysmographic pulse measured at the finger. J. Hypertens 2006, 24, 1449–1456. [Google Scholar]
- Imanaga, I.; Hara, H.; Koyanagi, S.; Tanaka, K. Correlation between wave components of the second derivative of plethysmogram and arterial distensibility. Jpn. Heart J. 1998, 39, 775–784. [Google Scholar] [CrossRef] [PubMed]
- Takazawa, K.; Tanaka, N.; Fujita, M.; Matsuoka, O.; Saiki, T.; Aikawa, M.; Tamura, S.; Ibukiyama, C. Assessment of vasoactive agents and vascular aging by the second derivative of photoplethysmogram waveform. Hypertension 1998, 32, 365–370. [Google Scholar] [CrossRef] [PubMed]
- Bortolotto, A.; Jacques, B.; Takeshi, K.; Kenji, T.; Michel, S. Assessment of vascular aging and atherosclerosis in hypertensive subjects: Second derivative of photoplethysmogram versus pulse wave velocity. Am. J. Hypertens. 2000, 13, 165–171. [Google Scholar] [CrossRef]
- Elgendi, M.; Norton, I.; Brearley, M.; Abbott, D.; Schuurmans, D. Detection of a and b waves in the acceleration photoplethysmogram. Biomed. Eng. Online 2014, 13. [Google Scholar] [CrossRef] [PubMed]
- Elgendi, M.; Norton, I.; Brearley, M.; Abbott, D.; Lovell, N.H.; Schuurmans, D. Frequency analysis of photoplethysmogram and its derivatives. Comput. Methods Programs Biomed. 2015, in press. [Google Scholar]
- Karamanoglu, M. A System for Analysis of Arterial Blood Pressure Waveforms in Humans. Comput. Biomed. Res. 1997, 30, 244–255. [Google Scholar] [CrossRef] [PubMed]
- Pilt, K.; Ferenets, R.; Meigas, K.; Lindberg, L.G.; Temitski, K.; Viigimaa, M. New photoplethysmographic signal analysis algorithm for arterial stiffness estimation. Sci. World J. 2013, 24, 1449–1456. [Google Scholar] [CrossRef] [PubMed]
- Brearley, M.B.; Heaney, M.F.; Norton, I.N. Physiological responses of medical team members to a simulated emergency in tropical field conditions. Prehosp. Disaster Med. 2013, 28, 139–144. [Google Scholar] [PubMed]
- Weber, M.A.; Schiffrin, E.L.; White, W.B.; Mann, S.; Lindholm, L.H.; Kenerson, J.G.; Flack, J.M.; Carter, B.L.; Materson, B.J.; Ram, C.V.S.; et al. Clinical practice guidelines for the management of hypertension in the community. J. Clin. Hypertens 2014, 16, 14–26. [Google Scholar] [CrossRef] [PubMed]
- O’Brien, C.; Hoyt, R.W.; Buller, M.J.; Castellani, J.W.; Young, A.J. Telemetry pill measurement of core temperature in humans during active heating and cooling. Med. Sci. Sports Exerc. 1998, 30, 468–472. [Google Scholar] [CrossRef] [PubMed]
- Casa, D.J.; Becker, S.M.; Ganio, M.S.; Brown, C.M.; Yeargin, S.W.; Roti, M.W.; Siegler, J.; Blowers, J.A.; laviano, N.R.; Huggins, R.A.; Armstrong, L.E.; Maresh, C.M. Validity of devices that assess body temperature during outdoor exercise in the heat. J. Athl. Train. 2007, 42, 333–342. [Google Scholar] [PubMed]
- Elgendi, M.; Norton, I.; Brearley, M.; Abbott, D.; Schuurmans, D. Systolic peak detection in acceleration photoplethysmograms measured from emergency responders in tropical conditions. PLoS ONE 2013, 8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Coifman, R.; Wickerhauser, M. Entropy-based algorithms for best basis selection. IEEE Trans. Inf. Theory 1992, 38, 713–718. [Google Scholar] [CrossRef]
- Bonferroni, C. Teoria statistica delle classi e calcolo delle probabilità. Pubblicazioni R Ist. Super. Sci. Econ. Commer. Firenze 1936, 8, 3–62. [Google Scholar]
- Holm, S. A simple sequentially rejective multiple test procedure. Scand. J. Stat. 1979, 6, 65–70. [Google Scholar]
- Wilson, T.E.; Crandall, C.G. Effect of thermal stress on cardiac function. Exerc. Sport Sci. Rev. 2011, 39, 12–17. [Google Scholar] [CrossRef] [PubMed]
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Elgendi, M.; Norton, I.; Brearley, M.; Fletcher, R.R.; Abbott, D.; Lovell, N.H.; Schuurmans, D. Towards Investigating Global Warming Impact on Human Health Using Derivatives of Photoplethysmogram Signals. Int. J. Environ. Res. Public Health 2015, 12, 12776-12791. https://doi.org/10.3390/ijerph121012776
Elgendi M, Norton I, Brearley M, Fletcher RR, Abbott D, Lovell NH, Schuurmans D. Towards Investigating Global Warming Impact on Human Health Using Derivatives of Photoplethysmogram Signals. International Journal of Environmental Research and Public Health. 2015; 12(10):12776-12791. https://doi.org/10.3390/ijerph121012776
Chicago/Turabian StyleElgendi, Mohamed, Ian Norton, Matt Brearley, Richard R. Fletcher, Derek Abbott, Nigel H. Lovell, and Dale Schuurmans. 2015. "Towards Investigating Global Warming Impact on Human Health Using Derivatives of Photoplethysmogram Signals" International Journal of Environmental Research and Public Health 12, no. 10: 12776-12791. https://doi.org/10.3390/ijerph121012776
APA StyleElgendi, M., Norton, I., Brearley, M., Fletcher, R. R., Abbott, D., Lovell, N. H., & Schuurmans, D. (2015). Towards Investigating Global Warming Impact on Human Health Using Derivatives of Photoplethysmogram Signals. International Journal of Environmental Research and Public Health, 12(10), 12776-12791. https://doi.org/10.3390/ijerph121012776