Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (161)

Search Parameters:
Keywords = sediment transportation capacity

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
30 pages, 5775 KB  
Article
Research on Instantaneous Sediment Concentration in Muddy Coastal Waters Under Extreme Weather Conditions
by Qinghui Qi, Dong Xu and Youbin Ding
J. Mar. Sci. Eng. 2025, 13(11), 2188; https://doi.org/10.3390/jmse13112188 - 18 Nov 2025
Viewed by 69
Abstract
This study addresses a fundamental limitation inherent in conventional sediment transport capacity formulas—their failure to accurately capture real-time fluctuations in suspended sediment concentration. Leveraging extensive synchronous field measurements of waves, currents, and sediment dynamics from muddy coastal zones, we integrate theoretical derivation with [...] Read more.
This study addresses a fundamental limitation inherent in conventional sediment transport capacity formulas—their failure to accurately capture real-time fluctuations in suspended sediment concentration. Leveraging extensive synchronous field measurements of waves, currents, and sediment dynamics from muddy coastal zones, we integrate theoretical derivation with comprehensive data analysis to investigate the complex and transient behavior of instantaneous sediment concentration under extreme weather conditions. This study elucidates the dynamic response mechanisms of instantaneous sediment concentration to wave–current interactions, culminating in a novel formulation that incorporates the effects of velocity phase lag and wave energy dissipation. Validation against field measurements demonstrates that the proposed formula shows marked improvement over traditional sediment transport formulas in predicting sediment concentration during extreme events. This advancement provides more reliable sediment boundary conditions for numerical sediment transport modeling and establishes a new methodological framework for investigating sediment dynamics in muddy coastal environments. Full article
(This article belongs to the Section Coastal Engineering)
Show Figures

Figure 1

19 pages, 6085 KB  
Article
Study on Sustainable Sludge Utilization via the Combination of Electroosmotic Vacuum Preloading and Polyacrylamide Flocculation
by Heng Zhang, Chongzhi Tu and Cheng He
Sustainability 2025, 17(21), 9802; https://doi.org/10.3390/su17219802 - 3 Nov 2025
Viewed by 372
Abstract
Dredged sludge is characterized by a high water content, low permeability, and poor load-bearing capacity, which hinder its sustainable utilization as an engineering filler. During the stabilization process using vacuum preloading (VP), fine-grained sludge readily clogs drainage channels, thereby prolonging consolidation duration and [...] Read more.
Dredged sludge is characterized by a high water content, low permeability, and poor load-bearing capacity, which hinder its sustainable utilization as an engineering filler. During the stabilization process using vacuum preloading (VP), fine-grained sludge readily clogs drainage channels, thereby prolonging consolidation duration and compromising drainage efficiency. To address these persistent challenges, this study proposes an improved method that combines electroosmosis, VP, and polyacrylamide (PAM) to enhance the consolidation performance of dredged sludge. Column settling experiments demonstrated that the optimal application dosages of anionic polyacrylamide (APAM) and calcium chloride (CaCl2) were 0.25% and 4.0% of dry sludge mass, respectively. Excessive dosage of either APAM or CaCl2 disturbed the agglomeration and sedimentation of fine-grained particles due to surface charge inversion. Electroosmotic VP (EVP) facilitated the directional movement of pore water, which increased the cumulative water discharge mass by 37.3%. The combination of APAM and CaCl2 enhanced particle flocculation via adsorption and bridging effects, significantly improving soil permeability and dewatering performance. Driven by an electric field, Ca2+ ions transported water molecules toward the cathode. Subsequently, these Ca2+ ions participated in reactions to generate cementitious agents. Compared with VP, this integrated method increased the sludge shear strength by 108.1% and produced a much denser microstructure. Full article
(This article belongs to the Special Issue Soil Stabilization and Geotechnical Engineering Sustainability)
Show Figures

Figure 1

16 pages, 4181 KB  
Article
Optimizing Pier Arrangement for Flood Hazard Mitigation: A Comparative Mobile-Bed and Fixed-Bed Experimental Study
by Minxia Hao, Guodong Li and Xinyu Sheng
Water 2025, 17(20), 2951; https://doi.org/10.3390/w17202951 - 14 Oct 2025
Viewed by 373
Abstract
River bridge engineering alters the hydraulic characteristics of rivers, impacting fluvial morphological stability. To investigate issues concerning flood conveyance capacity within the river reach hosting a new bridge and the safe operation of existing bridges, comparative physical model tests employing both mobile-bed and [...] Read more.
River bridge engineering alters the hydraulic characteristics of rivers, impacting fluvial morphological stability. To investigate issues concerning flood conveyance capacity within the river reach hosting a new bridge and the safe operation of existing bridges, comparative physical model tests employing both mobile-bed and fixed-bed configurations were conducted. A 1:60 scale model was used to test flood peak discharges corresponding to 30-year and 100-year return periods and investigate pier spacings of 30 m and 40 m. These tests evaluated the relative advantages and limitations of each model type in simulating flow patterns, sediment transport, and riverbed evolution. Specifically, mobile-bed models more effectively capture the interaction between water flow and sediment dynamics, while fixed-bed experiments enable more precise measurement of hydraulic parameters. Pier spacing is recognized as one of the most critical factors influencing river flow regimes. Larger pier spacing (40 m) was found to reduce upstream backwater and local scour depth compared to smaller spacing (30 m), particularly under the 30-year flood scenario. Consequently, this study investigated the effects of pier spacing on flow patterns, obtained flood conveyance characteristics under various flood frequencies, and analyzed the underlying mechanisms governing flow fields, velocity variations, and local scour around piers. The research outcomes not only elucidate multiscale coupling mechanisms between water flow and sediment but also quantify the relationship between the extent of pier-induced flow disturbance and subsequent channel morphological adjustments. This quantification provides a dynamic criterion for risk mitigation of river-crossing structures and establishes a hydrodynamic foundation for studying flood hazards in complex river reaches. Full article
(This article belongs to the Section Hydraulics and Hydrodynamics)
Show Figures

Figure 1

22 pages, 21059 KB  
Article
Numerical Investigation of the Erosive Dynamics of Glacial Lake Outburst Floods: A Case Study of the 2020 Jinwuco Event in Southeastern Tibetan Plateau
by Shuwu Li, Changhu Li, Pu Li, Yifan Shu, Zhengzheng Li and Zhang Wang
Water 2025, 17(19), 2837; https://doi.org/10.3390/w17192837 - 27 Sep 2025
Viewed by 649
Abstract
Glacial lake outburst floods (GLOFs) represent increasingly common and high-magnitude geohazards across the cryosphere of the Tibetan Plateau, particularly under ongoing climate warming and glacier retreat. This study combines multi-temporal remote sensing imagery and detailed Flo-2D hydrodynamic modeling to investigate the erosive dynamics [...] Read more.
Glacial lake outburst floods (GLOFs) represent increasingly common and high-magnitude geohazards across the cryosphere of the Tibetan Plateau, particularly under ongoing climate warming and glacier retreat. This study combines multi-temporal remote sensing imagery and detailed Flo-2D hydrodynamic modeling to investigate the erosive dynamics of the 2020 Jinwuco GLOF in Southeastern Tibetan Plateau. Key conclusions include: (1) The 2.35 km-long flood routing channel exhibits pronounced non-uniformity in horizontal curvature, channel width, and cross-sectional shape, significantly influencing flood propagation; five representative cross-sections divide the channel into six distinct segments. (2) Prominent lateral erosion occurred proximally to the dam, attributable to extreme erosive forces and high sediment transport capacity during peak discharge, with horizontal channel curvature further amplifying local impact and erosion. (3) Erosion rates were highest near the dam and in downstream narrow segments, while mid-reach sections with greater width experienced lower erosion. (4) Maximum flow depths reached 28.12 m in topographically confined reaches, whereas peak velocities occurred in upstream and downstream curved sections. (5) The apparent critical erosive shear stress of bank material is controlled not only by soil strength but also by flood dynamics and pre-existing channel morphology, indicating strong feedback between flow dynamics, channel morphology, and critical erosive shear stress of bank material. This study provides a generalized and transferable framework for analyzing GLOF-related erosion in data-scarce high-altitude regions, offering critical insights for hazard assessment, regional planning, and risk mitigation strategies. Full article
(This article belongs to the Special Issue Water-Related Landslide Hazard Process and Its Triggering Events)
Show Figures

Figure 1

16 pages, 2952 KB  
Review
Sediment–Phosphorus Dynamics in the Yellow River Estuary
by Yuan Gao, Kun Liu, Shengpin Li and Wenpeng Li
Water 2025, 17(19), 2794; https://doi.org/10.3390/w17192794 - 23 Sep 2025
Viewed by 877
Abstract
The Yellow River, with its extremely high sediment loads, and the Yellow River Estuary (YRE) serve as a vital conduit for material exchange between land and marine environments, where sediment–phosphorus interactions profoundly influence nutrient cycling, ecological health and eutrophication potential. This paper reviews [...] Read more.
The Yellow River, with its extremely high sediment loads, and the Yellow River Estuary (YRE) serve as a vital conduit for material exchange between land and marine environments, where sediment–phosphorus interactions profoundly influence nutrient cycling, ecological health and eutrophication potential. This paper reviews the distribution of phosphorus in overlying water and sediment, the characteristics of phosphorus migration and transformation across the sediment–water interface, and the effecting factors of phosphorus migrate, such as sediment properties and environmental factors in the YRE. Inorganic phosphorus was the dominant form in the overlying water and sediment. Suspended sediment acts as a dynamic reservoir for phosphorus transportation in the YRE. The dynamic estuarine environment promotes sediment deposition, which helps reduce phosphorus levels in the water. Upon entering the Bohai Sea, sediment is transformed into the source of phosphorus. The released phosphorus may increase the nutrient load in shallow Bohai Sea waters. Fine particles demonstrate strong adsorption capacity for reactive phosphorus, acting as the primary carriers for phosphorus migration at the sediment–water interface. The grain size of the suspended sediment in the Yellow River exhibited significant sorting characteristics with varying sediment content, consequently affecting the forms of phosphorus. Likewise, the influence of biogeochemical conditions on the transport and transformation of sediment and phosphorus was further analyzed and the partial least squares-path model of related variables on estuarine phosphorus is constructed to interpret the behavior of sediment and phosphorus in the YRE. Finally, the current situation and indeterminacy of water quality models in the estuary were appraised. The priority of analyzing and revealing the environmental behaviors of phosphorus in a sediment-laden river estuary in the future was further proposed against the present deficiencies. This review holds significant practical importance for enhancing the assessment of ecological environment quality and ecological restoration in the YRE. Full article
(This article belongs to the Section Water Quality and Contamination)
Show Figures

Figure 1

21 pages, 18282 KB  
Article
Deep Learning and Optical Flow for River Velocity Estimation: Insights from a Field Case Study
by Walter Chen, Kieu Anh Nguyen and Bor-Shiun Lin
Sustainability 2025, 17(18), 8181; https://doi.org/10.3390/su17188181 - 11 Sep 2025
Cited by 1 | Viewed by 1121
Abstract
Accurate river flow velocity estimation is critical for flood risk management and sediment transport modeling. This study proposes an artificial intelligence (AI)-based framework that integrates optical flow analysis and deep learning to estimate flow velocity from charge-coupled device (CCD) camera videos. The approach [...] Read more.
Accurate river flow velocity estimation is critical for flood risk management and sediment transport modeling. This study proposes an artificial intelligence (AI)-based framework that integrates optical flow analysis and deep learning to estimate flow velocity from charge-coupled device (CCD) camera videos. The approach was tested on a field dataset from Yufeng No. 2 stream (torrent), consisting of 3263 ten min 4 K videos recorded over two months, paired with Doppler radar measurements as the ground truth. Video preprocessing included frame resizing to 224 × 224 pixels, day/night classification, and exclusion of sequences with missing frames. Two deep learning architectures—a convolutional neural network combined with long short-term memory (CNN+LSTM) and a three-dimensional convolutional neural network (3D CNN)—were evaluated under different input configurations: red–green–blue (RGB) frames, optical flow, and combined RGB with optical flow. Performance was assessed using Nash–Sutcliffe Efficiency (NSE) and the index of agreement (d statistic). Results show that optical flow combined with a 3D CNN achieved the best accuracy (NSE > 0.5), outperforming CNN+LSTM and RGB-based inputs. Increasing the training set beyond approximately 100 videos provided no significant improvement, while nighttime videos degraded performance due to poor image quality and frame loss. These findings highlight the potential of combining optical flow and deep learning for cost-effective and scalable flow monitoring in small rivers. Future work will address nighttime video enhancement, broader velocity ranges, and real-time implementation. By improving the timeliness and accuracy of river flow monitoring, the proposed approach supports early warning systems, flood risk reduction, and sustainable water resource management. When integrated with turbidity measurements, it enables more accurate estimation of sediment loads transported into downstream reservoirs, helping to predict siltation rates and safeguard long-term water supply capacity. These outcomes contribute to the Sustainable Development Goals, particularly SDG 6 (Clean Water and Sanitation), SDG 11 (Sustainable Cities and Communities), and SDG 13 (Climate Action), by enhancing disaster preparedness, protecting communities, and promoting climate-resilient water management practices. Full article
(This article belongs to the Special Issue Watershed Hydrology and Sustainable Water Environments)
Show Figures

Figure 1

27 pages, 4633 KB  
Article
Impact of the Xiaolangdi Reservoir Operation on Water–Sediment Transport and Aquatic Organisms in the Lower Yellow River During Flood Events
by Xueqin Zhang, Min Zhang, Chunjin Zhang, Zanying Sun and Binhua Zhao
Sustainability 2025, 17(18), 8136; https://doi.org/10.3390/su17188136 - 10 Sep 2025
Viewed by 769
Abstract
The operation of reservoirs has prompted rivers to transition from natural ecosystems to “natural–artificial” composite ecosystems, which has not only altered the water–sediment processes but has also affected river ecology in the downstream river channels. To reveal the impact of the Xiaolangdi Reservoir [...] Read more.
The operation of reservoirs has prompted rivers to transition from natural ecosystems to “natural–artificial” composite ecosystems, which has not only altered the water–sediment processes but has also affected river ecology in the downstream river channels. To reveal the impact of the Xiaolangdi Reservoir (China) on sediment transport and aquatic organisms in the Lower Yellow River (LYR), this article analyzes the changes in the water–sediment processes and sediment transport characteristics prior to and following the reservoir construction, based on measured water–sediment data of 688 floods from 1960 to 2023. It derives a theoretical formulation for the sediment delivery ratio (SDR) of flood events based on the sediment transport rate equation and evaluates the living environment of aquatic organisms in the LYR. The results indicate that after the construction of Xiaolangdi Reservoir, the frequency of floods with an average flow discharge below 1000 m3/s increased from 26.08% to 37.42%, and the frequency of floods with an average sediment concentration below 20 kg/m3 increased from 46.34% to 89.03%. The SDR of flood events significantly correlates positively with the average flow discharge and the water load variation coefficient. Conversely, it negatively correlates with the average sediment concentration and the incoming sediment coefficient. The sediment transport capacity of various river reaches in the LYR gradually increases along the direction of the river channel. The use of Xiaolangdi Reservoir has enhanced sediment transport in the upper LYR reach while decreasing it in the lower reach, aligning the overall sediment transport capacity of the downstream river channel. Additionally, the water–sediment process of the flood events following the completion of the Xiaolangdi Reservoir construction has improved the living environment for aquatic organisms, which is conducive to restoring biodiversity and improving the ecological environment of the river. The research results have enriched the understanding of the impact of reservoir construction on downstream water–sediment transport and aquatic organisms in sandy rivers, providing technical support for the health and sustainable development of rivers. Full article
(This article belongs to the Special Issue Ecological Water Engineering and Ecological Environment Restoration)
Show Figures

Figure 1

30 pages, 5167 KB  
Article
Modeling and Monitoring of Drawdown Flushing and Dredging Toward Sustainable Sluicing in a Wide Philippine Reservoir
by Martin Glas, Michael Tritthart, Sebastian Pessenlehner, Gregory Morris, Petr Lichtneger, Guillermo III Q Tabios, Nikolaos Eftymiou, Pravin Karki and Helmut Habersack
Water 2025, 17(17), 2514; https://doi.org/10.3390/w17172514 - 22 Aug 2025
Viewed by 1568
Abstract
Reservoir sedimentation, a global challenge causing an annual loss of 0.8–1% of reservoir storage capacity, disrupts fluvial sediment continuity and impacts ecology and societal needs. This study focuses on the Pulangi IV reservoir in the Philippines, a shallow and wide reservoir facing significant [...] Read more.
Reservoir sedimentation, a global challenge causing an annual loss of 0.8–1% of reservoir storage capacity, disrupts fluvial sediment continuity and impacts ecology and societal needs. This study focuses on the Pulangi IV reservoir in the Philippines, a shallow and wide reservoir facing significant sedimentation issues. The research aims to investigate drawdown flushing and dredging of a flushing channel for future sustainable drawdown sluicing. A test flushing event was conducted and monitoring data, including discharge, suspended sediment concentration, bathymetry, and grain size distribution, were collected. Laboratory analyses, such as critical shear stress tests, were performed for model calibration. A 3D reservoir model and a 1D sediment transport model were applied incorporating cohesive sediment behavior. Scenarios were simulated to assess drawdown flushing, dredging and downstream impacts. Results highlight the importance of drawdown level, with cohesive sediment properties playing a critical role. Sedimentation downstream of the dam, resulting from dumped or flushed sediments, was low. However, downstream ecological and morphodynamic monitoring was found to be essential for all modeled strategies. This study demonstrates potential for establishing a flushing channel enabling future sustainable drawdown sluicing during floods by conducting repeated drawdown flushing in combination with dredging in the upper reservoir. Full article
(This article belongs to the Section Water Erosion and Sediment Transport)
Show Figures

Figure 1

17 pages, 28737 KB  
Article
Implementation of a Dynamic LoRa Network for Real-Time Monitoring of Water Quality
by Kevin Joel Berrio Quintanilla, Pamela Lorena Huayta Cosi, Jorge Leonardo Huarca Quispe, Juan Carlos Cutipa Luque and Juan Pablo Julca Avila
Designs 2025, 9(4), 96; https://doi.org/10.3390/designs9040096 - 15 Aug 2025
Cited by 1 | Viewed by 1247
Abstract
Water quality is a key factor in environmental and agronomic sustainability. Due to the influence of human activity and industrial development, the composition of rivers or lakes can experience significant variations both immediately and over time. In order to obtain a more accurate [...] Read more.
Water quality is a key factor in environmental and agronomic sustainability. Due to the influence of human activity and industrial development, the composition of rivers or lakes can experience significant variations both immediately and over time. In order to obtain a more accurate and documented assessment of these data, distributed monitoring with multiple sampling points is necessary. This paper presents the design and implementation of a scalable monitoring network based on long range (LoRa) and Message Queuing Telemetry Transport (MQTT), integrating a submersible sensor module (SSM) that works as a static measuring station or as a complement to sediment collectors, capable of measuring key water quality parameters such as TDS, turbidity, pH, temperature, and river kinematics with a gyroscope. The system includes a LoRa repeater (LRR) and a gateway, in addition to the SSM, which manages information transmission to a monitoring server (MS) using a tree topology. This configuration allows for dynamic antenna power adjustment based on the Received Signal Strength Indicator (RSSI) between the LRR and the gateway. Evaluations were performed on the Chil River in Arequipa, Peru, a rapid river that demonstrated ideal characteristics for validating the system’s efficacy. The results confirm the design’s efficacy and its capacity for real-time remote water quality monitoring. Full article
Show Figures

Figure 1

34 pages, 6236 KB  
Article
Factors Impacting Projected Annual Energy Production from Offshore Wind Farms on the US East and West Coasts
by Rebecca J. Barthelmie, Kelsey B. Thompson and Sara C. Pryor
Energies 2025, 18(15), 4037; https://doi.org/10.3390/en18154037 - 29 Jul 2025
Cited by 1 | Viewed by 1052
Abstract
Simulations are conducted using a microscale model framework to quantify differences in projected Annual Energy Production (AEP), Capacity Factor (CF) and wake losses for large offshore wind farms that arise due to different input datasets, installed capacity density (ICD) and/or wake parameterizations. Differences [...] Read more.
Simulations are conducted using a microscale model framework to quantify differences in projected Annual Energy Production (AEP), Capacity Factor (CF) and wake losses for large offshore wind farms that arise due to different input datasets, installed capacity density (ICD) and/or wake parameterizations. Differences in CF (and AEP) and wake losses that arise due to the selection of the wake parameterization have the same magnitude as varying the ICD within the likely range of 2–9 MW km−2. CF simulated with most wake parameterizations have a near-linear relationship with ICD in this range, and the slope of the dependency on ICD is similar to that in mesoscale simulations with the Weather Research and Forecasting (WRF) model. Microscale simulations show that remotely generated wakes can double AEP losses in individual lease areas (LA) within a large LA cluster. Finally, simulations with the Coupled Ocean-Atmosphere-Wave-Sediment Transport (COAWST) model are shown to differ in terms of wake-induced AEP reduction from those with the WRF model by up to 5%, but this difference is smaller than differences in CF caused by the wind farm parameterization used in the mesoscale modeling. Enhanced evaluation of mesoscale and microscale wake parameterizations against observations of climatological representative AEP and time-varying power production from wind farm Supervisory Control and Data Acquisition (SCADA) data remains critical to improving the accuracy of predictive AEP modeling for large offshore wind farms. Full article
(This article belongs to the Section A3: Wind, Wave and Tidal Energy)
Show Figures

Figure 1

21 pages, 5274 KB  
Article
Sediment Flushing Operation Mode During Sediment Peak Processes Aiming Towards the Sustainability of Three Gorges Reservoir
by Bingjiang Dong, Lingling Zhu, Shi Ren, Jing Yuan and Chaonan Lv
Sustainability 2025, 17(15), 6836; https://doi.org/10.3390/su17156836 - 28 Jul 2025
Viewed by 665
Abstract
Asynchrony between the movement of water and sediment in a reservoir will affect long-term maintenance of the reservoir’s capacity to a certain extent. Based on water and sediment data on the Three Gorges Reservoir (TGR) measured over the years and a river network [...] Read more.
Asynchrony between the movement of water and sediment in a reservoir will affect long-term maintenance of the reservoir’s capacity to a certain extent. Based on water and sediment data on the Three Gorges Reservoir (TGR) measured over the years and a river network model, optimization of the dispatching mode of the reservoir’s sand peak process was studied, and the corresponding water and sediment dispatching indicators were provided. The results show that (1) sand peak discharge dispatching of the TGR can be divided roughly into three stages, namely the flood detention period, the sediment transport period, and the sediment discharge period. (2) According to the process of the flood peak and the sand peak, a division method for each period is proposed. (3) A corresponding scheduling index is proposed according to the characteristics of the sand peak process and the needs of flood control scheduling. This research can provide operational indicators for the operation and management of the sediment load in the TGR and also provide technical support for sustainable reservoirs similar to TGR. Full article
Show Figures

Figure 1

13 pages, 1532 KB  
Article
Research on the Settling and Critical Carrying Velocity of Coal Fine in CBM Wells
by Xiaohui Xu, Ming Chi, Xiangyan Meng, Jiping Deng, Jiang Liu, Guoqing Han and Siyu Lai
Processes 2025, 13(7), 2289; https://doi.org/10.3390/pr13072289 - 18 Jul 2025
Viewed by 461
Abstract
The continuous deposition of coal fine in the well can lead to complex problems, such as pump blockage and reduced capacity. The traditional critical velocity model applicable to rigid spherical particles, such as sand grains and glass beads, finds it difficult to accurately [...] Read more.
The continuous deposition of coal fine in the well can lead to complex problems, such as pump blockage and reduced capacity. The traditional critical velocity model applicable to rigid spherical particles, such as sand grains and glass beads, finds it difficult to accurately predict the migration behavior of coal fine in the wellbore. Therefore, this study aims to reveal the sedimentation law of coal fine particles, establish a critical velocity prediction model applicable to pulverized coal, and provide a theoretical basis for effectively preventing pump blockage and capacity decline problems. This paper analyzes the particle characteristics of coal fine in different mining areas and conducts experiments on the static settling of coal fine particles and the critical transport velocity. The experimental results showed that the larger the mesh size of coal fine, the lower the static settling velocity of coal fine particles. The critical velocity of coal fine increased with the particle size and concentration of the coal fine particles, as well as with the increase of the pipe column inclination. A new empirical formula for calculating the critical velocity of coal fine particles was derived by considering the effects of the coal fine concentration and pipe inclination. Full article
(This article belongs to the Section Energy Systems)
Show Figures

Figure 1

22 pages, 9751 KB  
Article
Investigation on the Coupling Effect of Bionic Micro-Texture Shape and Distribution on the Tribological Performance of Water-Lubricated Sliding Bearings
by Xiansheng Tang, Yunfei Lan, Sergei Bosiakov, Michael Zhuravkov, Tao He, Yang Xia and Yongtao Lyu
Lubricants 2025, 13(7), 305; https://doi.org/10.3390/lubricants13070305 - 14 Jul 2025
Cited by 2 | Viewed by 734
Abstract
Water-lubricated bearings (WLB), due to their pollution-free nature and low noise, are increasingly becoming critical components in aerospace, marine applications, high-speed railway transportation, precision machine tools, etc. However, in practice, water-lubricated bearings suffer severe friction and wear due to low-viscosity water, harsh conditions, [...] Read more.
Water-lubricated bearings (WLB), due to their pollution-free nature and low noise, are increasingly becoming critical components in aerospace, marine applications, high-speed railway transportation, precision machine tools, etc. However, in practice, water-lubricated bearings suffer severe friction and wear due to low-viscosity water, harsh conditions, and contaminants like sediment, which can compromise the lubricating film and shorten their lifespan. The implementation of micro-textures has been demonstrated to improve the tribological performance of water-lubricated bearings to a certain extent, leading to their widespread adoption for enhancing the frictional dynamics of sliding bearings. The shape, dimensions (including length, width, and depth), and distribution of these micro-textures have a significant influence on the frictional performance. Therefore, this study aims to explore the coupling effect of different micro-texture shapes and distributions on the frictional performance of water-lubricated sliding, using the computational fluid dynamics (CFD) analysis. The results indicate that strategically arranging textures across multiple regions can enhance the performance of the bearing. Specifically, placing linear groove textures in the outlet of the divergent zone and triangular textures in the divergent zone body maximize improvements in the load-carrying capacity and frictional performance. This specific configuration increases the load-carrying capacity by 7.3% and reduces the friction coefficient by 8.6%. Overall, this study provided critical theoretical and technical insights for the optimization of WLB, contributing to the advancement of clean energy technologies and the extension of critical bearing service life. Full article
(This article belongs to the Special Issue Water Lubricated Bearings)
Show Figures

Figure 1

24 pages, 2126 KB  
Article
Contaminant Assessment and Potential Ecological Risk Evaluation of Lake Shore Surface Sediments
by Audrey Maria Noemi Martellotta and Daniel Levacher
Water 2025, 17(14), 2042; https://doi.org/10.3390/w17142042 - 8 Jul 2025
Cited by 1 | Viewed by 650
Abstract
The interruption of solid transport causes sediment deposition, compromising the useful storage capacity. Therefore, it is essential to remove these materials, currently labelled as waste and disposed of in landfills, by identifying alternatives for recovery and valorization, after assessing their compatibility for reuse [...] Read more.
The interruption of solid transport causes sediment deposition, compromising the useful storage capacity. Therefore, it is essential to remove these materials, currently labelled as waste and disposed of in landfills, by identifying alternatives for recovery and valorization, after assessing their compatibility for reuse through characterization, in a circular economy view. This study analyses the potential contamination of shore surface sediments collected at the Camastra and the San Giuliano lakes, located in the Basilicata region. It defines their potential ecological risk, assesses the contamination level status of the sediments, and verifies whether they are polluted and, consequently, suitable for reuse. Analyses carried out using several pollution indices show a slight Arsenic pollution (with values above the regulatory threshold between 55% and 175%) for the San Giuliano sediments and slight Cobalt pollution (with exceedances between 30% and 58.5%) for the Camastra sediments. Subsequently, through statistical analysis, it was possible to make hypotheses on the possible pollutant sources, depending on the geological characteristics of the sampling area and the type of land use, and to identify the potential ecological risk linked to the exceedance of As and Co in San Giuliano and Camastra reservoirs, respectively. In conclusion, this study ascertained the low pollution content in the sampled sediments, so they could be reused in various application fields, from construction to agriculture, significantly reducing landfill disposal. Full article
(This article belongs to the Special Issue Soil Erosion and Sedimentation by Water)
Show Figures

Figure 1

33 pages, 2357 KB  
Systematic Review
Trends and Applications of Hydro-Morphological Modeling in Estuarine Systems: A Systematic Review of the Past 15 Years
by Nicolás Mora-Uribe, Diego Caamaño-Avendaño, Mauricio Villagrán-Valenzuela, Ángel Roco-Videla and Hernán Alcayaga
J. Mar. Sci. Eng. 2025, 13(6), 1056; https://doi.org/10.3390/jmse13061056 - 27 May 2025
Cited by 1 | Viewed by 2134
Abstract
Estuaries are dynamic ecosystems with crucial environmental, economic, and social functions, driving extensive hydro-morphological research supported by numerical modeling. This study systematically reviews estuarine modeling applications over the past 15 years to identify commonly used tools, model configurations, and validation strategies, to examine [...] Read more.
Estuaries are dynamic ecosystems with crucial environmental, economic, and social functions, driving extensive hydro-morphological research supported by numerical modeling. This study systematically reviews estuarine modeling applications over the past 15 years to identify commonly used tools, model configurations, and validation strategies, to examine regional trends in the application, and to explore and discuss the relative emphasis on hydrodynamic, sediment transport, and morphological modeling within the selected studies. Following the PRISMA 2020 methodology, a comprehensive search in Scopus and Web of Science identified 3926 articles, from which 197 met the eligibility criteria. Each study was analyzed to assess modeling software, mesh types, dimensional configurations, and validation parameters. Results indicate that DELFT3D is the most widely used tool, followed by TELEMAC and FVCOM, with a preference for two-dimensional models and structured meshes. Model accuracy, assessed through Skill Scores, confirms their reliability in representing estuarine dynamics. Additionally, findings reveal significant geographical disparities, with China leading research efforts, while Latin America and Africa remain underrepresented. This gap highlights the need to expand modeling efforts in these regions to enhance estuarine management and resilience. Strengthening numerical modeling in diverse contexts will improve the predictive capacity of hydro-morphological processes, supporting sustainable decision-making in estuarine environments. Full article
Show Figures

Graphical abstract

Back to TopTop