The Impact of Organizational Context on the Levels of Cross-Border E-Commerce Adoption in Chinese SMEs: The Moderating Role of Environmental Context
Abstract
:1. Introduction
2. Conceptual Framework and Hypotheses Development
2.1. Organizational Context and the Four Levels of CBEC
2.2. Moderating Role of Environmental Factors
3. Methodology
3.1. Research Design
3.2. Data Collection Technique
3.3. Scales Used in the Study
3.3.1. Levels of CBEC Adoption
3.3.2. Organizational Context
3.3.3. Environmental Context
3.4. Data Analysis Technique
4. Data Analysis and Results
4.1. Reliability and Validity Analysis
4.2. Structural Model
4.3. Moderation Analysis
5. Discussion and Implications
5.1. Discussion
5.2. Theoretical and Practical Implications
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Palacios-Marqués, D.; Soto-Acosta, P.; Merigó, J.M. Analyzing the effects of technological, organizational and competition factors on Web knowledge exchange in SMEs. Telemat. Inform. 2015, 32, 23–32. [Google Scholar] [CrossRef]
- Lucio-Nieto, T.; Colomo-Palacios, R. ITIL and the Creation of a Service Management Office (SMO): A New Challenge for IT Professionals: An Exploratory Study of Latin American Companies. In Proceedings of the 7th Iberian Conference on Information Systems and Technologies (CISTI 2012), Madrid, Spain, 20–23 June 2012; IEEE: Piscataway, NJ, USA, 2012. Available online: https://ieeexplore.ieee.org/abstract/document/6263206 (accessed on 28 July 2021).
- Qi, X.; Chan, J.H.; Hu, J.; Li, Y. Motivations for selecting cross-border e-commerce as a foreign market entry mode. Ind. Mark. Manag. 2020, 89, 50–60. [Google Scholar] [CrossRef]
- Awa, H.O.; Ojiabo, O.U.; Emecheta, B.C. Emecheta. Integrating TAM, TPB and TOE frameworks and expanding their characteristic constructs for e-commerce adoption by SMEs. J. Sci. Technol. Policy Manag. 2015, 6, 76–94. [Google Scholar] [CrossRef] [Green Version]
- Scupola, A. SMEs’ e-commerce adoption: Perspectives from Denmark and Australia. J. Enterp. Inf. Manag. 2009, 22, 152–166. [Google Scholar] [CrossRef] [Green Version]
- Awa, H.O.; Eze, S.C.; Urieto, J.E.; Inyang, B.J. Upper echelon theory (UET): A major determinant of information technology (IT) adoption by SMEs in Nigeria. J. Syst. Inf. Technol. 2011, 13, 144–162. [Google Scholar] [CrossRef]
- Giuffrida, M.; Jiang, H.; Mangiaracina, R. Investigating the relationships between uncertainty types and risk management strategies in cross-border e-commerce logistics. Int. J. Logist. Manag. 2021. [Google Scholar] [CrossRef]
- Ringle, C.M.; Wende, S.; Becker, J.M. SmartPLS 3. Bönningstedt: SmartPLS. 2013. Available online: https://www.smartpls.com (accessed on 15 March 2021).
- Yang, Y.; Yang, L.; Chen, H.; Yang, J.; Fan, C. Risk factors of consumer switching behaviour for cross-border e-commerce mobile platform. Int. J. Mob. Commun. 2020, 18, 641. [Google Scholar] [CrossRef]
- Ghobakhloo, M.; Arias-Aranda, D.; Benitez-Amado, J. Benitez-Amado Adoption of e-commerce applications in SMEs. Ind. Manag. Data Syst. 2011, 111, 11. [Google Scholar] [CrossRef]
- Oliveira, T.; Martins, M.D.R.O. Understanding e-business adoption across industries in European countries. Ind. Manag. Data Syst. 2010, 110, 1337–1354. [Google Scholar] [CrossRef]
- Shi, Y.; Wang, T.; Alwan, L.C. Analytics for Cross-Border E-Commerce: Inventory Risk Management of an Online Fashion Retailer. Decis. Sci. 2020, 51, 1347–1376. [Google Scholar] [CrossRef]
- Wang, X.; Xie, J.; Fan, Z.-P. Fan. B2C cross-border E-commerce logistics mode selection considering product returns. Int. J. Prod. Res. 2020, 59, 3841–3860. [Google Scholar] [CrossRef]
- Yu, Y.; Huo, B.; Zhang, Z. (Justin) Zhang, Impact of information technology on supply chain integration and company performance: Evidence from cross-border e-commerce companies in China. J. Enterp. Inf. Manag. 2020, 34, 9. [Google Scholar] [CrossRef]
- Ahmadi, H.; Nilashi, M.; Shahmoradi, L.; Ibrahim, O.; Sadoughi, F.; Alizadeh, M.; Alizadeh, A. The moderating effect of hospital size on inter and intra-organizational factors of Hospital Information System adoption. Technol. Forecast. Soc. Chang. 2018, 134, 124–149. [Google Scholar] [CrossRef]
- Alsaad, A.; Mohamad, R.; Ismail, N.A. The moderating role of trust in business to business electronic commerce (B2B EC) adoption. Comput. Hum. Behav. 2017, 68, 157–169. [Google Scholar] [CrossRef]
- Otoo, A.A.A.; Zhiwen, L.; Otoo, C.O.A.; Antwi, M.O. Influence of Organisational Factors on E-Business Value and E-Commerce Adoption. Int. J. Sci. Res. Sci. Eng. Technol. 2019, 264–276. [Google Scholar] [CrossRef]
- Mohtaramzadeh, M.; Ramayah, T.; Jun-Hwa, C. B2B E-Commerce Adoption in Iranian Manufacturing Companies: Analyzing the Moderating Role of Organizational Culture. Int. J. Hum. Comput. Interact. 2018, 34, 621–639. [Google Scholar] [CrossRef]
- Lefebvre, L.-A.; Lefebvre, E.; Elia, E.; Boeck, H. Exploring B-to-B e-commerce adoption trajectories in manufacturing SMEs. Technovation 2005, 25, 1443–1456. [Google Scholar] [CrossRef]
- Tornatzky, L.G.; Fleischer, M.; Chakrabarti, A.K. Processes of Technological Innovation; Lexington Books: Washington, DC, USA, 1990. [Google Scholar]
- Cruz-Jesus, F.; Pinheiro, A.; Oliveira, T. Understanding CRM adoption stages: Empirical analysis building on the TOE framework. Comput. Ind. 2019, 109, 1–13. [Google Scholar] [CrossRef]
- Han, J.H.; Kim, H.-M. The role of information technology use for increasing consumer informedness in cross-border electronic commerce: An empirical study. Electron. Commer. Res. Appl. 2019, 34, 100826. [Google Scholar] [CrossRef]
- Schmitt, G.; Mladenow, A.; Strauss, C.; Schaffhauser-Linzatti, M. Smart contracts and internet of things: A qualitative content analysis using the technology-organization-environment framework to identify key-determinants. Procedia Comput. Sci. 2019, 160, 189–196. [Google Scholar] [CrossRef]
- Allcock, S.; Plenty, A.; Webber, S.; Yeates, R. Business Information and the Internet: Use of the Internet as an Information Resource for Small and Medium-Sized Enterprises: Final Report–PDF Free Download. 1999. Available online: http://docplayer.net/2208392-Business-information-and-the-internet-use-of-the-internet-as-an-information-resource-for-small-and-medium-sized-enterprises-final-report.html (accessed on 28 July 2021).
- Daniel, E.; Wilson, H.; Myers, A. Adoption of E-Commerce by SMEs in the UK: Towards a Stage Model. Int. Small Bus. J. 2002, 20, 253–270. [Google Scholar] [CrossRef]
- Chen, J.; McQueen, R.J. Factors affecting e-commerce stages of growth in small Chinese firms in New Zealand: An analysis of adoption motivators and inhibitors. J. Glob. Inf. Manag. 2008, 16, 26–60. [Google Scholar] [CrossRef] [Green Version]
- Nolan, R.L. Managing the Crises in Data Processing. 1979. Available online: https://hbr.org/1979/03/managing-the-crises-in-data-processing (accessed on 28 July 2021). (In Japense).
- APEC Small and Medium Enterprises (SME) Electronic Commerce Study. 1999. Available online: https://www.apec.org/Publications/1999/09/APEC-Small-and-Medium-Enterprises-SME-Electronic-Commerce-Study-1999 (accessed on 29 July 2021).
- Rao, S.S.; A Metts, G.; Monge, C.A.M. Mora Monge. Electronic commerce development in small and medium sized enterprises: A stage model and its implications. Bus. Process. Manag. J. 2003, 9, 11–32. [Google Scholar] [CrossRef]
- Elbeltagi, I.; Hamad, H.; Moizer, J.; Abou-Shouk, M.A. Levels of business to business e-commerce adoption and competitive advantage in small and medium-sized enterprises: A comparison study between Egypt and the United States. J. Glob. Inf. Technol. Manag. 2016, 19, 6–25. [Google Scholar] [CrossRef]
- Hamad, H.; Elbeltagi, I.; Jones, P.; El-Gohary, H. Antecedents of B2B E-Commerce Adoption and its Effect on Competitive Advantage in Manufacturing SMEs. Strateg. Chang. 2015, 24, 405–428. [Google Scholar] [CrossRef]
- Wang, M.H.; Huang, C.F.; Yang, T.Y. Acceptance of Knowledge Map Systems: An Empirical Examination of System Characteristics and Knowledge Map Systems Self-efficacy. Asia Pac. Manag. Rev. 2012, 17, 263–280. [Google Scholar] [CrossRef]
- Awa, H.O.; Ukoha, O.; Emecheta, B.C. Using T-O-E theoretical framework to study the adoption of ERP solution Using T-O-E theoretical framework to study the adoption of ERP solution. Cogent Bus. Manag. 2016, 42, 7. [Google Scholar] [CrossRef]
- Cheng, X.; Su, L.; Zarifis, A. Designing a talents training model for cross-border e-commerce: A mixed approach of problem-based learning with social media. Electron. Commer. Res. 2019, 19, 801–822. [Google Scholar] [CrossRef] [Green Version]
- Carroll, W.R.; Wagar, T.H. Is there a relationship between information technology adoption and human resource management? J. Small Bus. Enterp. Dev. 2010, 17, 218–229. [Google Scholar] [CrossRef]
- Hirst, G.; Van Knippenberg, D.; Chen, C.-H.; Sacramento, C.A. How does bureaucracy impact individual creativity? A cross-level investigation of team contextual influences on goal orientation-creativity relationships. Acad. Manag. J. 2011, 54, 624–641. [Google Scholar] [CrossRef]
- Li, C.-R.; Li, C.-X.; Lin, C.-J. How and when team regulatory focus influences team innovation and member creativity. Pers. Rev. 2018, 47, 95–117. [Google Scholar] [CrossRef]
- Cheng, Y.; Awan, U.; Ahmad, S.; Tan, Z. How do technological innovation and fiscal decentralization affect the environment? A story of the fourth industrial revolution and sustainable growth. Technol. Forecast. Soc. Chang. 2021, 162, 120398. [Google Scholar] [CrossRef]
- Awiagah, R.; Kang, J.; Lim, J.I. Factors affecting e-commerce adoption among SMEs in Ghana. Inf. Dev. 2016, 32, 815–836. [Google Scholar] [CrossRef]
- Al-Qirim, N. The adoption of eCommerce communications and applications technologies in small businesses in New Zealand. Electron. Commer. Res. Appl. 2007, 6, 462–473. [Google Scholar] [CrossRef]
- Oliveira, T.; Martins, M.F. Literature Review of Information Technology Adoption Models at Firm Level. Electron. J. Inf. Syst. Eval. 2011, 14, 110. [Google Scholar]
- Kohli, A.K.; Jaworski, B.J. Market Orientation: The Construct, Research Propositions, and Managerial Implications. J. Mark. 1990, 54, 1–18. [Google Scholar] [CrossRef] [Green Version]
- Slater, S.F.; Narver, J.C. Narver, Does Competitive Environment Moderate the Market Orientation-Performance Relationship? J. Mark. 1994, 58, 46. [Google Scholar] [CrossRef]
- Liu, Z.; Li, Z. A blockchain-based framework of cross-border e-commerce supply chain. Int. J. Inf. Manag. 2020, 52, 102059. [Google Scholar] [CrossRef]
- Lutfi, A. Investigating the moderating role of environmental uncertainty between institutional pressures and ERP adoption in Jordanian SMEs. J. Open Innov. Technol. Mark. Complex. 2020, 6, 91. [Google Scholar] [CrossRef]
- Al-Somali, S.A.; Gholami, R.; Clegg, B. Determinants of B2B E-Commerce Adoption in Saudi Arabian Firms. Int. J. Digit. Soc. 2011, 2, 406–415. [Google Scholar] [CrossRef]
- Dillman, D.A.; Lavrakas, P. Total Design Method (TDM). In Encyclopedia of Survey Research Methods; Sage Publications, Inc.: Thousand Oaks, CA, USA, 2013. [Google Scholar]
- Teo, T.S.H.; Ranganathan, C. Adopters and non-adopters of business-to-business electronic commerce in Singapore. Inf. Manag. 2004, 42, 89–102. [Google Scholar] [CrossRef]
- Wang, Y.-S.; Lin, S.-J.; Yeh, C.-H.; Li, C.-R.; Li, H.-T. What drives students’ cyber entrepreneurial intention: The moderating role of disciplinary difference. Think. Ski. Creat. 2016, 22, 22–35. [Google Scholar] [CrossRef]
- Ching, H.L.; Ellis, P. Marketing in Cyberspace: What Factors Drive E-Commerce Adoption? J. Mark. Manag. 2004, 20, 409–429. [Google Scholar] [CrossRef]
- Heng, T.M.; Low, L. Practioners’ forum: The Intelligent City: Singapore Achieving the Next Lap. Technol. Anal. Strateg. Manag. 1993, 5, 187–202. [Google Scholar] [CrossRef]
- Kuan, K.; Chau, P.Y. A perception-based model for EDI adoption in small businesses using a technology-organization-environment framework. Inf. Manag. 2001, 38, 507–521. [Google Scholar] [CrossRef]
- Wu, F.; Lee, Y.-K. Determinants of e-communication adoption: The internal push versus external pull factors. Mark. Theory 2005, 5, 7–31. [Google Scholar] [CrossRef]
- Hair, R.E.; Black, J.F.; Babin, W.C.; Anderson, B.J. Multivariate Data Analysis. 2010. Available online: https://books.google.com/books/about/Multivariate_Data_Analysis.html?id=JlRaAAAAYAAJ (accessed on 31 July 2021).
- Wasko, M.M.; Faraj, S. Why should I share? Examining social capital and knowledge contribution in electronic networks of practice. MIS Q. Manag. Inf. Syst. 2005, 29, 35–57. [Google Scholar] [CrossRef]
- Henseler, J.; Hubona, G.; Ray, P.A. Using PLS path modeling in new technology research: Updated guidelines. Ind. Manag. Data Syst. 2016, 116, 2–20. [Google Scholar] [CrossRef]
- Fornell, C.; Larcker, D.F. Evaluating structural equation models with unobservable variables and measurement error. J. Mark. Res. 1981, 18, 39–50. [Google Scholar] [CrossRef]
- Briones-Peñalver, A.-J.; Conesa, J.A.B.; Nieto, C.D.N. Analysis of Corporate Social Responsibility in Spanish Agribusiness and Its Influence on Innovation and Performance. Corp. Soc. Responsib. Environ. Manag. 2018, 25, 182–193. [Google Scholar] [CrossRef]
- Falk, R.F.; Miller, N.B. A Primer for Soft Modeling; University of Akron Press: Akron, OH, USA, 1992; p. 103. Available online: https://books.google.com/books/about/A_Primer_for_Soft_Modeling.html?id=3CFrQgAACAAJ (accessed on 31 July 2021).
- Giuffrida, M.; Mangiaracina, R.; Perego, A.; Tumino, A. Cross-border B2C e-commerce to Greater China and the role of logistics: A literature review. Int. J. Phys. Distrib. Logist. Manag. 2017, 47, 772–795. [Google Scholar] [CrossRef]
- Awa, H.O.; Ukoha, O.; Igwe, S.R. Revisiting technology-organization-environment (T-O-E) theory for enriched applicability. Bottom Line 2017, 30, 2–22. [Google Scholar] [CrossRef]
- Devaraj, S.; Kohli, R. Performance impacts of information technology: Is actual usage the missing link? Manag. Sci. 2003, 49, 273–289. [Google Scholar] [CrossRef] [Green Version]
- Strzelecki, A. Content delivery networks in cross-border e-commerce. Int. J. Adv. Comput. Sci. Appl. 2020, 11, 19–27. [Google Scholar] [CrossRef]
Organizational Context | Top management support, Size of the organization, Human resource, Decentralization level, Formalization level, etc. |
Technological Context | Internal, external technologies (internet, etc.), Software and hardware, Relative advantage, Complexity, Compatibility, etc. |
Environmental Context | Competition’s pressure, Customers’ pressure, Suppliers’ pressure, Regulatory and legal environment, Country’s e-readiness, etc. |
CBEC Levels | Level 1: Static website Level 2: Level 1 + communication with customers, vendors, suppliers Level 3: Level 2 + online transaction and payment facilities Level 4: Level 3 + integration of business operations with supply chain partners and suppliers (online collaboration) |
Loadings | Cronbach’s Alpha | Composite Reliability | Average Variance Extracted (AVE) | |
---|---|---|---|---|
Environmental Context (ENV) | ||||
CESH | 0.866 | 0.888 | 0.616 | |
ENVCESCH1 | 0.651 | |||
ENVCESCH2 | 0.800 | |||
ENVCESCH3 | 0.712 | |||
ENVCESCH4 | 0.865 | |||
ENVCESCH5 | 0.872 | |||
CEST | 0.932 | 0.949 | 0.787 | |
ENVCESTC1 | 0.898 | |||
ENVCESTC2 | 0.893 | |||
ENVCESTC3 | 0.876 | |||
ENVCESTC4 | 0.878 | |||
ENVCESTC5 | 0.891 | |||
CP | 0.84 | 0.904 | 0.759 | |
ENVCP1 | 0.820 | |||
ENVCP2 | 0.904 | |||
ENVCP3 | 0.886 | |||
DCP | 0.868 | 0.907 | 0.711 | |
ENVDCP1 | 0.884 | |||
ENVDCP2 | 0.928 | |||
ENVDCP3 | 0.853 | |||
ENVDCP4 | 0.689 | |||
RLCH | 0.912 | 0.937 | 0.789 | |
ENVRLCH1 | 0.812 | |||
ENVRLCH2 | 0.899 | |||
ENVRLCH3 | 0.935 | |||
ENVRLCH4 | 0.901 | |||
RLTC | 0.95 | 0.964 | 0.869 | |
ENVRLTC1 | 0.892 | |||
ENVRLTC2 | 0.948 | |||
ENVRLTC3 | 0.956 | |||
ENVRLTC4 | 0.931 | |||
SP | 0.832 | 0.898 | 0.746 | |
ENVSP1 | 0.877 | |||
ENVSP2 | 0.902 | |||
ENVSP3 | 0.808 | |||
Organizational Context (ORG) | ||||
DL | 0.813 | 0.872 | 0.695 | |
ORGDL1 | 0.914 | |||
ORGDL2 | 0.743 | |||
ORGDL3 | 0.836 | |||
FL | 0.881 | 0.94 | 0.887 | |
ORGFL2 | 0.912 | |||
ORGFL3 | 0.971 | |||
FS | 0.845 | 0.906 | 0.762 | |
ORGFS1 | 0.885 | |||
ORGFS2 | 0.906 | |||
ORGFS3 | 0.826 | |||
HR | 0.846 | 0.897 | 0.686 | |
ORGHR1 | 0.827 | |||
ORGHR2 | 0.845 | |||
ORGHR3 | 0.896 | |||
ORGHR4 | 0.735 | |||
TECHR | 0.885 | 0.921 | 0.744 | |
ORGTECHR1 | 0.84 | |||
ORGTECHR2 | 0.855 | |||
ORGTECHR3 | 0.917 | |||
ORGTECHR4 | 0.837 | |||
TMS | 0.905 | 0.932 | 0.775 | |
ORGTMS1 | 0.885 | |||
ORGTMS2 | 0.941 | |||
ORGTMS3 | 0.853 | |||
ORGTMS4 | 0.839 | |||
Level 1 | 0.771 | 0.867 | 0.684 | |
L1OCP1 | 0.819 | |||
L1OCP2 | 0.832 | |||
L1OCP3 | 0.831 | |||
Level 2 | 0.823 | 0.895 | 0.74 | |
L2OO1 | 0.867 | |||
L2OO2 | 0.907 | |||
L2OO3 | 0.803 | |||
Level 3 | 0.87 | 0.921 | 0.795 | |
L3OT1 | 0.863 | |||
L3OT2 | 0.900 | |||
L3OT3 | 0.911 | |||
Level 4 | 0.875 | 0.923 | 0.801 | |
L4OI1 | 0.873 | |||
L4OI2 | 0.916 | |||
L4OI3 | 0.895 | |||
Second Order | ||||
Environmental Context | 0.858 | 0.890 | 0.538 | |
CESCH | 0.631 | |||
CEST | 0.727 | |||
CP | 0.686 | |||
DCP | 0.819 | |||
RLCH | 0.741 | |||
RLTC | 0.779 | |||
SP | 0.738 | |||
Organizational Context | 0.802 | 0.830 | 0.467 | |
DL | 0.528 | |||
FL | 0.549 | |||
FSize | 0.696 | |||
HR | 0.879 | |||
TMS | 0.402 | |||
TR | 0.897 |
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
CESCH | 0.785 | ||||||||||||||||
CEST | 0.269 | 0.887 | |||||||||||||||
CP | 0.571 | 0.275 | 0.871 | ||||||||||||||
DCP | 0.509 | 0.398 | 0.716 | 0.843 | |||||||||||||
RLCH | 0.386 | 0.536 | 0.293 | 0.440 | 0.888 | ||||||||||||
RLTC | 0.381 | 0.626 | 0.300 | 0.426 | 0.760 | 0.932 | |||||||||||
SP | 0.425 | 0.386 | 0.613 | 0.749 | 0.326 | 0.359 | 0.863 | ||||||||||
DL | 0.391 | 0.142 | 0.354 | 0.256 | 0.157 | 0.108 | 0.204 | 0.834 | |||||||||
FL | 0.369 | 0.205 | 0.399 | 0.327 | 0.179 | 0.128 | 0.267 | 0.700 | 0.942 | ||||||||
FSize | 0.172 | 0.412 | 0.095 | 0.236 | 0.374 | 0.417 | 0.172 | 0.180 | 0.224 | 0.873 | |||||||
HR | 0.262 | 0.287 | 0.252 | 0.380 | 0.360 | 0.341 | 0.271 | 0.381 | 0.373 | 0.462 | 0.828 | ||||||
TMS | 0.406 | 0.155 | 0.555 | 0.452 | 0.137 | 0.110 | 0.371 | 0.433 | 0.433 | 0.127 | 0.342 | 0.880 | |||||
TR | 0.324 | 0.390 | 0.260 | 0.408 | 0.413 | 0.443 | 0.344 | 0.453 | 0.444 | 0.494 | 0.709 | 0.292 | 0.863 | ||||
Level 1 | 0.142 | 0.124 | 0.141 | 0.244 | 0.109 | 0.201 | 0.123 | 0.071 | 0.106 | 0.223 | 0.364 | 0.084 | 0.345 | 0.827 | |||
Level 2 | 0.152 | 0.307 | 0.179 | 0.333 | 0.225 | 0.295 | 0.273 | 0.084 | 0.161 | 0.279 | 0.395 | 0.063 | 0.430 | 0.672 | 0.860 | ||
Level 3 | 0.160 | 0.388 | 0.188 | 0.317 | 0.258 | 0.308 | 0.229 | −0.005 | 0.053 | 0.260 | 0.359 | 0.018 | 0.344 | 0.526 | 0.728 | 0.891 | |
Level 4 | 0.156 | 0.279 | 0.121 | 0.237 | 0.196 | 0.247 | 0.182 | 0.035 | 0.060 | 0.279 | 0.348 | 0.005 | 0.347 | 0.540 | 0.737 | 0.806 | 0.895 |
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
CESCH | |||||||||||||||||
CEST | 0.268 | ||||||||||||||||
CP | 0.697 | 0.311 | |||||||||||||||
DCP | 0.597 | 0.430 | 0.862 | ||||||||||||||
RLCH | 0.439 | 0.573 | 0.338 | 0.493 | |||||||||||||
RLTC | 0.413 | 0.667 | 0.337 | 0.454 | 0.816 | ||||||||||||
SP | 0.491 | 0.442 | 0.742 | 0.863 | 0.370 | 0.405 | |||||||||||
DL | 0.521 | 0.161 | 0.450 | 0.383 | 0.209 | 0.145 | 0.272 | ||||||||||
FL | 0.479 | 0.223 | 0.464 | 0.418 | 0.222 | 0.156 | 0.313 | 0.878 | |||||||||
FSize | 0.179 | 0.472 | 0.122 | 0.241 | 0.425 | 0.465 | 0.195 | 0.223 | 0.262 | ||||||||
HR | 0.316 | 0.313 | 0.288 | 0.431 | 0.398 | 0.376 | 0.303 | 0.477 | 0.432 | 0.554 | |||||||
TMS | 0.483 | 0.173 | 0.638 | 0.532 | 0.160 | 0.126 | 0.438 | 0.525 | 0.481 | 0.138 | 0.387 | ||||||
TR | 0.368 | 0.430 | 0.305 | 0.450 | 0.450 | 0.483 | 0.390 | 0.554 | 0.526 | 0.565 | 0.816 | 0.330 | |||||
Level 1 | 0.142 | 0.143 | 0.170 | 0.267 | 0.118 | 0.227 | 0.144 | 0.081 | 0.123 | 0.264 | 0.442 | 0.095 | 0.413 | ||||
Level 2 | 0.148 | 0.343 | 0.216 | 0.366 | 0.241 | 0.327 | 0.318 | 0.104 | 0.183 | 0.321 | 0.469 | 0.101 | 0.501 | 0.840 | |||
Level 3 | 0.144 | 0.429 | 0.218 | 0.340 | 0.274 | 0.338 | 0.263 | 0.044 | 0.067 | 0.301 | 0.409 | 0.047 | 0.390 | 0.629 | 0.857 | ||
Level 4 | 0.136 | 0.306 | 0.140 | 0.252 | 0.200 | 0.268 | 0.201 | 0.067 | 0.067 | 0.316 | 0.397 | 0.043 | 0.390 | 0.644 | 0.865 | 0.924 |
ENV | ORG | Level 1 | Level 2 | Level 3 | Level 4 | |
---|---|---|---|---|---|---|
ENV | 0.734 | |||||
ORG | 0.548 | 0.683 | ||||
Level 1 | 0.212 | 0.363 | 0.828 | |||
Level 2 | 0.357 | 0.428 | 0.67 | 0.861 | ||
Level 3 | 0.379 | 0.356 | 0.522 | 0.727 | 0.891 | |
Level 4 | 0.289 | 0.361 | 0.536 | 0.734 | 0.808 | 0.895 |
ENV | ORG | Level 1 | Level 2 | Level 3 | Level 4 | |
---|---|---|---|---|---|---|
ENV | ||||||
ORG | 0.677 | |||||
Level 1 | 0.251 | 0.358 | ||||
Level 2 | 0.405 | 0.421 | 0.84 | |||
Level 3 | 0.415 | 0.301 | 0.629 | 0.857 | ||
Level 4 | 0.316 | 0.303 | 0.644 | 0.865 | 0.924 |
Coefficient | STDEV | t-Statistics | p-Values | 2.50% | 97.50% | |
---|---|---|---|---|---|---|
H1: ORG→Level 1 | 0.330 | 0.074 | 4.447 | 0.000 | 0.184 | 0.474 |
H2: ORG→Level 2 | 0.311 | 0.071 | 4.369 | 0.000 | 0.17 | 0.446 |
H3: ORG→Level 3 | 0.183 | 0.064 | 2.863 | 0.004 | 0.047 | 0.299 |
H4: ORG→Level 4 | 0.255 | 0.058 | 4.433 | 0.000 | 0.143 | 0.367 |
R2 | Q2 | |||||
Level 1 | 0.153 | 0.090 | ||||
Level 2 | 0.225 | 0.148 | ||||
Level 3 | 0.227 | 0.167 | ||||
Level 4 | 0.200 | 0.142 |
Coefficient | STDEV | t-Statistics | p-Values | 2.50% | 97.50% | |
---|---|---|---|---|---|---|
H5: Mod_ENV_L1→Level 1 | 0.116 | 0.077 | 1.499 | 0.134 | −0.309 | 0.169 |
H6: Mod_ENV_L2→Level 2 | 0.115 | 0.061 | 1.882 | 0.060 | −0.156 | 0.192 |
H7: Mod_ENV_L3→Level 3 | 0.182 | 0.056 | 3.274 | 0.001 | 0.053 | 0.275 |
H8: Mod_ENV_L4→Level 4 | 0.191 | 0.048 | 3.975 | 0.000 | 0.068 | 0.263 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abdulkarem, A.; Hou, W. The Impact of Organizational Context on the Levels of Cross-Border E-Commerce Adoption in Chinese SMEs: The Moderating Role of Environmental Context. J. Theor. Appl. Electron. Commer. Res. 2021, 16, 2732-2749. https://doi.org/10.3390/jtaer16070150
Abdulkarem A, Hou W. The Impact of Organizational Context on the Levels of Cross-Border E-Commerce Adoption in Chinese SMEs: The Moderating Role of Environmental Context. Journal of Theoretical and Applied Electronic Commerce Research. 2021; 16(7):2732-2749. https://doi.org/10.3390/jtaer16070150
Chicago/Turabian StyleAbdulkarem, Anaf, and Wenhua Hou. 2021. "The Impact of Organizational Context on the Levels of Cross-Border E-Commerce Adoption in Chinese SMEs: The Moderating Role of Environmental Context" Journal of Theoretical and Applied Electronic Commerce Research 16, no. 7: 2732-2749. https://doi.org/10.3390/jtaer16070150
APA StyleAbdulkarem, A., & Hou, W. (2021). The Impact of Organizational Context on the Levels of Cross-Border E-Commerce Adoption in Chinese SMEs: The Moderating Role of Environmental Context. Journal of Theoretical and Applied Electronic Commerce Research, 16(7), 2732-2749. https://doi.org/10.3390/jtaer16070150