Inhibitory Effects of Morinda officinalis Extract on Bone Loss in Ovariectomized Rats
Abstract
:Introduction
Results
Chemical constituents HPLC analysis
Body and uterine weight
Groups | Body weights (g) | Uterine weight (g) | |
---|---|---|---|
Initial | Final | ||
Untreated | 301±18 | 325±16 | 0.76±0.21 |
OVX control | 312±25 | 401±41∆∆∆ | 0.28±0.24∆∆∆ |
Nylestriol | 306±20 | 314±17*** | 0.49±0.16* |
OVX+0.5g/kg RMO | 325±41 | 433±62 | 0.16±0.029 |
OVX+1.0g/kg RMO | 319±31 | 399±49 | 0.27±0.248 |
OVX+2.0g/kg RMO | 311±23 | 399±55 | 0.25±0.200 |
Bone mineral content (BMC) and bone mineral density (BMD)
Groups | Total bone content (mg/mm) | Trabecular bone content (mg/mm) | Cortical bone content (mg/mm) |
---|---|---|---|
Untreated | 14.2±1.4 | 3.4±0.5 | 8.4±0.9 |
OVX control | 10.1±0.6∆∆∆ | 1.6±0.4∆∆∆ | 7.5±0.3 |
Nylestriol | 12.3±0.4* | 3.0±0.8*** | 7.6±0.4 |
OVX+0.5g/kg RMO | 10.8±0.7 | 1.6±0.3 | 7.9±0.5 |
OVX+1.0g/kg RMO | 11.4±0.9 | 2.0±0.6 | 8.0±0.4 |
OVX+2.0g/kg RMO | 11.5±0.6 | 2.1±0.3* | 8.2±0.8 |
Groups | Total BMD (mg/cm3) | Trabecular BMD (mg/cm3) | Cortical BMD (mg/cm3) |
---|---|---|---|
Untreated | 725±65 | 398±51 | 1125±31 |
OVX control | 528±30∆∆∆ | 159±18∆∆∆ | 1117±58 |
Nylestriol | 646±65** | 332±58*** | 1109±36 |
OVX+0.5g/kg RMO | 564±46 | 169±76 | 1130±18 |
OVX+1.0g/kg RMO | 590±66 | 218±55* | 1120±29 |
OVX+2.0g/kg RMO | 591±33* | 205±41* | 1130±30 |
Serum P and Ca levels
Groups | P (mmol/L) | Ca (mmol/L) | DPD/Cr | TRAP (u/L) | ALP (u/L) |
---|---|---|---|---|---|
Untreated | 2.35±0.21 | 2.83±0.09 | 0.24±0.08 | 9.5±0.8 | 50.6±15.9 |
OVX control | 1.91±0.13∆ | 2.65±0.11∆ | 4.88±0.66∆∆∆ | 11.8±1.3∆ | 76.2±12.3∆∆ |
Nylestriol | 2.30±0.31* | 2.76±0.14* | 0.49±0.12** | 8.6±0.9* | 53.8±14.1* |
OVX+0.5g/kg RMO | 1.82±0.31 | 2.58±0.34 | 0.17±0.09** | 0.8±0.4*** | 73.4±28.0 |
OVX+1.0g/kg RMO | 2.03±0.52 | 2.79±0.14 | 0.14±0.16** | 0.6±0.4*** | 67.7±13.2 |
OVX+2.0g/kg RMO | 2.41±0.34** | 2.91±0.18* | 0.29±0.38** | 1.1±0.9** | 74.0±23.0 |
Serum DPD/Cr, TRAP and ALP
Serum OPG, IL-6 and TNF-α
Groups | OPG (pg/mL) | TNF-α (pg/mL) | IL-6 (pg/mL) | ACTH (pg/mL) | Corticosterone (nmol/L) |
---|---|---|---|---|---|
Untreated | 692±86 | 29.0.0±6.7 | 245±23 | 223±6 | 131±2 |
OVX control | 553±77∆ | 38.9±11.1∆ | 345±29∆ | 258±7∆∆∆ | 138±2∆∆∆ |
Nylestriol | 689±66* | 24.9±10.6* | 288±48* | 230±10*** | 134±2** |
OVX+0.5g/kg RMO | 2127±335*** | 51.9±38.5 | 343±46 | 241±16* | 135±2** |
OVX+1g/kg RMO | 1838±264*** | 53.7±38.0 | 337±39 | 227±12*** | 135±2* |
OVX+2g/kg RMO | 2217±559*** | 59.0±39.9 | 326±38 | 227±13*** | 134±1*** |
Serum ACTH and corticosterone
Discussion
Conclusions
Experimental
Drugs and reagents
Preparation of RMO extract
HPLC fingerprint analysis
Animals and experimental protocol
Bone mineral density (BMD) assay
Serum biochemical parameters assay
Statistical evaluation
Acknowledgements
References and Notes
- Jee, W.S.S.; Yao, W. Overview: animal models of osteopenia and osteoporosis. J. Musculoskel. Neuronal Interact. 2001, 1, 193–207. [Google Scholar]
- Rossouw, J.E.; Anderson, G.L.; Prentice, R.L. Risks and benefits of estrogen plus progestin in healthy postmenopausal women: principal results from the women’s health initiative randomized controlled trial. J. Am. Med. Assoc. 2002, 288, 321–333. [Google Scholar] [CrossRef]
- National Pharmacopoeia Commission of P.R. China, Pharmacopoeia of the People’s Republic of China; 2005; Volume 1, p. 55.
- Zhang, Z.Q.; Li, Y.; Yang, M.; Luo, Z.P.; Zhao, Y.M. The effect of Morinda officinalis How, a Chinese traditional medicinal plant, on the DRL 72-s schedule in rats and the forced swimming test in mice. Pharmacol. Biochemi. Behavi. 2002, 72, 39–43. [Google Scholar] [CrossRef]
- Wang, H.M.; Wang, L.; Li, N. Effect of Morinda Officinalis on the expression of cbfα1 during the differentiation from BMSCs to the osteoblast. Chine. J. Trad. Med. 2004, 12, 22–27. [Google Scholar]
- Li, N.; Wang, H.M.; Lin, X.; Zheng, L.P.; Shen, L.; Wang, L.; Chen, B.Y. Experimental study on effects of Radix Morinda Officinalis on biological specialty of osteoblast. Zhong Guo Yi Yao Xue Bao 2004, 19, 726–728. [Google Scholar]
- Seo, B.; Ku, S.K.; Cha, E.M.; Park, J.H.; Kim, J.D.; Choi, H.Y.; Lee, H.S. Effect of Mornidae Radix extracts on experimental esteoporosis in sciatic neurectomized mice. Phytother. Res. 2005, 19, 231–238. [Google Scholar] [CrossRef]
- Wu, Y.B.; Zheng, C.J.; Qin, L.P.; Sun, L.N.; Han, T.; Jiao, L.; Zhang, Q.Y.; Wu, J.Z. Antiosteoporotic activity of anthraquinones from Morinda officinalis on osteoblast and osteoclasts. Molecules 2009, 14, 573–583. [Google Scholar] [CrossRef]
- Kimmel, D.B. Animal models for in vivo experimentation in osteoporosis research. In Osteoporosis; Marcus, R., Feldman, D., Kelsey, J., Eds.; Academic Press: San Diego, CA, USA, 1996; pp. 671–690. [Google Scholar]
- Branca, F. Dietary phyto-oestrogens and bone health. Proc. Nutr. Soc. 2003, 62, 877–887. [Google Scholar] [CrossRef]
- Ohlsson, C.; Hellberg, N.; Parini, P. Obesity and disturbed lipoprotein profile in estrogen receptor-alpha-deficient male mice. Biochem. Biophys. Res. Commun. 2000, 278, 640–645. [Google Scholar] [CrossRef]
- Anwar, A.; McTernan, P.G.; Anderson, L.A. Site-specific regulation of oestrogen receptor-alpha and -beta by oestradiol in human adipose tissue. Diabetes Obes. Metab. 2001, 3, 338–349. [Google Scholar] [CrossRef]
- Pedersen, S.B.; Bruun, J.M.; Hube, F.; Kristensen, K.; Hauner, H.; Richels, B. Demonstration of estrogen receptor subtypes alpha and beta in human adipose tissue: Influences of adipose cell differentiation and fat depot localization. Mol. Cell Endocrinol. 2001, 182, 27–37. [Google Scholar] [CrossRef]
- Mokbel, K. Risk-reducing strategies for breast cancer--a review of recent literature. Int. J. Fertil Womens Med. 2003, 48, 274–277. [Google Scholar]
- Smith, R.E. A review of selective estrogen receptor modulators and national surgical adjuvant breast and bowel project clinical trials. Semin. Oncol. 2003, 30, 4–13. [Google Scholar] [CrossRef]
- Beck, V.; Rohr, U.; Jungbauer, A. Phytoestrogens derived from red clover: an alternative to estrogen replacement therapy. J. Steroid Biochem. Mol. Biol. 2005, 94, 499–518. [Google Scholar]
- Kalu, D.N. The ovariectomized rat model of postmenopausal bone loss. Bone Miner. 1991, 15, 175–191. [Google Scholar] [CrossRef]
- Yilmaz, B.; Seyran, A.D.; Sandal, S.; Aydin, M.; Colakoglu, N.; Kocer, M.; Carpenter, D.O. Modulatory effects of Aroclors 1221 and 1254 on bone turnover and vertebral histology in intact and ovariectomized rats. Toxicol. Lett. 2006, 166, 276–284. [Google Scholar] [CrossRef]
- Erben, R.G.; Brunner, K.S.; Breig, B. Long-term sensitivity of uterus and hypothalamus/pituitary axis to 17-beta-estradiol is higher than that of bone in rats. J. Bone Miner Res. 2004, 19, 1827–1832. [Google Scholar] [CrossRef]
- Das, A.S.; Das, D.; Mukherjee, M.; Mukherjee, S.; Mitra, C. Phytoestrogenic effects of black tea extract (Camellia sinensis) in an oophorectomized rat (Rattus norvegicus) model of osteoporosis. Life Sci. 2005, 77, 3049–3057. [Google Scholar] [CrossRef]
- Annie, S.; Prabhua, R.G.; Malini, S. Activity of Wedelia calendulacea Less. In post-menopausal osteoporosis. Phytomedicine 2006, 13, 43–48. [Google Scholar] [CrossRef]
- Raisz, L.G. Local and systemic factors in the pathogenesis of osteoporosis. N. Eng. J. Med. 1988, 318, 818–828. [Google Scholar] [CrossRef]
- Teitelbaum, S.L. Bone resorption by osteoclasts. Science 2000, 289, 1504–1508. [Google Scholar] [CrossRef]
- Jilka, R.L.; Hangoc, G.; Girasole, G.; Passeri, G.; Williams, D.C.; Abrams, J.S.; Boyce, B.; Broxmeyer, H.; Manolagas, S.C. Increased osteoclast development after estrogen loss: mediation by interleukin-6. Science 1992, 257, 88–91. [Google Scholar]
- Kobayashi, K.; Takahashi, N.; Jimi, E.; Udagawa, N.; Takami, M.; Kotake, S. Tumor necrosis factor alpha stimulates osteoclast differentiation by a mechanism independent of the ODF/RANKL-RANK interaction. J. Exp. Med. 2000, 191, 275–286. [Google Scholar] [CrossRef]
- Zhu, M.Y.; Wang, C.J.; Zhang, H.S.; Pei, X.W.; Fen, J.M. Protective effect of polysaccharides from morinda officinalis on bone loss in ovariectomized rats. Int. J. Biol. Macromol. 2008, 43, 276–278. [Google Scholar] [CrossRef]
- Yasuda, H.; Shima, N.; Nakagawa, N.; Yamaguchi, K.; Kinosaki, M.; Mochizuki, S.; Tomoyasu, A.; Yano, K.; Goto, M.; Murakami, A.; Tsuda, E.; Morinaga, T.; Higashio, K.; Udagawa, N.; Takahashi, N.; Suda, T. Osteoclast differentiation factor is a ligand for osteoprotegerin/osteoclastogenesis inhibitory factor and is identical to TRANCE/RANKL. Proc. Natl. Acad. Sci. USA 1998, 95, 3597–3602. [Google Scholar] [CrossRef]
- Hofbauer, L.C.; Dunstan, C.R.; Spelsberg, T.C.; Riggs, B.L.; Khosla, S. Osteoprotegerin production by human osteoblast lineage cells is stimulated by vitamin D, bone morphogenetic protein-2, and cytokines. Biochem. Biophys. Res. Commun. 1998, 250, 776–781. [Google Scholar] [CrossRef]
- Hofbauer, L.C.; Lacey, D.L.; Dunstan, C.R.; Spelsberg, T.C.; Riggs, B.L.; Khosla, S. Interleukin-1β and tumor necrosis factor-α, but not interleukin-6 stimulate osteoprotegerin ligand gene expression in human osteoblastic cells. Bone 1999, 25, 255–259. [Google Scholar] [CrossRef]
- Wang, L.; Mao, Y.J.; Wang, W.J. Inhibitory effect of diacere in on osteoclastic bone destruction and its possible mechan ism of action. Acta Pharm. Sin. 2006, 41, 555–560. [Google Scholar]
- Niyomchai, T.; Russo, S.J.; Festa, E.D.; Akhavan, A.; Jenab, S.; Vanya, Q.J.T. Progesterone inhibits behavioral responses and estrogen increases corticosterone levels after acute cocaine administration. Pharmacol. Biochem. Behav. 2005, 80, 603–610. [Google Scholar]
- Burgess, L.H.; Handa, R.J. Chronic estrogen-induced alterations in adrenocorticotropin and corticosterone secretion and glucocorticoid receptor-mediated functions in female Rats. Endocrinol. 1992, 131, 1261–1269. [Google Scholar] [CrossRef]
- Fitch, R.H.; McGivern, R.F.; Redei, E.; Schrott, L.M.; Cowell, P.E.; Denenberg, V.H. Neonatal ovariectomy and pituitary–adrenal responsiveness in the adult rat. Acta Endocrinol. 1992, 126, 44–48. [Google Scholar]
- Kitay, J.I. Effects of oestradiol on pituitary–adrenal function in male and female rats. Endocrinology 1963, 72, 947–954. [Google Scholar] [CrossRef]
- Rosenberg, S.V.; Wehr, U.; Bachmann, H. Effect of vitamin D-containing plant extracts on osteoporotic bone. J. Steroid Biochem. Mol. Biol. 2007, 103, 596–600. [Google Scholar] [CrossRef]
- Boland, R.; Skliar, M.; Curino, A.; Milanesi, L. Vitamin D compounds in plants. Plant Sci. 2003, 1, 1–13. [Google Scholar]
- Weissenberg, M.; Maoz, A.; Levy, A.; Wasserman, R.H. Radioimmunoassay for rapid estimation of vitamin D derivatives in calcinogenic plants. Planta Med. 1988, 54, 63–65. [Google Scholar] [CrossRef]
- Annie, S.; Prabhu, R.G.; Malini, S. Activity of Wedelia calendulacea Less. in post-menopausal osteoporosis. Phytomedicine 2006, 13, 43–48. [Google Scholar] [CrossRef]
- Branca, F. Dietary phyto-oestrogens and bone health. Proc. Nutr. Soc. 2003, 62, 877–887. [Google Scholar] [CrossRef]
- Sample Availability: Not available.
© 2009 by the authors; licensee Molecular Diversity Preservation International, Basel, Switzerland. This article is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license ( http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Li, N.; Qin, L.-P.; Han, T.; Wu, Y.-B.; Zhang, Q.-Y.; Zhang, H. Inhibitory Effects of Morinda officinalis Extract on Bone Loss in Ovariectomized Rats. Molecules 2009, 14, 2049-2061. https://doi.org/10.3390/molecules14062049
Li N, Qin L-P, Han T, Wu Y-B, Zhang Q-Y, Zhang H. Inhibitory Effects of Morinda officinalis Extract on Bone Loss in Ovariectomized Rats. Molecules. 2009; 14(6):2049-2061. https://doi.org/10.3390/molecules14062049
Chicago/Turabian StyleLi, Nan, Lu-Ping Qin, Ting Han, Yan-Bin Wu, Qiao-Yan Zhang, and Hong Zhang. 2009. "Inhibitory Effects of Morinda officinalis Extract on Bone Loss in Ovariectomized Rats" Molecules 14, no. 6: 2049-2061. https://doi.org/10.3390/molecules14062049
APA StyleLi, N., Qin, L.-P., Han, T., Wu, Y.-B., Zhang, Q.-Y., & Zhang, H. (2009). Inhibitory Effects of Morinda officinalis Extract on Bone Loss in Ovariectomized Rats. Molecules, 14(6), 2049-2061. https://doi.org/10.3390/molecules14062049