How to Self-Disclose? The Impact of Patients’ Linguistic Features on Doctors’ Service Quality in Online Health Communities
Abstract
:1. Introduction
2. Theoretical Foundation and Literature Review
2.1. Signaling Theory
2.2. Linguistic Characteristics of Self-Disclosure
2.3. Doctor’s Consultation Behavior and Service Quality
3. Research Hypotheses and Model
3.1. Research Hypotheses
3.1.1. Completeness
3.1.2. Readability
3.1.3. Expertise
3.1.4. Sentiment Valence
3.2. Research Model
4. Research Methodology
4.1. Research Context and Data Collection
4.2. Variables
4.2.1. Dependent Variables
4.2.2. Independent Variables
4.2.3. Control Variables
4.3. Model Estimation
5. Results
5.1. Descriptive Statistics and Correlation Analysis
5.2. Regression Results Analysis
5.3. Robustness Checks
6. Discussion, Implications and Limitations
6.1. Key Findings
6.2. Implications
6.2.1. Theoretical Implications
6.2.2. Practical Implications
6.3. Limitations and Future Research Directions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Appendix A.1. Text Classification Process for Sentiment Polarity and Emotional Support
- Defining Annotation Rules and Sample Labeling
- 2.
- Text Preprocessing
- 3.
- Feature Extraction and Vectorization
- 4.
- Classifier Construction and Evaluation
Variables | Classification | Keywords | Example | Tags |
---|---|---|---|---|
Patient’s Sentiment Polarity | Positive | Positive words like happy, peaceful, grateful, love, etc. Negative words like worry, sad, depressed, etc. | “I have great faith in the future.” | 1 |
Neutral | “Which kinds of medicine to take?” | 0 | ||
Negative | “I’m afraid, please help me.” | −1 | ||
Doctor’s Emotional Support Provision | Yes | don’t give up, understand, sympathize, come on, be optimistic, etc. | “Let’s face it together” | 1 |
No | “Well, keep the fluids flowing and give your intestines a rest” | 0 |
Classifiers | Sentiment Polarity | Emotional Support | ||||||
---|---|---|---|---|---|---|---|---|
Accuracy | Precision | Recall | F1-Score | Accuracy | Precision | Recall | F1-Score | |
SVM | 0.81 | 0.78 | 0.38 | 0.39 | 0.87 | 0.89 | 0.84 | 0.86 |
TextCNN | 0.82 | 0.61 | 0.43 | 0.46 | 0.78 | 0.36 | 0.46 | 0.40 |
BERT | 0.90 | 0.82 | 0.74 | 0.77 | 0.96 | 0.95 | 0.95 | 0.94 |
References
- Yang, X.; Xi, N.; Gu, D.; Liang, C.; Liu, H.; Tang, H.; Hamari, J. Medical Practice in Gamified Online Communities: Longitudinal Effects of Gamification on Doctor Engagement. Inf. Manag. 2023, 61, 103906. [Google Scholar] [CrossRef]
- Fan, W.; Jiang, Y.; Pei, J.; Yan, P.; Qiu, L. The Impact of Medical Insurance Payment Systems on Patient Choice, Provider Behavior, and Out-of-pocket Rate: Fee-for-service versus Diagnosis-related Groups. Decis. Sci. 2024, 55, 245–261. [Google Scholar] [CrossRef]
- Liu, Y.; Kong, Q.; Wang, S.; Zhong, L.; van de Klundert, J. The Impact of Hospital Attributes on Patient Choice for First Visit: Evidence from a Discrete Choice Experiment in Shanghai, China. Health Policy Plan. 2020, 35, 267–278. [Google Scholar]
- Li, J.; Tang, J.; Jiang, L.; Yen, D.C.; Liu, X. Economic Success of Physicians in the Online Consultation Market: A Signaling Theory Perspective. Int. J. Electron. Commer. 2019, 23, 244–271. [Google Scholar] [CrossRef]
- Wu, Q.; Xie, X.; Liu, W.; Wu, Y. Implementation Efficiency of the Hierarchical Diagnosis and Treatment System in China: A Case Study of Primary Medical and Health Institutions in Fujian Province. Int. J. Health Plann. Manag. 2022, 37, 214–227. [Google Scholar]
- Zhang, W.; Zhou, F.; Fei, Y. Repetitions in Online Doctor-Patient Communication: Frequency, Functions, and Reasons. Patient Educ. Couns. 2023, 107, 107565. [Google Scholar]
- Shreve, E.G.; Harrigan, J.A.; Kues, J.R.; Kagas, D.K. Nonverbal Expressions of Anxiety in Physician-Patient Interactions. Psychiatry 1988, 51, 378–384. [Google Scholar] [CrossRef]
- Tan, H.; Yan, M. Physician-User Interaction and Users’ Perceived Service Quality: Evidence from Chinese Mobile Healthcare Consultation. Inf. Technol. People 2020, 33, 1403–1426. [Google Scholar] [CrossRef]
- Gu, D.; Li, T.; Wang, X.; Yang, X.; Yu, Z. Visualizing the Intellectual Structure and Evolution of Electronic Health and Telemedicine Research. Int. J. Med. Inform. 2019, 130, 103947. [Google Scholar] [CrossRef]
- Dagger, T.S.; Sweeney, J.C.; Johnson, L.W. A Hierarchical Model of Health Service Quality: Scale Development and Investigation of an Integrated Model. J. Serv. Res. 2007, 10, 123–142. [Google Scholar]
- Akter, S.; D’ambra, J.; Ray, P. Development and Validation of an Instrument to Measure User Perceived Service Quality of mHealth. Inf. Manag. 2013, 50, 181–195. [Google Scholar] [CrossRef]
- Yang, Y.; Zhang, X.; Lee, P.K. Improving the Effectiveness of Online Healthcare Platforms: An Empirical Study with Multi-Period Patient-Doctor Consultation Data. Int. J. Prod. Econ. 2019, 207, 70–80. [Google Scholar] [CrossRef]
- Yang, H.; Guo, X.; Wu, T. Exploring the Influence of the Online Physician Service Delivery Process on Patient Satisfaction. Decis. Support Syst. 2015, 78, 113–121. [Google Scholar] [CrossRef]
- Wang, Q.; Qiu, L.; Xu, W. Informal Payments and Doctor Engagement in an Online Health Community: An Empirical Investigation Using Generalized Synthetic Control. Inf. Syst. Res. 2023, 35, 706–726. [Google Scholar] [CrossRef]
- Lu, N.; Wu, H. Exploring the Impact of Word-of-Mouth about Physicians’ Service Quality on Patient Choice Based on Online Health Communities. BMC Med. Inform. Decis. Mak. 2016, 16, 151. [Google Scholar] [CrossRef]
- Chen, S.; Guo, X.; Wu, T.; Ju, X. Exploring the Online Doctor-Patient Interaction on Patient Satisfaction Based on Text Mining and Empirical Analysis. Inf. Process. Manag. 2020, 57, 102253. [Google Scholar] [CrossRef]
- He, Y.; Guo, X.; Wu, T.; Vogel, D. The Effect of Interactive Factors on Online Health Consultation Review Deviation: An Empirical Investigation. Int. J. Med. Inform. 2022, 163, 104781. [Google Scholar] [CrossRef]
- Cao, X.; Liu, Y.; Zhu, Z.; Hu, J.; Chen, X. Online Selection of a Physician by Patients: Empirical Study from Elaboration Likelihood Perspective. Comput. Hum. Behav. 2017, 73, 403–412. [Google Scholar] [CrossRef]
- Zhang, X.; Guo, F.; Xu, T.; Li, Y. What Motivates Physicians to Share Free Health Information on Online Health Platforms? Inf. Process. Manag. 2020, 57, 102166. [Google Scholar] [CrossRef]
- Yang, H.; Du, H.S.; He, W.; Qiao, H. Understanding the Motivators Affecting Doctors’ Contributions in Online Healthcare Communities: Professional Status as a Moderator. Behav. Inf. Technol. 2021, 40, 146–160. [Google Scholar] [CrossRef]
- Guo, S.; Guo, X.; Fang, Y.; Vogel, D. How Doctors Gain Social and Economic Returns in Online Health-Care Communities: A Professional Capital Perspective. J. Manag. Inf. Syst. 2017, 34, 487–519. [Google Scholar] [CrossRef]
- Wang, Y.; Wu, H.; Xia, C.; Lu, N. Impact of the Price of Gifts From Patients on Physicians’ Service Quality in Online Consultations: Empirical Study Based on Social Exchange Theory. J. Med. Internet Res. 2020, 22, e15685. [Google Scholar] [CrossRef]
- Liu, J.; He, J.; He, S.; Li, C.; Yu, C.; Li, Q. Patients’ Self-Disclosure Positively Influences the Establishment of Patients’ Trust in Physicians: An Empirical Study of Computer-Mediated Communication in an Online Health Community. Front. Public Health 2022, 10, 823692. [Google Scholar]
- Chiu, C.-M.; Hsu, M.-H.; Wang, E.T.G. Understanding Knowledge Sharing in Virtual Communities: An Integration of Social Capital and Social Cognitive Theories. Decis. Support Syst. 2006, 42, 1872–1888. [Google Scholar]
- Parhankangas, A.; Renko, M. Linguistic Style and Crowdfunding Success among Social and Commercial Entrepreneurs. J. Bus. Ventur. 2017, 32, 215–236. [Google Scholar]
- Johnson, S.L.; Safadi, H.; Faraj, S. The Emergence of Online Community Leadership. Inf. Syst. Res. 2015, 26, 165–187. [Google Scholar] [CrossRef]
- Hartzler, A.; Pratt, W. Managing the Personal Side of Health: How Patient Expertise Differs from the Expertise of Clinicians. J. Med. Internet Res. 2011, 13, e1728. [Google Scholar] [CrossRef]
- Zhang, L.; Yan, Q.; Zhang, L. A Text Analytics Framework for Understanding the Relationships among Host Self-Description, Trust Perception and Purchase Behavior on Airbnb. Decis. Support Syst. 2020, 133, 113288. [Google Scholar] [CrossRef]
- Zhou, J.; Zhang, Q.; Zhou, S.; Li, X.; Michael Zhang, X. Unintended Emotional Effects of Online Health Communities: A Text Mining-Supported Empirical Study. MIS Q. 2023, 47, 195–226. [Google Scholar] [CrossRef]
- Chen, L.; Baird, A.; Straub, D. A Linguistic Signaling Model of Social Support Exchange in Online Health Communities. Decis. Support Syst. 2020, 130, 113233. [Google Scholar] [CrossRef]
- Al Salman, A.; Kim, A.; Mercado, A.; Ring, D.; Doornberg, J.; Fatehi, A.; Crijns, T.J. Are Patient Linguistic Tones Associated with Mental Health and Perceived Clinician Empathy? J. Bone Jt. Surg. 2021, 103, 2181. [Google Scholar] [CrossRef]
- Mjaaland, T.A.; Finset, A.; Jensen, B.F.; Gulbrandsen, P. Physicians’ Responses to Patients’ Expressions of Negative Emotions in Hospital Consultations: A Video-Based Observational Study. Patient Educ. Couns. 2011, 84, 332–337. [Google Scholar] [CrossRef]
- Spence, M. Job Market Signaling. Q. J. Econ. 1973, 87, 355–374. [Google Scholar] [CrossRef]
- Cheung, C.M.K.; Xiao, B.S.; Liu, I.L.B. Do Actions Speak Louder than Voices? The Signaling Role of Social Information Cues in Influencing Consumer Purchase Decisions. Decis. Support Syst. 2014, 65, 50–58. [Google Scholar] [CrossRef]
- Wells, J.D.; Valacich, J.S.; Hess, T.J. What Signal Are You Sending? How Website Quality Influences Perceptions of Product Quality and Purchase Intentions. MIS Q. 2011, 35, 373. [Google Scholar] [CrossRef]
- Choi, H.S.; Ko, M.S.; Medlin, D.; Chen, C. The Effect of Intrinsic and Extrinsic Quality Cues of Digital Video Games on Sales: An Empirical Investigation. Decis. Support Syst. 2018, 106, 86–96. [Google Scholar] [CrossRef]
- Benlian, A.; Hess, T. The Signaling Role of IT Features in Influencing Trust and Participation in Online Communities. Int. J. Electron. Commer. 2011, 15, 7–56. [Google Scholar] [CrossRef]
- Kiyohara, L.Y.; Kayano, L.K.; Kobayashi, M.L.T.; Alessi, M.S.; Yamamoto, M.U.; Yunes-Filho, P.R.M.; Pessoa, R.R.; Mandelbaum, R.; Okubo, S.T.; Watanuki, T.; et al. The Patient-Physician Interactions as Seen by Undergraduate Medical Students. Sao Paulo Med. J. 2001, 119, 97–100. [Google Scholar] [CrossRef]
- Connelly, B.L.; Certo, S.T.; Ireland, R.D.; Reutzel, C.R. Signaling Theory: A Review and Assessment. J. Manag. 2011, 37, 39–67. [Google Scholar] [CrossRef]
- Jiang, S.; Liu, X.; Chi, X. Effect of Writing Style on Social Support in Online Health Communities: A Theoretical Linguistic Analysis Framework. Inf. Manag. 2022, 59, 103683. [Google Scholar] [CrossRef]
- Khurana, S.; Qiu, L.; Kumar, S. When a Doctor Knows, It Shows: An Empirical Analysis of Doctors’ Responses in a Q&A Forum of an Online Healthcare Portal. Inf. Syst. Res. 2019, 30, 872–891. [Google Scholar] [CrossRef]
- Yang, H.; Guo, X.; Wu, T.; Ju, X. Exploring the Effects of Patient-Generated and System-Generated Information on Patients’ Online Search, Evaluation and Decision. Electron. Commer. Res. Appl. 2015, 14, 192–203. [Google Scholar] [CrossRef]
- Ma, J.; Gao, S.; Wang, P.; Liu, Y. High Level of Self-Disclosure on SNSs Facilitates Cooperation: A Serial Mediation Model of Psychological Distance and Trust. Comput. Hum. Behav. 2024, 150, 107976. [Google Scholar] [CrossRef]
- Finkel, E.J.; Norton, M.I.; Reis, H.T.; Ariely, D.; Caprariello, P.A.; Eastwick, P.W.; Frost, J.H.; Maniaci, M.R. When Does Familiarity Promote Versus Undermine Interpersonal Attraction? A Proposed Integrative Model From Erstwhile Adversaries. Perspect. Psychol. Sci. 2015, 10, 3–19. [Google Scholar] [CrossRef] [PubMed]
- Utz, S. The Function of Self-Disclosure on Social Network Sites: Not Only Intimate, but Also Positive and Entertaining Self-Disclosures Increase the Feeling of Connection. Comput. Hum. Behav. 2015, 45, 1–10. [Google Scholar] [CrossRef]
- El Ouirdi, M.; Segers, J.; El Ouirdi, A.; Pais, I. Predictors of Job Seekers’ Self-Disclosure on Social Media. Comput. Hum. Behav. 2015, 53, 1–12. [Google Scholar] [CrossRef]
- Bae, S.; Jang, J.; Kim, J. Good Samaritans on Social Network Services: Effects of Shared Context Information on Social Supports for Strangers. Int. J. Hum.-Comput. Stud. 2013, 71, 900–918. [Google Scholar] [CrossRef]
- Krasnova, H.; Veltri, N.F.; Günther, O. Self-Disclosure and Privacy Calculus on Social Networking Sites: The Role of Culture. Bus. Inf. Syst. Eng. 2012, 4, 127–135. [Google Scholar] [CrossRef]
- Villarroel Ordenes, F.; Grewal, D.; Ludwig, S.; Ruyter, K.D.; Mahr, D.; Wetzels, M. Cutting through Content Clutter: How Speech and Image Acts Drive Consumer Sharing of Social Media Brand Messages. J. Consum. Res. 2019, 45, 988–1012. [Google Scholar] [CrossRef]
- Ansari, S.; Gupta, S. Customer Perception of the Deceptiveness of Online Product Reviews: A Speech Act Theory Perspective. Int. J. Inf. Manag. 2021, 57, 102286. [Google Scholar] [CrossRef]
- Tweedie, F.J.; Baayen, R.H. How Variable May a Constant Be? Measures of Lexical Richness in Perspective. Comput. Humanit. 1998, 32, 323–352. [Google Scholar] [CrossRef]
- Castro, C.M.; Wilson, C.; Wang, F.; Schillinger, D. Babel Babble: Physicians’ Use of Unclarified Medical Jargon with Patients. Am. J. Health Behav. 2007, 31, S85–S95. [Google Scholar] [PubMed]
- Yin, D.; Bond, S.D.; Zhang, H. Anxious or Angry? Effects of Discrete Emotions on the Perceived Helpfulness of Online Reviews. MIS Q. 2014, 38, 539–560. [Google Scholar] [CrossRef]
- Ludwig, S.; de Ruyter, K.; Mahr, D.; Wetzels, M.; Brüggen, E.; de Ruyck, T. Take Their Word for It: The Symbolic Role of Linguistic Style Matches in User Communities. MIS Q. 2014, 38, 1201–1218. [Google Scholar]
- Ouyang, P.; Wang, J.-J.; Jasmine Chang, A.-C. Patients Need Emotional Support: Managing Physician Disclosure Information to Attract More Patients. Int. J. Med. Inform. 2022, 158, 104674. [Google Scholar] [CrossRef]
- Kasimtseva, L.; Kiseleva, L.; Dzhabrailova, S. Doctor-Patient Communication as a Linguistic Model. In Proceedings of the 1st International Scientific Practical Conference “The Individual and Society in the Modern Geopolitical Environment” (ISMGE 2019), Volgograd, Russian, 23–29 May 2019; Atlantis Press: Dordrecht, The Netherlands, 2019. [Google Scholar] [CrossRef]
- Bientzle, M.; Griewatz, J.; Kimmerle, J.; Küppers, J.; Cress, U.; Lammerding-Koeppel, M. Impact of Scientific Versus Emotional Wording of Patient Questions on Doctor-Patient Communication in an Internet Forum: A Randomized Controlled Experiment with Medical Students. J. Med. Internet Res. 2015, 17, e268. [Google Scholar] [CrossRef]
- Greaves, F.; Ramirez-Cano, D.; Millett, C.; Darzi, A.; Donaldson, L. Use of Sentiment Analysis for Capturing Patient Experience From Free-Text Comments Posted Online. J. Med. Internet Res. 2013, 15, e239. [Google Scholar] [CrossRef]
- Gu, D.; Li, M.; Yang, X.; Gu, Y.; Zhao, Y.; Liang, C.; Liu, H. An Analysis of Cognitive Change in Online Mental Health Communities: A Textual Data Analysis Based on Post Replies of Support Seekers. Inf. Process. Manag. 2023, 60, 103192. [Google Scholar] [CrossRef]
- Wang, X.; High, A.; Wang, X.; Zhao, K. Predicting Users’ Continued Engagement in Online Health Communities from the Quantity and Quality of Received Support. J. Assoc. Inf. Sci. Technol. 2021, 72, 710–722. [Google Scholar] [CrossRef]
- Liu, X.; Chi, X.; Li, J.; Zhou, S.; Cheng, Y. Doctors’ Self-Presentation Strategies and the Effects on Patient Selection in Psychiatric Department from an Online Medical Platform: A Combined Perspective of Impression Management and Information Integration. J. Theor. Appl. Electron. Commer. Res. 2025, 20, 13. [Google Scholar] [CrossRef]
- Yao, T.; Zheng, Q.; Fan, X. The Impact of Online Social Support on Patients’ Quality of Life and the Moderating Role of Social Exclusion. J. Serv. Res. 2015, 18, 369–383. [Google Scholar] [CrossRef]
- Liu, S.; Si, G.; Gao, B. Which Voice Are You Satisfied with? Understanding the Physician-Patient Voice Interactions on Online Health Platforms. Decis. Support Syst. 2022, 157, 113754. [Google Scholar] [CrossRef]
- Zhang, X.; Guo, X.; Lai, K.; Yi, W. How Does Online Interactional Unfairness Matter for Patient-Doctor Relationship Quality in Online Health Consultation? The Contingencies of Professional Seniority and Disease Severity. Eur. J. Inf. Syst. 2019, 28, 336–354. [Google Scholar] [CrossRef]
- Park, S.; Chung, N. Mediating Roles of Self-Presentation Desire in Online Game Community Commitment and Trust Behavior of Massive Multiplayer Online Role-Playing Games. Comput. Hum. Behav. 2011, 27, 2372–2379. [Google Scholar] [CrossRef]
- Lu, X.; Jiang, J.; Head, M.; Yang, J. The Impact of Linguistic Complexity on Leadership in Online Q&A Communities: Comparing Knowledge Shaping and Knowledge Adding. Inf. Manag. 2022, 59, 103675. [Google Scholar] [CrossRef]
- Bernhardt, J.M.; Brownfield, E.D.; Parker, R.M.; Schwartzberg, J.G.; VanGeest, J.B.; Wang, C.C. Understanding Health Literacy: Implications for Medicine and Public Health. Chic. Am. Med. Assoc. 2005, 98, 980–981. [Google Scholar]
- Mackert, M.; Mabry-Flynn, A.; Champlin, S.; Donovan, E.E.; Pounders, K. Health Literacy and Health Information Technology Adoption: The Potential for a New Digital Divide. J. Med. Internet Res. 2016, 18, e6349. [Google Scholar] [CrossRef] [PubMed]
- Howard, D.J.; Gengler, C. Emotional Contagion Effects on Product Attitudes: Figure 1. J. Consum. Res. 2001, 28, 189–201. [Google Scholar] [CrossRef]
- Park, C.S. Applying “Negativity Bias” to Twitter: Negative News on Twitter, Emotions, and Political Learning. J. Inf. Technol. Polit. 2015, 12, 342–359. [Google Scholar] [CrossRef]
- Naing, S.Z.S.; Udomwong, P. Public Opinions on ChatGPT: An Analysis of Reddit Discussions by Using Sentiment Analysis, Topic Modeling, and SWOT Analysis. Data Intell. 2024, 6, 344–374. [Google Scholar] [CrossRef]
- Eslami, S.P.; Ghasemaghaei, M.; Hassanein, K. Which Online Reviews Do Consumers Find Most Helpful? A Multi-Method Investigation. Decis. Support Syst. 2018, 113, 32–42. [Google Scholar] [CrossRef]
- Wu, H.; Lu, N. Online Written Consultation, Telephone Consultation and Offline Appointment: An Examination of the Channel Effect in Online Health Communities. Int. J. Med. Inform. 2017, 107, 107–119. [Google Scholar] [CrossRef]
- Liu, Q.; Wang, B.; Kong, Y.; Cheng, K.K. China’s Primary Health-Care Reform. Lancet 2011, 377, 2064–2066. [Google Scholar] [CrossRef]
- Hu, Y.; Zhang, Z. Skilled Doctors in Tertiary Hospitals Are Already Overworked in China. Lancet Glob. Health 2015, 3, e737. [Google Scholar] [CrossRef] [PubMed]
- Fan, W.; Zhou, Q.; Qiu, L.; Kumar, S. Should Doctors Open Online Consultation Services? An Empirical Investigation of Their Impact on Offline Appointments. Inf. Syst. Res. 2023, 34, 629–651. [Google Scholar] [CrossRef]
- Sawicki, J.; Ganzha, M.; Paprzycki, M. The State of the Art of Natural Language Processing—A Systematic Automated Review of NLP Literature Using NLP Techniques. Data Intell. 2023, 5, 707–749. [Google Scholar] [CrossRef]
- Deng, Z.; Deng, Z.; Fan, G.; Wang, B.; Fan, W.; Liu, S. More Is Better? Understanding the Effects of Online Interactions on Patients Health Anxiety. J. Assoc. Inf. Sci. Technol. 2023, 74, 1243–1264. [Google Scholar] [CrossRef]
- Akkas, A.; Gaur, V.; Simchi-Levi, D. Drivers of Product Expiration in Consumer Packaged Goods Retailing. Manag. Sci. 2019, 65, 2179–2195. [Google Scholar] [CrossRef]
- Li, Y.; Zhao, L. Collaborating with Bounty Hunters: How to Encourage White Hat Hackers’ Participation in Vulnerability Crowdsourcing Programs through Formal and Relational Governance. Inf. Manag. 2022, 59, 103648. [Google Scholar] [CrossRef]
- Jing, D.; Jin, Y.; Liu, J. The Impact of Monetary Incentives on Physician Prosocial Behavior in Online Medical Consulting Platforms: Evidence From China. J. Med. Internet Res. 2019, 21, e14685. [Google Scholar] [CrossRef]
- Liu, X.; Wang, G.A.; Fan, W.; Zhang, Z. Finding Useful Solutions in Online Knowledge Communities: A Theory-Driven Design and Multilevel Analysis. Inf. Syst. Res. 2020, 31, 731–752. [Google Scholar] [CrossRef]
- Street, R.L.; Makoul, G.; Arora, N.K.; Epstein, R.M. How Does Communication Heal? Pathways Linking Clinician–Patient Communication to Health Outcomes. Patient Educ. Couns. 2009, 74, 295–301. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Wang, H.; Gao, B.; Deng, Z. Doctors’ Provision of Online Health Consultation Service and Patient Review Valence: Evidence from a Quasi-Experiment. Inf. Manag. 2022, 59, 103360. [Google Scholar] [CrossRef]
- Liu, S.; Zhang, M.; Gao, B.; Jiang, G. Physician Voice Characteristics and Patient Satisfaction in Online Health Consultation. Inf. Manag. 2020, 57, 103233. [Google Scholar] [CrossRef]
- Liang, C.; Wang, X.; Gu, D.; Li, P.; Chen, H.; Xu, Z. Smart Management Information Systems (Smis): Concept, Evolution, Research Hotspots and Applications. Data Intell. 2023, 5, 857–884. [Google Scholar] [CrossRef]
- Zhao, W.; Gu, D.; Yang, X.; Jia, M.; Liang, C.; Wang, X.; Zolotarev, O. MedT2T: An Adaptive Pointer Constrain Generating Method for a New Medical Text-to-Table Task. Future Gener. Comput. Syst. 2024, 161, 586–600. [Google Scholar] [CrossRef]
Variable Type | Variable | Description |
---|---|---|
Dependent Variables | Emotional Support (DEmoS) | The total amount of emotional support expressed by doctors in a round of doctor–patient interaction. |
Informational Support (DInfoS) | The total amount of information support expressed by the doctor in a round of doctor–patient interaction. | |
Independent Variable | Completeness | The degree of detail in patients’ self-disclosure is measured by the total length of the patient’s text in a round of doctor–patient interaction. |
Readability | The comprehensibility of patient text in a round of doctor–patient interaction. | |
Expertise | The average number of medical terms used by patients in a round of doctor–patient interactions. | |
Sentiment Polarity (Psentiment) | Average patient emotional polarity during a doctor–patient interaction. The closer it is to 1, the more positive the emotion, and the closer it is to −1, the more negative the emotion. | |
Control Variables | Patient Gender (PGender) | 0 represents male, and 1 represents female. |
Patient Age (PAge) | The actual age of the patient, excluding patients with age 0. | |
Doctor Gender (DGender) | 0 represents male, and 1 represents female. | |
Employment Grade (DEmGrade) | Categorical variable, doctor’s professional title: 1 for physician, 2 for attending physician, 3 for associate chief physician, and 4 for chief physician. | |
Recommendation Heat (DReHeat) | Continuous variable, doctor’s online recommendation popularity: 0–5 points. | |
Hospital Level (HosLevel) | Categorical variable, representing the hospital tier where the doctor practices: 0 for unranked hospitals, 1 for Tier 1, 2 for Tier 1A, 3 for Tier 2, 4 for Tier 2A, 5 for Tier 3, and 6 for Tier 3A. | |
Communication Time (CommuTime) | The total number of doctor–patient exchanges in one round of doctor–patient interaction. |
Variables | N | Mean | SD | Min | Max | VIF |
---|---|---|---|---|---|---|
DInfoS | 52,730 | 88.12 | 96.29 | 0 | 2963 | |
DEmoS | 52,730 | 0.765 | 1.206 | 0 | 25 | |
Completeness | 52,730 | 354.4 | 321.4 | 2 | 7481 | 1.590 |
Readability | 52,730 | 0.992 | 0.010 | 0.531 | 0.999 | 1.040 |
Expertise | 52,730 | 0.075 | 0.030 | 0.002 | 0.500 | 1.070 |
PSentiment | 52,730 | −0.154 | 0.206 | −1 | 1 | 1.070 |
PGender | 52,730 | 0.637 | 0.481 | 0 | 1 | 1.030 |
PAge | 52,730 | 49.12 | 14.79 | 1 | 90 | 1.100 |
DGender | 52,730 | 0.808 | 0.394 | 0 | 1 | 1.070 |
DReHeat | 52,730 | 3.916 | 0.533 | 1.700 | 5 | 1.480 |
DEmGrade | 52,730 | 3.425 | 0.756 | 1 | 4 | 1.380 |
HosLevel | 52,730 | 5.884 | 0.525 | 0 | 6 | 1.050 |
CommuTime | 52,730 | 21.51 | 21.04 | 1 | 644 | 1.590 |
Variables | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 DInfoS | 1 | ||||||||||||
2 DEmoS | 0.512 *** | 1 | |||||||||||
3 Completeness | 0.294 *** | 0.228 *** | 1 | ||||||||||
4 Readability | 0.00200 | 0.011 *** | 0.065 *** | 1 | |||||||||
5 AHLiteracy | −0.098 *** | −0.120 *** | −0.110 *** | 0.007 * | 1 | ||||||||
6 PSentiment | −0.00600 | −0.047 *** | −0.136 *** | −0.106 *** | −0.040 *** | 1 | |||||||
7 PGender | −0.046 *** | −0.010 ** | −0.00200 | −0.00300 | 0.069 *** | −0.008 ** | 1 | ||||||
8 PAge | −0.099 *** | −0.083 *** | 0.011 *** | 0.024 *** | 0.180 *** | −0.024 *** | 0.108 *** | 1 | |||||
9 DGender | −0.037 *** | 0.074 *** | −0.040 *** | 0.011 *** | 0.035 *** | −0.039 *** | 0.107 *** | 0.118 *** | 1 | ||||
10 DReHeat | 0.015 *** | 0.108 *** | 0.084 *** | 0.072 *** | 0.090 *** | −0.063 *** | 0.089 *** | 0.216 *** | 0.181 *** | 1 | |||
11 DEmGrade | 0.00400 | 0.044 *** | 0.103 *** | 0.083 *** | 0.061 *** | −0.060 *** | 0.034 *** | 0.125 *** | 0.017 *** | 0.501 *** | 1 | ||
12 HosLevel | −0.085 *** | −0.086 *** | −0.046 *** | 0.024 *** | 0.053 *** | 0.00200 | −0.014 *** | 0.071 *** | −0.059 *** | 0.169 *** | 0.106 *** | 1 | |
13 CommuTime | 0.368 *** | 0.319 *** | 0.553 *** | −0.075 *** | −0.172 *** | 0.086 *** | 0.010 ** | −0.031 *** | −0.015 *** | 0.013 *** | −0.066 *** | −0.086 *** | 1 |
Model | Model 1 | Model 2 |
---|---|---|
Variables | DInfoS | DEmoS |
Completeness | 11.063 *** | 0.047 *** |
(9.01) | (3.59) | |
Readability | 1.544 *** | 0.022 *** |
(3.64) | (4.40) | |
Expertise | −1.055 ** | −0.074 *** |
(−2.71) | (−14.91) | |
PSentiment | −1.655 *** | −0.077 *** |
(−3.58) | (−13.98) | |
PGender | −8.205 *** | −0.043 *** |
(−9.70) | (−4.20) | |
PAge | −8.383 *** | −0.112 *** |
(−19.72) | (−22.01) | |
DGender | −6.159 *** | 0.198 *** |
(−5.94) | (17.26) | |
DReHeat | 2.685 *** | 0.134 *** |
(6.08) | (21.20) | |
DEmGrade | 1.382 ** | 0.025 *** |
(3.29) | (4.38) | |
HosLevel | −5.135 *** | −0.078 *** |
(−10.37) | (−11.72) | |
CommuTime | 27.872 *** | 0.342 *** |
(20.47) | (20.78) | |
Constant | 98.319 *** | 0.633 *** |
(94.99) | (55.66) | |
Observations | 52,730 | 52,730 |
R-squared | 0.155 | 0.139 |
F | 215.9 | 281.9 |
No. | Hypotheses | Results |
---|---|---|
H1a | The completeness of patient self-disclosure positively influences doctors’ informational support. | Supported |
H1b | The completeness of patient self-disclosure positively influences doctors’ emotional support. | Supported |
H2a | The readability of patient self-disclosure positively influences doctors’ informational support. | Supported |
H2a | The readability of patient self-disclosure positively influences doctors’ emotional support. | Supported |
H3a | The expertise of patient self-disclosure positively influences doctors’ informational support. | Not supported |
H3b | The expertise of patient self-disclosure positively influences doctors’ emotional support. | Not supported |
H4a | The positive sentiment of patient self-disclosure negatively influences doctors’ informational support. | Supported |
H4b | The positive sentiment of patient self-disclosure negatively influences doctors’ emotional support. | Supported |
Checks 1 | Checks 2 | |||
---|---|---|---|---|
Model | Model 3 | Model 4 | Model 5 | Model 6 |
Variables | DInfoS | DEmoS | DTextLen | DResNum |
Completeness | 0.058 *** | 0.030 *** | 29.609 *** | 0.436 *** |
(9.41) | (3.64) | (9.99) | (3.84) | |
Readability | 0.018 *** | 0.038 *** | 3.496 *** | −0.088 *** |
(3.50) | (4.06) | (3.70) | (−3.64) | |
Expertise | −0.010 * | −0.115 *** | −2.678 ** | −0.197 *** |
(−2.04) | (−14.83) | (−3.00) | (−9.10) | |
PSentiment | −0.023 *** | −0.097 *** | −2.395 * | 0.185 *** |
(−4.87) | (−15.00) | (−2.28) | (6.08) | |
PGender | −0.098 *** | −0.056 *** | −20.091 *** | −0.194 *** |
(−11.03) | (−4.33) | (−10.31) | (−5.65) | |
PAge | −0.098 *** | −0.141 *** | −20.765 *** | −0.215 *** |
(−22.34) | (−21.71) | (−21.29) | (−12.40) | |
DGender | −0.049 *** | 0.274 *** | −14.741 *** | −0.526 *** |
(−4.68) | (15.25) | (−6.10) | (−11.94) | |
DReHeat | 0.043 *** | 0.179 *** | 8.034 *** | 0.230 *** |
(8.50) | (24.01) | (7.69) | (10.45) | |
DEmGrade | 0.031 *** | 0.046 *** | 0.849 | −0.548 *** |
(6.87) | (5.91) | (0.85) | (−17.49) | |
HosLevel | −0.067 *** | −0.081 *** | −13.440 *** | −0.235 *** |
(−11.81) | (−13.52) | (−11.57) | (−8.59) | |
CommuTime | 0.333 *** | 0.340 *** | 70.784 *** | 5.758 *** |
(42.60) | (32.16) | (20.17) | (27.56) | |
lnalpha | −0.312 *** | −0.419 *** | - | - |
(−44.28) | (−18.06) | |||
Constant | 4.508 *** | −0.578 *** | 237.985 *** | 9.564 *** |
(431.08) | (−32.27) | (99.16) | (221.02) | |
Observations | 52,730 | 52,730 | 52,730 | 52,730 |
Log likelihood | −284,046 | −60,380 | - | - |
R-squared | - | - | 0.168 | 0.698 |
Pseudo R-squared | 0.0165 | 0.0521 | - | - |
F | - | - | 250.7 | 1719 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Peng, M.; Zhu, K.; Gu, Y.; Yang, X.; Su, K.; Gu, D. How to Self-Disclose? The Impact of Patients’ Linguistic Features on Doctors’ Service Quality in Online Health Communities. J. Theor. Appl. Electron. Commer. Res. 2025, 20, 56. https://doi.org/10.3390/jtaer20020056
Peng M, Zhu K, Gu Y, Yang X, Su K, Gu D. How to Self-Disclose? The Impact of Patients’ Linguistic Features on Doctors’ Service Quality in Online Health Communities. Journal of Theoretical and Applied Electronic Commerce Research. 2025; 20(2):56. https://doi.org/10.3390/jtaer20020056
Chicago/Turabian StylePeng, Mengyuan, Kaixuan Zhu, Yadi Gu, Xuejie Yang, Kaixiang Su, and Dongxiao Gu. 2025. "How to Self-Disclose? The Impact of Patients’ Linguistic Features on Doctors’ Service Quality in Online Health Communities" Journal of Theoretical and Applied Electronic Commerce Research 20, no. 2: 56. https://doi.org/10.3390/jtaer20020056
APA StylePeng, M., Zhu, K., Gu, Y., Yang, X., Su, K., & Gu, D. (2025). How to Self-Disclose? The Impact of Patients’ Linguistic Features on Doctors’ Service Quality in Online Health Communities. Journal of Theoretical and Applied Electronic Commerce Research, 20(2), 56. https://doi.org/10.3390/jtaer20020056