Impact of AI-Oriented Live-Streaming E-Commerce Service Failures on Consumer Disengagement—Empirical Evidence from China
Abstract
:1. Introduction
2. Literature Review and Theoretical Background
2.1. AI-Oriented Live-Streaming E-Commerce and Service Failure
2.2. Stressor–Strain–Outcome Model
2.3. Expectancy Disconfirmation Theory
3. Hypotheses Development
3.1. AI-Oriented Live-Streaming E-Commerce Service Failure, Disappointment, and Emotional Exhaustion
3.2. Emotional Exhaustion and Discontinuance Behavior
3.3. The Moderating Effect of Live-Streaming Platform Type
4. Research Methodology
4.1. Sample and Data Collection
4.2. Questionnaire and Instruments
4.3. Common Method Variance
4.4. Assessment of Structural Model
5. Data Analysis and Results
5.1. Assessment of Measurement Model
5.2. Hypotheses Testing
5.3. Moderating Effect Analysis
6. Discussion and Conclusions
6.1. Conclusions
6.2. Theoretical Implications
6.3. Managerial Implications
6.4. Limitations and Future Research
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gao, J.; Zhao, X.; Zhai, M.; Zhang, D.; Li, G. AI or human? The effect of streamer types on consumer purchase intention in live streaming. Int. J. Hum. Comput. Int. 2024, 1–13. [Google Scholar] [CrossRef]
- Wu, R.; Liu, J.; Chen, S.; Tong, X. The effect of e-commerce virtual live streamer socialness on consumers’ experiential value: An empirical study based on Chinese e-commerce live streaming studios. J. Res. Interact. Mark. 2023, 17, 714–733. [Google Scholar] [CrossRef]
- IiMedia Research, China Virtual Anchor Industry Research Report. 2023. Available online: https://baijiahao.baidu.com/s?id=1761774000046629261&wfr=spider&for=pc (accessed on 1 May 2024).
- Chen, J.; Gong, X.; Ren, R. Active or avoidance coping? Influencing mechanisms of streamers’ coping strategies on viewers’ word of mouth after livestreaming e-commerce failures. J. Retail. Consum. Serv. 2023, 72, 103278. [Google Scholar] [CrossRef]
- Xu, Y.; Ruan, Y. AI and human broadcasters: Relative impact on consumer engagement in live streaming commerce. Electron. Commer. Res. Appl. 2023, 62, 101335. [Google Scholar] [CrossRef]
- Hu, L.; Zhang, B.; Zhang, P.; Qi, J.; Cao, J.; Gao, D.; Zhao, H.; Feng, X.; Wang, Q.; Zhuo, L.; et al. A Virtual character generation and animation system for e-commerce live streaming. In Proceedings of the 29th ACM International Conference on Multimedia, Virtual Event, 20–24 October 2021; ACM: New York, NY, USA, 2021; pp. 1202–1211. [Google Scholar] [CrossRef]
- Li, F.-L.; Zhao, Z.; Lu, Q.; Lin, X.; Chen, H.; Chen, B.; Pu, L.; Zhang, J.; Sun, F.; Liu, X.; et al. Alime avatar: Multi-modal content production and presentation for live-streaming e-commerce. In Proceedings of the 44th International ACM SIGIR Conference on Research and Development in Information Retrieval, Virtual Event, 11–15 July 2021; ACM: New York, NY, USA, 2021; pp. 2635–2636. [Google Scholar] [CrossRef]
- Li, Y.; Wang, C.; Liu, J. A Systematic review of literature on user behavior in video game live streaming. Int. J. Environ. Res. Public Health 2020, 17, 3328. [Google Scholar] [CrossRef] [PubMed]
- Gao, L.; Li, G.; Tsai, F.; Gao, C.; Zhu, M.; Qu, X. The Impact of Artificial Intelligence Stimuli on Customer Engagement and Value Co-Creation: The Moderating Role of Customer Ability Readiness. J. Res. Interact. Mark. 2023, 17, 317–333. [Google Scholar] [CrossRef]
- Wang, K.; Wu, J.; Sun, Y.; Chen, J.; Pu, Y.; Qi, Y. Trust in human and virtual live streamers: The role of integrity and social presence. Int. J. Hum. Comput. Int. 2023, 1–21. [Google Scholar] [CrossRef]
- Gao, W.; Jiang, N.; Guo, Q. How do virtual streamers affect purchase intention in the live streaming context? A presence perspective. J. Retail. Consum. Serv. 2023, 73, 103356. [Google Scholar] [CrossRef]
- Hu, H.; Ma, F. Human-like bots are not humans: The weakness of sensory language for virtual streamers in livestream commerce. J. Retail. Consum. Serv. 2023, 75, 103541. [Google Scholar] [CrossRef]
- Yao, Q.; Kuai, L.; Jiang, L. Effects of the Anthropomorphic Image of Intelligent Customer Service Avatars on Consumers’ Willingness to Interact after Service Failures. J. Res. Interact. Mark. 2023, 17, 734–753. [Google Scholar] [CrossRef]
- Zimmermann, R.; Mora, D.; Cirqueira, D.; Helfert, M.; Bezbradica, M.; Werth, D.; Weitzl, W.J.; Riedl, R.; Auinger, A. Enhancing Brick-and-Mortar Store Shopping Experience with an Augmented Reality Shopping Assistant Application Using Personalized Recommendations and Explainable Artificial Intelligence. J. Res. Interact. Mark. 2023, 17, 273–298. [Google Scholar] [CrossRef]
- Yim, A.; Cui, A.P.; Walsh, M. The Role of Cuteness on Consumer Attachment to Artificial Intelligence Agents. J. Res. Interact. Mark. 2024, 18, 127–141. [Google Scholar] [CrossRef]
- Stock, R.M.; Merkle, M. Can humanoid service robots perform better than service employees? A comparison of innovative behavior cues. In Proceedings of the 51st Hawaii International Conference on System Sciences, Waikoloa Village, HI, USA, 3–6 January 2018; pp. 1056–1065. [Google Scholar] [CrossRef]
- Luo, X.; Tong, S.; Fang, Z.; Qu, Z. Frontiers: Machines vs. humans: The impact of artificial intelligence chatbot disclosure on customer purchases. Market. Sci. 2019, 38, 937–947. [Google Scholar] [CrossRef]
- Lopez, A.; Garza, R. Consumer Bias against Evaluations Received by Artificial Intelligence: The Mediation Effect of Lack of Transparency Anxiety. J. Res. Interact. Mark. 2023, 17, 831–847. [Google Scholar] [CrossRef]
- Lin, K.; Fong, L.H.N.; Law, R. Live streaming in tourism and hospitality: A literature review. Asia Pac. J. Tour. Res. 2022, 27, 290–304. [Google Scholar] [CrossRef]
- Koeske, G.F.; Koeske, R.D. A preliminary test of a stress-strain-outcome model for reconceptualizing the burnout phenomenon. J. Soc. Serv. Res. 1993, 17, 107–135. [Google Scholar] [CrossRef]
- Tarafdar, M.; Cooper, C.L.; Stich, J. The technostress trifecta-techno eustress, techno distress and design: Theoretical directions and an agenda for research. Inform. Syst. J. 2019, 29, 6–42. [Google Scholar] [CrossRef]
- Masood, A.; Luqman, A.; Feng, Y.; Ali, A. Adverse Consequences of excessive social networking site use on academic performance: Explaining underlying mechanism from stress perspective. Comput. Hum. Behav. 2020, 113, 106476. [Google Scholar] [CrossRef]
- Nisafani, A.S.; Kiely, G.; Mahony, C. Workers’ technostress: A review of its causes, strains, inhibitors, and impacts. J. Decis. Syst. 2020, 29, 243–258. [Google Scholar] [CrossRef]
- Lee, V.-H.; Hew, J.-J.; Leong, L.-Y.; Tan, G.W.-H.; Ooi, K.-B. The dark side of compulsory e-education: Are Students Really Happy and Learning during the COVID-19 Pandemic? Int. J. Hum. Comput. Int. 2022, 38, 1168–1181. [Google Scholar] [CrossRef]
- Dhir, A.; Yossatorn, Y.; Kaur, P.; Chen, S. Online social media fatigue and psychological wellbeing—A study of compulsive use, fear of missing out, fatigue, anxiety and depression. Int. J. Inform. Manag. 2018, 40, 141–152. [Google Scholar] [CrossRef]
- Guo, Y.; Lu, Z.; Kuang, H.; Wang, C. Information avoidance behavior on social network sites: Information irrelevance, overload, and the moderating role of time pressure. Int. J. Inform. Manag. 2020, 52, 102067. [Google Scholar] [CrossRef]
- Ma, X.; Sun, Y.; Guo, X.; Lai, K.; Vogel, D. Understanding users’ negative responses to recommendation algorithms in short-video platforms: A perspective based on the stressor-strain-outcome (SSO) framework. Electron. Mark. 2022, 32, 41–58. [Google Scholar] [CrossRef]
- Sun, Y.; Li, S.; Yu, L. The dark sides of AI personal assistant: Effects of service failure on user continuance intention. Electron. Mark. 2022, 32, 17–39. [Google Scholar] [CrossRef]
- Oliver, R.L. A cognitive model of the antecedents and consequences of satisfaction decisions. J. Mark. Res. 1980, 17, 460–469. [Google Scholar] [CrossRef]
- Bagherzadeh, R.; Rawal, M.; Wei, S.; Saavedra Torres, J.L. The journey from customer participation in service failure to co-creation in service recovery. J. Retail. Consum. Serv. 2020, 54, 102058. [Google Scholar] [CrossRef]
- Mattila, A.S.; Ro, H. Discrete negative emotions and customer dissatisfaction responses in a casual restaurant setting. J. Hosp. Tour. Res. 2008, 32, 89–107. [Google Scholar] [CrossRef]
- Rao, S.; Griffis, S.E.; Goldsby, T.J. Failure to deliver? Linking online order fulfillment glitches with future purchase behavior. J. Ops. Manag. 2011, 29, 692–703. [Google Scholar] [CrossRef]
- Glover, S.; Benbasat, I. A Comprehensive model of perceived risk of e-commerce transactions. Int. J. Electron. Comm. 2010, 15, 47–78. [Google Scholar] [CrossRef]
- Viswanath, V.; Goyal, S. Expectation disconfirmation and technology adoption: Polynomial modeling and response surface analysis. MIS Q. 2010, 34, 281. [Google Scholar] [CrossRef]
- Kang, X.; Porter, C.S.; Bohemia, E. Using the fuzzy weighted association rule mining approach to develop a customer satisfaction product form. J. Intell. Fuzzy Syst. 2020, 38, 4343–4357. [Google Scholar] [CrossRef]
- Shams, G.; Rehman, M.A.; Samad, S.; Rather, R.A. The impact of the magnitude of service failure and complaint handling on satisfaction and brand credibility in the banking industry. J. Financ. Serv. Mark. 2020, 25, 25–34. [Google Scholar] [CrossRef]
- Lai, I.K.; Yang, T.; Hitchcock, M. Evaluating tourists’ emotional experiences regarding destination casino resorts: An impact-asymmetry analysis. J. Destin. Mark. Manag. 2019, 16, 100365. [Google Scholar] [CrossRef]
- Yadav, R.; Sangroya, D.; Pereira, V. Why consumers turn negative about the brand: Antecedents and consequences of negative consumer engagement in virtual communities. Inf. Syst. E-Bus. Manag. 2023. [Google Scholar] [CrossRef]
- Lee, C.T.; Pan, L.-Y. Resistance of facial recognition payment service: A mixed method approach. J. Serv. Mark. 2023, 37, 392–407. [Google Scholar] [CrossRef]
- Liu, X.; Li, H.; Zhou, H.; Li, Z. Reversibility between ‘cocreation’ and ‘codestruction’: Evidence from Chinese travel livestreaming. Curr. Issues. Tour. 2023, 26, 18–30. [Google Scholar] [CrossRef]
- Heo, J.; Kim, Y.; Yan, J. Sustainability of live video streamer’s strategies: Live streaming video platform and audience’s social capital in south Korea. Sustainability 2020, 12, 1969. [Google Scholar] [CrossRef]
- Tong, X.; Chen, Y.; Zhou, S.; Yang, S. How background visual complexity influences purchase intention in live streaming: The mediating role of emotion and the moderating role of gender. J. Retail. Consum. Serv. 2022, 67, 103031. [Google Scholar] [CrossRef]
- Wang, C.L. Editorial—What Is an Interactive Marketing Perspective and What Are Emerging Research Areas? J. Res. Interact. Mark. 2024, 18, 161–165. [Google Scholar] [CrossRef]
- Liao, J.; Chen, K.; Qi, J.; Li, J.; Yu, I.Y. Creating Immersive and Parasocial Live Shopping Experience for Viewers: The Role of Streamers’ Interactional Communication Style. J. Res. Interact. Mark. 2023, 17, 140–155. [Google Scholar] [CrossRef]
- Mazhar, M.; Nadeem, M.A.; Abbasi, H.A.; Tariq, U.; Jan, A.; Jaffar, R.A.H. Reparation for service failure through service recovery: An assessment of consumer behaviour in an online shopping context. Bus. Manag. Strat. 2022, 13, 64. [Google Scholar] [CrossRef]
- Hua, Y.; Wang, D.; Luo, X.; Chang, F.-K.; Xie, Y. Discovering the juxtaposed affordances in digitally transformed live streaming e-commerce: A mixed-methods study from a vicarious learning perspective. Eur. J. Inform. Syst. 2023, 1–32. [Google Scholar] [CrossRef]
- Cao, X.; Sun, J. Exploring the effect of overload on the discontinuous intention of social media users: An S-O-R perspective. Comput. Hum. Behav. 2018, 81, 10–18. [Google Scholar] [CrossRef]
- Song, M.; Xing, X.; Duan, Y.; Cohen, J.; Mou, J. Will artificial intelligence replace human customer service? The impact of communication quality and privacy risks on adoption intention. J. Retail. Consum. Serv. 2022, 66, 102900. [Google Scholar] [CrossRef]
- Yu, J.; Xie, C.; Huang, S.; Guo, C. Configuring the value-versus-attachment combinations in determining consumer purchase intention in tourism e-commerce live streaming: A FsQCA approach. Curr. Issues. Tour. 2023, 26, 3023–3039. [Google Scholar] [CrossRef]
- Sethuraman, R.; Gázquez-Abad, J.C.; Martínez-López, F.J. The effect of retail assortment size on perceptions, choice, and sales: Review and research directions. J. Retail. 2022, 98, 24–45. [Google Scholar] [CrossRef]
- Yang, J.; Zeng, Y.; Liu, X.; Li, Z. Nudging interactive cocreation behaviors in live-streaming travel commerce: The visualization of real-time danmaku. J. Hosp. Tour. Manag. 2022, 52, 184–197. [Google Scholar] [CrossRef]
- Chen, H.; Chen, H.; Tian, X. The dual-process model of product information and habit in influencing consumers’ purchase intention: The role of live streaming features. Electron. Commer. Res. Appl. 2022, 53, 101150. [Google Scholar] [CrossRef]
- Zheng, S.; Chen, J.; Liao, J.; Hu, H.-L. What motivates users’ viewing and purchasing behavior motivations in live streaming: A stream-streamer-viewer perspective. J. Retail. Consum. Serv. 2023, 72, 103240. [Google Scholar] [CrossRef]
- Tan, C.-W.; Benbasat, I.; Cenfetelli, R.T. An exploratory study of the formation and impact of electronic service failures. MIS Q. 2016, 40, 103240. [Google Scholar] [CrossRef]
- Singh, S.; Singh, N.; Kalinić, Z.; Liébana-Cabanillas, F.J. Assessing determinants influencing continued use of live streaming services: An extended perceived value theory of streaming addiction. Expert. Syst. Appl. 2021, 168, 114241. [Google Scholar] [CrossRef]
- Zhang, X.; Shi, Y.; Li, T.; Guan, Y.; Cui, X. How do virtual ai streamers influence viewers’ livestream shopping behavior? The effects of persuasive factors and the mediating role of arousal. Inf. Syst. Front. 2023. [Google Scholar] [CrossRef]
- Tang, Y.M.; Lau, Y.; Ho, U.L. Empowering digital marketing with interactive virtual reality (IVR) in interior design: Effects on customer satisfaction and behaviour intention. J. Theor. Appl. Electron. Commer. Res. 2023, 18, 889–907. [Google Scholar] [CrossRef]
- Luo, H.; Cheng, S.; Zhou, W.; Yu, S.; Lin, X. A study on the impact of linguistic persuasive styles on the sales volume of live streaming products in social e-commerce environment. Mathematics 2021, 9, 1576. [Google Scholar] [CrossRef]
- Chen, H.; Zhang, S.; Shao, B.; Gao, W.; Xu, Y. How do interpersonal interaction factors affect buyers’ purchase intention in live stream shopping? The mediating effects of swift guanxi. Internet Res. 2022, 32, 335–361. [Google Scholar] [CrossRef]
- Wu, D.; Guo, K.; He, Q.; Zhang, J. The impact of live streamers’ improvisational responses to unexpected events on their entrepreneurial performance. J. Retail. Consum. Serv. 2023, 70, 103163. [Google Scholar] [CrossRef]
- Ma, X.; Zou, X.; Lv, J. Why do consumers hesitate to purchase in live streaming? A perspective of interaction between participants. Electron. Commer. Res. Appl. 2022, 55, 101193. [Google Scholar] [CrossRef]
- Chen, Y.H.; Keng, C.-J.; Chen, Y.-L. How Interaction Experience Enhances Customer Engagement in Smart Speaker Devices? The Moderation of Gendered Voice and Product Smartness. J. Res. Interact. Mark. 2022, 16, 403–419. [Google Scholar] [CrossRef]
- Deng, F.; Jiang, X. Effects of human versus virtual human influencers on the appearance anxiety of social media users. J. Retail. Consum. Serv. 2023, 71, 103233. [Google Scholar] [CrossRef]
- Letheren, K.; Jetten, J.; Roberts, J.; Donovan, J. Robots should be seen and not heard…sometimes: Anthropomorphism and ai service robot interactions. Psychol. Market. 2021, 38, 2393–2406. [Google Scholar] [CrossRef]
- Cyr, D.; Hassanein, K.; Head, M.; Ivanov, A. The role of social presence in establishing loyalty in e-service environments. Interact. Comput. 2007, 19, 43–56. [Google Scholar] [CrossRef]
- Liu, D.; Guo, X. Exploring gender differences in acceptance of mobile computing devices among college students. Inf. Syst. E-Bus. Manag. 2017, 15, 197–223. [Google Scholar] [CrossRef]
- Maier, C.; Laumer, S.; Eckhardt, A.; Weitzel, T. Giving too much social support: Social overload on social networking sites. Eur. J. Inform. Syst. 2015, 24, 447–464. [Google Scholar] [CrossRef]
- Fu, S.; Li, H.; Liu, Y.; Pirkkalainen, H.; Salo, M. Social media overload, exhaustion, and use discontinuance: Examining the effects of information overload, system feature overload, and social overload. Inform. Process. Manag. 2020, 57, 102307. [Google Scholar] [CrossRef]
- Soto-Acosta, P.; Jose Molina-Castillo, F.; Lopez-Nicolas, C.; Colomo-Palacios, R. The effect of information overload and disorganization on intention to purchase online: The role of perceived risk and internet experience. Online Inform. Rev. 2014, 38, 543–561. [Google Scholar] [CrossRef]
- Joo, E.; Yang, J. How Perceived Interactivity Affects Consumers’ Shopping Intentions in Live Stream Commerce: Roles of Immersion, User Gratification and Product Involvement. J. Res. Interact. Mark. 2023, 17, 754–772. [Google Scholar] [CrossRef]
- Ravindran, T.; Yeow Kuan, A.C.; Hoe Lian, D.G. Antecedents and effects of social network fatigue. J. Assoc. Inf. Sci. Tech. 2014, 65, 2306–2320. [Google Scholar] [CrossRef]
- Baklouti, F.; Boukamcha, F. Consumer resistance to internet banking services: Implications for the innovation resistance theory. J. Financ. Serv. Mark. 2023. [Google Scholar] [CrossRef]
- Zhu, P.; Liu, Z.; Li, X.; Jiang, X.; Zhu, M.X. The influences of livestreaming on online purchase intention: Examining platform characteristics and consumer psychology. Ind. Manag. Data. Syst. 2023, 123, 862–885. [Google Scholar] [CrossRef]
- Chen, N.; Yang, Y. The role of influencers in live streaming e-commerce: Influencer trust, attachment, and consumer purchase intention. J. Theor. Appl. Electron. Comm. 2023, 18, 1601–1618. [Google Scholar] [CrossRef]
- Shao, Z. How the Characteristics of Social Media Influencers and Live Content Influence Consumers’ Impulsive Buying in Live Streaming Commerce? The Role of Congruence and Attachment. J. Res. Interact. Mark. 2024, 18, 506–527. [Google Scholar] [CrossRef]
- Liu, S.; Li, W.; Wang, P. The adoption and openness of livestreaming on the retail platform with third-party sellers. J. Theor. Appl. Electron. Comm. 2023, 18, 867–888. [Google Scholar] [CrossRef]
- Fu, S.; Zheng, X.; Hou, T.; Yang, Y. Product purchase or gift-giving? An investigation of different viewer-streamer interaction strategies in tourism live streaming. Tour. Manag. Perspect. 2024, 51, 101219. [Google Scholar] [CrossRef]
- Sann, R.; Lai, P.-C.; Liaw, S.-Y.; Chen, C.-T. Multidimensional scale development and validation: University service quality (UNIQUAL). J. Hosp. Tour. 2023, 6, 2565–2594. [Google Scholar] [CrossRef]
- Kamboj, S.; Sharma, M.; Sarmah, B. Impact of mobile banking failure on bank customers’ usage behaviour: The mediating role of user satisfaction. Int. J. Bank Mark. 2022, 40, 128–153. [Google Scholar] [CrossRef]
- Zhong, Y.; Zhang, Y.; Luo, M.; Wei, J.; Liao, S.; Tan, K.-L.; Yap, S.S.-N. I give discounts, I share information, I interact with viewers: A predictive analysis on factors enhancing college students’ purchase intention in a live-streaming shopping environment. Young Consum. 2022, 23, 449–467. [Google Scholar] [CrossRef]
- Jiang, Z.; Wang, W.; Tan, B.C.Y.; Yu, J. The determinants and impacts of aesthetics in users’ first interaction with websites. J. Manag. Inform. Syst. 2016, 33, 229–259. [Google Scholar] [CrossRef]
- Tan, T.M.; Balaji, M.S.; Oikarinen, E.-L.; Alatalo, S.; Salo, J. Recover from a service failure: The differential effects of brand betrayal and brand disappointment on an exclusive brand offering. J. Bus. Res. 2021, 123, 126–139. [Google Scholar] [CrossRef]
- Podsakoff, P.M.; MacKenzie, S.B.; Lee, J.-Y.; Podsakoff, N.P. Common method biases in behavioral research: A critical review of the literature and recommended remedies. J. Appl. Psychol. 2003, 88, 879–903. [Google Scholar] [CrossRef]
- Hair, J.F.; Risher, J.J.; Sarstedt, M.; Ringle, C.M. When to use and how to report the results of PLS-SEM. Eur. Bus. Rev. 2019, 31, 2–24. [Google Scholar] [CrossRef]
- Fornell, C.; Larcker, D.F. Evaluating structural equation models with unobservable variables and measurement error. J. Mark. Res. 1981, 18, 39–50. [Google Scholar] [CrossRef]
- Henseler, J.; Hubona, G.; Ray, P.A. Using PLS path modeling in new technology research: Updated guidelines. Ind. Manag. Data Syst. 2016, 116, 2–20. [Google Scholar] [CrossRef]
- Benitez, J.; Llorens, J.; Braojos, J. How information technology influences opportunity exploration and exploitation firm’s capabilities. Inform. Manag. 2018, 55, 508–523. [Google Scholar] [CrossRef]
- Nathan, R.J.; Victor, V.; Tan, M.; Fekete-Farkas, M. Tourists’ use of Airbnb app for visiting a historical city. Inf. Technol. Tour. 2020, 22, 217–242. [Google Scholar] [CrossRef]
- Askariazad, M.H.; Babakhani, N. An application of European customer satisfaction index (ECSI) in business to business (B2B) context. J. Bus. Ind. Mark. 2015, 30, 17–31. [Google Scholar] [CrossRef]
- Li, B.; Liu, L.; Mao, W.; Qu, Y.; Chen, Y. Voice artificial intelligence service failure and customer complaint behavior: The mediation effect of customer emotion. Electron. Commer. Res. Appl. 2023, 59, 101261. [Google Scholar] [CrossRef]
- Pengnate, S.; Sarathy, R. An experimental investigation of the influence of website emotional design features on trust in unfamiliar online vendors. Comput. Hum. Behav. 2017, 67, 49–60. [Google Scholar] [CrossRef]
- Wu, Y.; Niu, G.; Chen, Z.; Zhang, D. Purchasing social attention by tipping: Materialism predicts online tipping in live-streaming platform through self-enhancement motive. J. Consum. Behav. 2022, 21, 468–480. [Google Scholar] [CrossRef]
- Meng, L.; Duan, S.; Zhao, Y.; Lü, K.; Chen, S. The impact of online celebrity in livestreaming e-commerce on purchase intention from the perspective of emotional contagion. J. Retail. Consum. Serv. 2021, 63, 102733. [Google Scholar] [CrossRef]
- Lee, D.; Wan, C. The impact of mukbang live streaming commerce on consumers’ overconsumption behavior. J. Interact. Mark. 2023, 58, 198–221. [Google Scholar] [CrossRef]
- Pang, H. How compulsive Wechat use and information overload affect social media fatigue and well-being during the COVID-19 pandemic? A stressor-strain-outcome perspective. Telemat. Inform. 2021, 64, 101690. [Google Scholar] [CrossRef] [PubMed]
- Fathy, D.; Elsharnouby, M.H.; AbouAish, E. Fans Behave as Buyers? Assimilate Fan-Based and Team-Based Drivers of Fan Engagement. J. Res. Interact. Mark. 2022, 16, 329–345. [Google Scholar] [CrossRef]
- Nangpiire, C.; Silva, J.; Alves, H. Customer Engagement and Value Co-Creation/Destruction: The Internal Fostering and Hindering Factors and Actors in the Tourist/Hotel Experience. J. Res. Interact. Mark. 2022, 16, 173–188. [Google Scholar] [CrossRef]
- Tong, S.C.; Chan, F.F.Y. Strategies to Drive Interactivity and Digital Engagement: A Practitioners’ Perspective. J. Res. Interact. Mark. 2023, 17, 901–920. [Google Scholar] [CrossRef]
- Samarah, T.; Bayram, P.; Aljuhmani, H.Y.; Elrehail, H. The Role of Brand Interactivity and Involvement in Driving Social Media Consumer Brand Engagement and Brand Loyalty: The Mediating Effect of Brand Trust. J. Res. Interact. Mark. 2022, 16, 648–664. [Google Scholar] [CrossRef]
Demographic Profile | Categories | Frequency | Percentage |
---|---|---|---|
Gender | Male | 233 | 39.63% |
Female | 355 | 60.37% | |
Age (years) | 18–25 | 269 | 45.75% |
26–35 | 211 | 35.88% | |
36–45 | 66 | 11.22% | |
>45 | 42 | 7.14% | |
Monthly Income (CNY) | <5000 | 214 | 36.39% |
5000–10,000 | 165 | 28.06% | |
10,001–20,000 | 103 | 17.52% | |
20,001–30,000 | 77 | 13.10% | |
>30,000 | 29 | 4.93% | |
Education | ≤Middle school degree | 28 | 4.76% |
Bachelor | 396 | 67.35% | |
≥Master | 164 | 27.89% | |
Live-streaming Shopping Experience | <3 times | 12 | 2.04% |
3–10 times | 299 | 50.85% | |
>10 times | 277 | 47.11% |
Variables | Items | Sources |
---|---|---|
Information Failure | AI streamer supplies me with misleading information. | [54,79] |
AI streamer supplies me inconsistent information. | ||
AI streamers supplies me irrelevant information. | ||
AI streamer supplies me untimely information. | ||
AI streamer supplies me incomprehensive information. | ||
Functional Failure | AI-oriented live-streaming fails to accommodate my needs and preferences for specific content. | [54,79] |
AI-oriented live-streaming lacks the ability to help me compare content of interest. | ||
AI-oriented live-streaming fails to aid me in searching for product information. | ||
AI-oriented live-streaming is unable to help me place orders for desired products. | ||
AI-oriented live-streaming lacks the capability to offer a flawless post-purchase guarantee. | ||
System Failure | Accessing the AI-oriented live-streaming I desire is proving to be challenging. | [54,79] |
I find myself constrained when utilizing the AI-oriented live-streaming e-commerce service. | ||
I need substantial effort to utilize the AI-oriented live-streaming e-commerce service. | ||
I need additional time to utilize the AI-oriented live-streaming e-commerce service. | ||
I feel unsafe while engaging in the AI-oriented live-streaming e-commerce service. | ||
Interaction Failure | The AI streamer lacked enthusiasm in their interaction with me. | [80] |
The AI streamer did not offer enough opportunities for questions and answers. | ||
The AI streamer failed to grasp my needs and provide personalized attention. | ||
If I pose questions, the AI streamer cannot respond promptly. | ||
My questions often elicit responses from the AI streamer that are not closely related to my inquiry. | ||
Aesthetic Failure | The background of live-streaming room and AI streamer does not match. | [81] |
The image quality of the AI-oriented live-streaming interface is fuzzy. | ||
AI streamer has poor personal image design. | ||
The AI-oriented live-streaming broadcast room is too cluttered. | ||
The arrangement of the AI-oriented live-streaming room is not visually appealing. | ||
Disappointment | The AI-oriented live-streaming e-commerce failed to uphold the promise it made to me | [82] |
The AI-oriented live-streaming e-commerce disappointed me when I needed it the most. | ||
The AI-oriented live-streaming e-commerce failed to offer the support I required. | ||
Emotional Exhaustion | I feel tired from AI-oriented live-streaming shopping. | [67,68] |
Engaging AI-oriented live-streaming is a strain for me. | ||
I feel burned out from AI-oriented live-streaming. | ||
Discontinuance Behavior | I have stopped using AI-oriented live-streaming. | [68] |
I don’t plan to stay much longer in this AI-oriented live-streaming room. | ||
I might transition to another live-streaming platform that provides superior service. | ||
I often contemplate transitioning to another live-streaming platform for shopping. |
Constructs | SFL | CR | AVE | CA |
---|---|---|---|---|
Information Failure | 0.782 | 0.912 | 0.674 | 0.903 |
0.836 | ||||
0.804 | ||||
0.885 | ||||
0.796 | ||||
Functional Failure | 0.807 | 0.927 | 0.719 | 0.915 |
0.834 | ||||
0.799 | ||||
0.876 | ||||
0.918 | ||||
System Failure | 0.863 | 0.951 | 0.794 | 0.928 |
0.925 | ||||
0.911 | ||||
0.874 | ||||
0.882 | ||||
Interaction Failure | 0.839 | 0.932 | 0.734 | 0.918 |
0.754 | ||||
0.843 | ||||
0.915 | ||||
0.923 | ||||
Aesthetic Failure | 0.867 | 0.931 | 0.729 | 0.917 |
0.854 | ||||
0.883 | ||||
0.829 | ||||
0.834 | ||||
Disappointment | 0.864 | 0.886 | 0.722 | 0.852 |
0.858 | ||||
0.826 | ||||
Emotional Exhaustion | 0.924 | 0.946 | 0.854 | 0.925 |
0.915 | ||||
0.934 | ||||
Discontinuance Behavior | 0.873 | 0.920 | 0.742 | 0.913 |
0.895 | ||||
0.836 | ||||
0.841 |
Construct | M | SD | VIF | IFF | FF | SF | ITF | AF | DP | EE | DB |
---|---|---|---|---|---|---|---|---|---|---|---|
IFF | 5.136 | 0.658 | 1.056 | 0.821 | 0.435 | 0.524 | 0.538 | 0.567 | 0.561 | 0.551 | 0.435 |
FF | 5.078 | 0.472 | 1.375 | 0.453 | 0.848 | 0.639 | 0.566 | 0.438 | 0.513 | 0.545 | 0.548 |
SF | 5.114 | 0.819 | 2.034 | 0.518 | 0.423 | 0.891 | 0.485 | 0.647 | 0.642 | 0.428 | 0.519 |
ITF | 4.968 | 0.752 | 1.461 | 0.604 | 0.352 | 0.614 | 0.857 | 0.519 | 0.523 | 0.643 | 0.643 |
AF | 5.036 | 0.864 | 1.523 | 0.539 | 0.568 | 0.539 | 0.536 | 0.854 | 0.556 | 0.552 | 0.572 |
DP | 5.842 | 0.739 | 1.376 | 0.425 | 0.497 | 0.523 | 0.345 | 0.369 | 0.924 | 0.484 | 0.568 |
EE | 5.631 | 0.657 | 1.238 | 0.533 | 0.599 | 0.438 | 0.617 | 0.634 | 0.574 | 0.849 | 0.567 |
DB | 5.175 | 0.682 | 1.036 | 0.469 | 0.578 | 0.471 | 0.534 | 0.556 | 0.526 | 0.604 | 0.862 |
Hypotheses | f2 | R2 | Q2 | p | Remarks | |
---|---|---|---|---|---|---|
DP | 0.552 | 0.365 | ||||
H1:IFF→DP | 0.562 | 0.196 | *** | Accepted | ||
H2:FF→DP | 0.438 | 0.165 | ** | Accepted | ||
H3:SF→DP | 0.641 | 0.292 | *** | Accepted | ||
H4:ITF→DP | 0.443 | 0.174 | ** | Accepted | ||
H5:AF→DP | 0.375 | 0.167 | ** | Accepted | ||
EE | 0.523 | 0.248 | ||||
H6:DP→EE | 0.339 | 0.154 | ** | Accepted | ||
DB | 0.561 | 0.289 | ||||
H7:EE→DB | 0.572 | 0.208 | *** | Accepted |
Path | Coefficient | Difference | T-Value | |
---|---|---|---|---|
Social | Commercial | |||
IFF→DP | 0.217 ** | 0.526 ** | −0.309 ** | −3.861 |
FF→DP | 0.285 ** | 0.585 * | −0.3 ** | −3.113 |
SF→DP | 0.263 ** | 0.447 ** | −0.184 * | −1.998 |
ITF→DP | 0.426 ** | 0.237 ** | 0.189 * | 2.086 |
AF→DP | 0.384 ** | 0.126 ** | 0.258 ** | 3.061 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Peng, Y.; Wang, Y.; Li, J.; Yang, Q. Impact of AI-Oriented Live-Streaming E-Commerce Service Failures on Consumer Disengagement—Empirical Evidence from China. J. Theor. Appl. Electron. Commer. Res. 2024, 19, 1580-1598. https://doi.org/10.3390/jtaer19020077
Peng Y, Wang Y, Li J, Yang Q. Impact of AI-Oriented Live-Streaming E-Commerce Service Failures on Consumer Disengagement—Empirical Evidence from China. Journal of Theoretical and Applied Electronic Commerce Research. 2024; 19(2):1580-1598. https://doi.org/10.3390/jtaer19020077
Chicago/Turabian StylePeng, Yuhong, Yedi Wang, Jingpeng Li, and Qiang Yang. 2024. "Impact of AI-Oriented Live-Streaming E-Commerce Service Failures on Consumer Disengagement—Empirical Evidence from China" Journal of Theoretical and Applied Electronic Commerce Research 19, no. 2: 1580-1598. https://doi.org/10.3390/jtaer19020077
APA StylePeng, Y., Wang, Y., Li, J., & Yang, Q. (2024). Impact of AI-Oriented Live-Streaming E-Commerce Service Failures on Consumer Disengagement—Empirical Evidence from China. Journal of Theoretical and Applied Electronic Commerce Research, 19(2), 1580-1598. https://doi.org/10.3390/jtaer19020077