-
A Comprehensive Guide to Enzyme Immobilization: All You Need to Know
-
Nanomaterials for Energy Storage Systems—A Review
-
One-Component Catalytic Electrodes from Metal–Organic Frameworks Covalently Linked to an Anion Exchange Ionomer
-
Seeking Correlation Among Porin Permeabilities and Minimum Inhibitory Concentrations Through Machine Learning: A Promising Route to the Essential Molecular Descriptors
-
Hydrochar from Agricultural Waste as a Biobased Support Matrix Enhances the Bacterial Degradation of Diethyl Phthalate
Journal Description
Molecules
Molecules
is the leading international, peer-reviewed, open access journal of chemistry. Molecules is published semimonthly online by MDPI. The International Society of Nucleosides, Nucleotides & Nucleic Acids (IS3NA), the Spanish Society of Medicinal Chemistry (SEQT) and the International Society of Heterocyclic Chemistry (ISHC) are affiliated with Molecules and their members receive a discount on the article processing charges.
- Open Access— free for readers, with article processing charges (APC) paid by authors or their institutions.
- High Visibility: indexed within Scopus, SCIE (Web of Science), PubMed, MEDLINE, PMC, Reaxys, CaPlus / SciFinder, MarinLit, AGRIS, and other databases.
- Journal Rank: JCR - Q2 (Chemistry, Multidisciplinary) / CiteScore - Q1 (Chemistry (miscellaneous))
- Rapid Publication: manuscripts are peer-reviewed and a first decision is provided to authors approximately 15.1 days after submission; acceptance to publication is undertaken in 2.4 days (median values for papers published in this journal in the second half of 2024).
- Recognition of Reviewers: reviewers who provide timely, thorough peer-review reports receive vouchers entitling them to a discount on the APC of their next publication in any MDPI journal, in appreciation of the work done.
- Sections: published in 25 topical sections.
- Testimonials: See what our editors and authors say about Molecules.
- Companion journal: Foundations.
Impact Factor:
4.2 (2023);
5-Year Impact Factor:
4.6 (2023)
Latest Articles
High-Temperature Layered Modification of Mn2In2Se5
Molecules 2025, 30(9), 1904; https://doi.org/10.3390/molecules30091904 - 24 Apr 2025
Abstract
Layered chalcogenides are interesting from the point of view of the formation of two-dimensional magnetic systems for relevant applications in spintronics. High-spin Mn+2 or Fe+3 cations with five unpaired electrons are promising in the search for compounds with interesting magnetic properties.
[...] Read more.
Layered chalcogenides are interesting from the point of view of the formation of two-dimensional magnetic systems for relevant applications in spintronics. High-spin Mn+2 or Fe+3 cations with five unpaired electrons are promising in the search for compounds with interesting magnetic properties. In this study, a new layered modification of the Mn2In2Se5 compound from the A2B2X5 family (“225”) was synthesized and investigated. A phase transition to the polymorph with primitive trigonal lattice was recorded at a temperature of 711 °C, which was confirmed by simultaneous thermal analysis, X-ray powder diffraction at elevated temperatures, and sample annealing and quenching. The stability of Mn2In2Se5 in air at high temperatures was investigated by thermal gravimetric analysis and powder X-ray diffraction. The new polymorph of Mn2In2Se5 crystallizes in the Mg2Al2Se5 structure type, as revealed by the Rietveld refinement against powder X-ray diffraction data. The crystal structure can be viewed as a close-packing of Se anions, in which indium and manganese cations are enclosed inside tetrahedral and octahedral voids, respectively, according to the AMnBInCBInCMnA… sequence. Magnetization measurements reveal an antiferromagnetic-like transition at a temperature of 6.3 K. The same magnetic properties are reported in the literature for the low-temperature R-centered trigonal polymorph. An approximation by the modified Curie–Weiss law yields a significant ratio of |θ|/TN = 28, which indicates strong magnetic frustration.
Full article
(This article belongs to the Section Materials Chemistry)
Open AccessArticle
Influence of Metal Composition and Support Material on Carbon Yield and Quality in the Direct Decomposition of Methane
by
Uidam Jun, Bon-Jun Ku, Yeji Gwon, Dong-Hyun Kim, Mansu Kim, I-Jeong Jeon, Hongjin Lee, Jae-Oh Shim and Kyubock Lee
Molecules 2025, 30(9), 1903; https://doi.org/10.3390/molecules30091903 - 24 Apr 2025
Abstract
A series of catalysts were synthesized via a combination of evaporation-induced self-assembly and spray pyrolysis; they were then applied to the direct decomposition of methane. Among them, Ni-Cu/MgO catalysts exhibited the smallest Ni particle size (~9 nm), attributed to the Cu-induced suppression of
[...] Read more.
A series of catalysts were synthesized via a combination of evaporation-induced self-assembly and spray pyrolysis; they were then applied to the direct decomposition of methane. Among them, Ni-Cu/MgO catalysts exhibited the smallest Ni particle size (~9 nm), attributed to the Cu-induced suppression of Ni crystal growth during synthesis. These catalysts achieved the highest carbon yield, primarily due to the enhanced dispersion and nanoscale size of Ni particles. The interaction between methane and the catalysts, as well as the structural and electrical properties of the resulting carbon nanotubes, such as crystallinity and conductivity, were investigated with respect to the support material (MgO vs. Al2O3) and metal composition (Ni vs. Ni-Cu). The findings provide valuable insights for designing advanced catalyst systems for the efficient conversion of methane into high-value carbon-based materials.
Full article
(This article belongs to the Special Issue Research on Heterogeneous Catalysis—2nd Edition)
►▼
Show Figures

Figure 1
Open AccessArticle
Green Synthesis and Characterization of Fe-Ti Mixed Nanoparticles for Enhanced Lead Removal from Aqueous Solutions
by
Shamika P. W. R. Hewage and Harshica Fernando
Molecules 2025, 30(9), 1902; https://doi.org/10.3390/molecules30091902 - 24 Apr 2025
Abstract
Heavy metal contamination in water resources presents a significant environmental and public health challenge, with lead being particularly concerning due to its toxicity and persistence. This study reports the green synthesis of Fe-Ti mixed oxide nanoparticles (NPs) using dextrose as a green source
[...] Read more.
Heavy metal contamination in water resources presents a significant environmental and public health challenge, with lead being particularly concerning due to its toxicity and persistence. This study reports the green synthesis of Fe-Ti mixed oxide nanoparticles (NPs) using dextrose as a green source and investigates their effectiveness in lead removal from aqueous solutions. The synthesized NPs were characterized using XRD, FTIR, XPS, SEM-EDS, and BET analysis, revealing an amorphous structure with a high surface area (292.89 m2 g−1) and mesoporous characteristics. XPS analysis confirmed the presence of mixed Fe3+/Fe2+ valence states in a Ti4+-rich framework, creating diverse binding sites for lead adsorption. The material exhibited optimal lead removal at pH 5, with adsorption following pseudo-second-order kinetics (R2 > 0.99) and a Langmuir isotherm model (R2 > 0.98). Maximum adsorption capacity reached 25.10 mg g−1 at 40 °C, showing endothermic behavior. The low point of zero charge (PZC, 0.22) and surface hydroxyl groups enabled efficient lead binding possibly through multiple mechanisms. Dose optimization studies established 6 g L−1 as the optimal adsorbent concentration. The synergistic combination of iron’s affinity for heavy metals and titanium’s structural stability, coupled with environmentally friendly synthesis, resulted in a promising material for sustainable water treatment applications.
Full article
(This article belongs to the Special Issue Advances in Homogeneous/Heterogeneous Photocatalysis to the Degradation of Pollutants in Water)
Open AccessArticle
Conformational Locking of the Geometry in Photoluminescent Cyclometalated N^C^N Ni(II) Complexes
by
Maryam Niazi, Iván Maisuls, Lukas A. Mai, Sascha A. Schäfer, Alex Oster, Lukas S. Diaz, Dirk M. Guldi, Nikos L. Doltsinis, Cristian A. Strassert and Axel Klein
Molecules 2025, 30(9), 1901; https://doi.org/10.3390/molecules30091901 - 24 Apr 2025
Abstract
In our research aimed at replacing precious transition metals like platinum with abundant base metals such as nickel for efficient triplet emitters, we synthesized and studied Ni(II) complexes [Ni(LNHR)Cl]. These complexes containing the N^C^N cyclometalating dipyridyl-phenide ligand, equipped with pending H-bonding
[...] Read more.
In our research aimed at replacing precious transition metals like platinum with abundant base metals such as nickel for efficient triplet emitters, we synthesized and studied Ni(II) complexes [Ni(LNHR)Cl]. These complexes containing the N^C^N cyclometalating dipyridyl-phenide ligand, equipped with pending H-bonding amine groups (NH(C₆H₅) (LNHPh) and NH(C₆H₅CH₂), ClLNHBn). Molecular structures determined from experimental X-ray diffractometry and density functional theory (DFT) calculations in the ground state showed marked deviation of the Cl− coligand (ancillary ligand) from the ideal planar coordination, with τ4 values of 0.35 and 0.33, respectively, along with hydrogen bonding interactions of the ligand NH function with the Cl− coligand. The complexes exhibit long-wavelength absorption bands at approximately 425 nm in solution, with the experimental spectra being accurately reproduced through time-dependent density functional theory (TD-DFT) calculations. Vibrationally structured emission profiles and steady-state photoluminescence quantum yields of 30% for [Ni(LNHPh)Cl] and 40% for [Ni(LNHBn)Cl] (along with dual excited state lifetimes in the ns and in the ms range) were found in frozen 2-methyl-tetrahydrofuran (2MeTHF) glassy matrices at 77 K. Furthermore, within a poly(methyl methacrylate) matrix, the complexes showed emission bands centered at around 550 nm within a temperature range from 6 K to 300 K with lifetimes similar to 77 K. Based on TD-DFT potential scans along the metal–ligand (Ni–N) coordinate, we found that in a rigid environment that restricts the geometry to the Franck-Condon region, either the triplet T5 or the singlet S4 state could contribute to the photoluminescence.
Full article
(This article belongs to the Special Issue 30th Anniversary of Molecules—Recent Advances in Inorganic Chemistry)
►▼
Show Figures

Graphical abstract
Open AccessArticle
Liquid Chromatography-Tandem Mass Spectrometry Method Development and Validation for the Determination of a New Mitochondrial Antioxidant in Mouse Liver and Cerebellum, Employing Advanced Chemometrics
by
Anthi Panara, Dimitra Biliraki, Markus Nussbaumer, Michaela D. Filiou, Nikolaos S. Thomaidis, Ioannis K. Kostakis and Evagelos Gikas
Molecules 2025, 30(9), 1900; https://doi.org/10.3390/molecules30091900 - 24 Apr 2025
Abstract
Anxiety and stress-related disorders affect all ages in all geographical areas. As high anxiety and chronic stress result in the modulation of mitochondrial pathways, intensive research is being carried out on pharmaceutical interventions that alleviate pertinent symptomatology. Therefore, innovative approaches being currently pursued
[...] Read more.
Anxiety and stress-related disorders affect all ages in all geographical areas. As high anxiety and chronic stress result in the modulation of mitochondrial pathways, intensive research is being carried out on pharmaceutical interventions that alleviate pertinent symptomatology. Therefore, innovative approaches being currently pursued include substances that target mitochondria bearing an antioxidant moiety. In this study, a newly synthesized antioxidant consisting of triphenylphosphine (TPP), a six-carbon alkyl spacer, and hydroxytyrosol (HT) was administered orally to mice via drinking water. Cerebellum and liver samples were collected and analyzed using ultra-high-performance liquid chromatography-tandem triple quadrupole mass spectrometry (UHPLC-MS/MS) to assess the levels of TPP-HT in the respective tissues to evaluate in vivo administration efficacy. Sample preparation included extraction with appropriate solvents and a preconcentration step to achieve the required sensitivity. Both methods were validated in terms of selectivity, linearity, accuracy, and limits of detection and quantification. Αdditionally, a workflow for evaluating and statistically summarizing multiple fortified calibration curves was devised. TPP-HT penetrates the blood–brain barrier (BBB), with a level of 11.5 ng g⁻1 quantified in the cerebellum, whereas a level of 4.8 ng g⁻1 was detected in the liver, highlighting the plausibility of orally administering TPP-HT to achieve mitochondrial targeting.
Full article
(This article belongs to the Special Issue The 30th Anniversary of Molecules—Recent Advances in Chemical Biology)
Open AccessReview
CD44 Variant Expression in Follicular Cell-Derived Thyroid Cancers: Implications for Overcoming Multidrug Resistance
by
Benny Mosoane, Michelle McCabe, Brandon S. Jackson and Zodwa Dlamini
Molecules 2025, 30(9), 1899; https://doi.org/10.3390/molecules30091899 - 24 Apr 2025
Abstract
Thyroid cancer (TC) is a significant global health issue that exhibits notable heterogeneity in incidence and outcomes. In low-resource settings such as Africa, delayed diagnosis and limited healthcare access exacerbate mortality rates. Among follicular cell-derived thyroid cancers—including papillary (PTC), follicular (FTC), anaplastic (ATC),
[...] Read more.
Thyroid cancer (TC) is a significant global health issue that exhibits notable heterogeneity in incidence and outcomes. In low-resource settings such as Africa, delayed diagnosis and limited healthcare access exacerbate mortality rates. Among follicular cell-derived thyroid cancers—including papillary (PTC), follicular (FTC), anaplastic (ATC), and poorly differentiated (PDTC) subtypes—the role of CD44 variants has emerged as a critical factor influencing tumor progression and multidrug resistance (MDR). CD44, a transmembrane glycoprotein, and its splice variants (CD44v) mediate cell adhesion, migration, and survival, contributing to cancer stem cell (CSC) maintenance and therapy resistance. Differential expression patterns of CD44 isoforms across TC subtypes have shown diagnostic, prognostic, and therapeutic implications. Specifically, CD44v6 expression in PTC has been correlated with metastasis and aggressive tumor behavior, while in FTC, its expression aids in distinguishing malignant from benign lesions. Furthermore, CD44 contributes to MDR through enhanced drug efflux via ABC transporters, apoptosis evasion, and CSC maintenance via the Wnt/β-catenin and PI3K/Akt pathways. Targeted therapies against CD44 such as monoclonal antibodies, hyaluronic acid-based nanocarriers, and gene-editing technologies hold promise in overcoming MDR. However, despite the mounting evidence supporting CD44-targeted strategies in various cancers, research on this therapeutic potential in TC remains limited. This review synthesizes existing knowledge on CD44 variant expression in follicular cell-derived thyroid cancers and highlights potential therapeutic strategies to mitigate MDR, particularly in high-burden regions, thereby improving patient outcomes and survival.
Full article
(This article belongs to the Special Issue New Therapeutic Tools against MDR Tumors: Discovery, Synthesis and Evaluation of Bioactive Compounds)
Open AccessArticle
Wood-Based Micro-Biochars in a Cement Mixture
by
Minkyeong Pyo, Jongsun Kim, Seungwook Seok, Chan Ho Park and Wonchang Choi
Molecules 2025, 30(9), 1898; https://doi.org/10.3390/molecules30091898 - 24 Apr 2025
Abstract
Immediate action is required to achieve carbon neutrality within the cement industry. The integration of biochar into cement as a component of reinforced concrete has potential to mitigate carbon emissions in the construction sector by enabling carbon sequestration. In pursuit of eco-friendly practices
[...] Read more.
Immediate action is required to achieve carbon neutrality within the cement industry. The integration of biochar into cement as a component of reinforced concrete has potential to mitigate carbon emissions in the construction sector by enabling carbon sequestration. In pursuit of eco-friendly practices and improved physical properties of cement composites, this study investigated the properties of wood-based, micron-sized biochar as a non-carbonate raw material, including its chemical composition, morphology, and wettability. The characterization of lignocellulosic micro-biochar and its mechanical impact on cement composites was a focus of this study. Cement was partially replaced with varying weight percentages of micro-biochar (1, 3, and 5 wt%), and the effects were evaluated through compressive strength tests after 7 and 28 d. The results demonstrated that the micro-biochar could sustain strength even when substituted for cement. Notably, after 28 d, the compressive strength of the sample with only cement was 29.6 MPa, while the sample with 3 wt% biochar substitution showed 30.9 MPa, indicating a 4.4% increase. This research contributes to sustainable construction practices by offering a green solution for reducing carbon emissions in the industry.
Full article
(This article belongs to the Special Issue Carbon-Based Materials for Sustainable Chemistry: 2nd Edition)
►▼
Show Figures

Figure 1
Open AccessArticle
Drug Repurposing to Inhibit Oncostatin M in Crohn’s Disease
by
Faranak Bahramimehr, Axel Guthart, Stefanie Kurz, Yuanping Hai, Mona Dawood, Rümeysa Yücer, Nasim Shahhamzehei, Ralf Weiskirchen, Wilfried Roth, Wolfgang Stremmel, Gerhard Bringmann and Thomas Efferth
Molecules 2025, 30(9), 1897; https://doi.org/10.3390/molecules30091897 - 24 Apr 2025
Abstract
Crohn’s disease is an inflammatory bowel disease (IBD) that currently lacks satisfactory treatment options. Therefore, new targets for new drugs are urgently needed to combat this disease. In the present study, we investigated the transcriptomics-based mRNA expression of intestinal biopsies from patients with
[...] Read more.
Crohn’s disease is an inflammatory bowel disease (IBD) that currently lacks satisfactory treatment options. Therefore, new targets for new drugs are urgently needed to combat this disease. In the present study, we investigated the transcriptomics-based mRNA expression of intestinal biopsies from patients with Crohn’s disease. We compared the mRNA expression profiles of the ileum and colon of patients with those of healthy individuals. A total of 72 genes in the ileum and 33 genes in the colon were differentially regulated. Among these, six genes were overexpressed in both tissues, including IL1B, TCL1A, HCAR3, IGHG1, S100AB, and OSM. We further focused on OSM/oncostatin M. To confirm the responsiveness of intestinal tissues from patients with Crohn’s disease to oncostatin M inhibition, we examined the expression of the oncostatin M receptor using immunohistochemistry in patient biopsies as well as in kindlin-1−/− and kindlin-2−/− knockout mice, which exhibit an inflammatory bowel disease (IBD) phenotype, and found strong oncostatin M expression in all samples examined. Next, we conducted a drug-repurposing study using the supercomputer MOGON and bioinformatic methods. A total of 13 candidate compounds out of 1577 FDA-approved drugs were identified by PyRx-based virtual drug screening and AutoDock-based molecular docking. Their lowest binding energies (LBEs) ranged from −10.46 (±0.08) to −8.77 (±0.08) kcal/mol, and their predicted inhibition constants (pKi) ranged from 21.62 (±2.97) to 373.78 (±36.78) nM. Ecamsule has an interesting stereostructure with two C2-symmetric enantiomers (1S,4R-1′S,4′R and 1R,4S-1′R,4′S) (1a and 1b) and one meso diastereomer (1S,4R-1′R,4′S) (1c). These three stereoisomers showed strong, albeit differing, binding affinities in molecular docking. As examined by nuclear magnetic resonance and polarimetry, the 1S,4R-1′S,4′R isomer was the stereoisomer present in our commercially available preparations used for microscale thermophoresis. Ecamsule (1a) was chosen for in vitro validation using recombinant oncostatin M and microscale thermophoresis. Considerable dissociation constants were obtained for ecamsule after three repetitions with a Kd value of 11.36 ± 2.83 µM. Subsequently, we evaluated, by qRT-PCR, the efficacy of ecamsule (1a) as a potential drug that could prevent oncostatin M activation by inhibiting downstream inflammatory marker genes (IL6, TNFA, and CXCL11). In conclusion, we have identified oncostatin M as a promising new drug target for Crohn’s disease through transcriptomics and ecamsule as a potential new drug candidate for Crohn’s disease through a drug-repurposing approach both in silico and in vitro.
Full article
(This article belongs to the Special Issue Bioorganic Chemistry in Europe)
►▼
Show Figures

Figure 1
Open AccessArticle
Optimization of Zinc and Aluminum Hydroxyquinolines for Applications as Semiconductors in Molecular Electronics
by
María Elena Sánchez Vergara, Francisco Iñaki Díaz Morales, Bertha Molina, Edgar Alvarez-Zauco, Lourdes Bazán-Díaz and Roberto Salcedo
Molecules 2025, 30(9), 1896; https://doi.org/10.3390/molecules30091896 - 24 Apr 2025
Abstract
This work explores the dispersed heterojunction of tris-(8-hydroxyquinoline) aluminum (AlQ3) and 8-hydroxyquinoline zinc (ZnQ2) with tetracyanoquinodimethane (TCNQ) and 2,6-diaminoanthraquinone (DAAq). Thin films of these organic semiconductors were deposited and analyzed, with their structures calculated with the B3PW91/6-31G** method. The
[...] Read more.
This work explores the dispersed heterojunction of tris-(8-hydroxyquinoline) aluminum (AlQ3) and 8-hydroxyquinoline zinc (ZnQ2) with tetracyanoquinodimethane (TCNQ) and 2,6-diaminoanthraquinone (DAAq). Thin films of these organic semiconductors were deposited and analyzed, with their structures calculated with the B3PW91/6-31G** method. The optimized structure for AlQ3-TCNQ, AlQ3-DAAq, is achieved by means of three hydrogen bonds, whereas for ZnQ2-DAAq, two hydrogen interactions are predicted. These structures were recalculated including the GD3 dispersion term. A stable ordering was also achieved for AlQ3-TCNQ-GD3, AlQ3-DAAq-GD3, and ZnQ2-DAAq-GD3 with four and two hydrogen contacts for the former and the two latter, respectively. Infrared (IR) and UV-visible spectroscopy confirmed these theoretical predictions, in addition to obtaining the optical band gap for the films. The optical band gap values ranged between 1.62 and 2.97 eV (theoretical) and between 2.46 and 2.87 eV (experimental). Additional optical parameters and electrical behavior were obtained, which indicates the potential of the films to be used as organic semiconductors. All three films showed transmittance above 76%, which also broadens the range of applications in electrodes, transparent transistors, or photovoltaic cells. Devices fabricated using these materials displayed ohmic electrical behavior, with peak current values between 2 × 10−3 and 6 × 10−3 A.
Full article
(This article belongs to the Special Issue Recent Advancements in Semiconductor Materials)
►▼
Show Figures

Figure 1
Open AccessReview
Implications of Mucin-Type O-Glycosylation in Alzheimer’s Disease
by
Nancy Vela Navarro, Gustavo De Nadai Mundim and Maré Cudic
Molecules 2025, 30(9), 1895; https://doi.org/10.3390/molecules30091895 - 24 Apr 2025
Abstract
►▼
Show Figures
Alzheimer’s disease (AD) is one of the most common neurodegenerative disorders linked to aging. Major hallmarks of AD pathogenesis include amyloid-β peptide (Aβ) plaques, which are extracellular deposits originating from the processing of the amyloid precursor protein (APP), and neurofibrillary tangles (NFTs), which
[...] Read more.
Alzheimer’s disease (AD) is one of the most common neurodegenerative disorders linked to aging. Major hallmarks of AD pathogenesis include amyloid-β peptide (Aβ) plaques, which are extracellular deposits originating from the processing of the amyloid precursor protein (APP), and neurofibrillary tangles (NFTs), which are intracellular aggregates of tau protein. Recent evidence indicates that disruptions in metal homeostasis and impaired immune recognition of these aggregates trigger neuroinflammation, ultimately driving disease progression. Therefore, a more comprehensive approach is needed to understand the underlying causes of the disease. Patients with AD present abnormal glycan profiles, and most known AD-related molecules are either modified with glycans or involved in glycan regulation. A deeper understanding of how O-glycosylation influences the balance between amyloid-beta peptide production and clearance, as well as microglia’s pro- and anti-inflammatory responses, is crucial for deciphering the early pathogenic events of AD. This review aims to provide a comprehensive summary of the extensive research conducted on the role of mucin-type O-glycosylation in the pathogenesis of AD, discussing its role in disease onset and immune recognition.
Full article

Graphical abstract
Open AccessArticle
Green Analytical Method Using Single-Drop Microextraction Followed by Gas Chromatography for Nitro Compound Detection in Environmental Water and Forensic Rinse Water
by
Tamara Pócsová, Senad Okanovič and Svetlana Hrouzková
Molecules 2025, 30(9), 1894; https://doi.org/10.3390/molecules30091894 - 24 Apr 2025
Abstract
The extensive use of nitro compounds in agriculture, industry, armaments, and pharmaceuticals, along with their toxic effects on living organisms, necessitates efficient and environmentally sustainable analytical methods. Traditional extraction techniques often involve practices that are not eco-friendly, such as the use of large
[...] Read more.
The extensive use of nitro compounds in agriculture, industry, armaments, and pharmaceuticals, along with their toxic effects on living organisms, necessitates efficient and environmentally sustainable analytical methods. Traditional extraction techniques often involve practices that are not eco-friendly, such as the use of large volumes of solvents, toxic chemicals, and the generation of significant waste; therefore, the single-drop microextraction technique was involved in overcoming these limitations. This study shows an environmentally friendly method for nitro compound analysis focusing on NB (Nitrobenzene), 2-NT (2-Nitrotoluene), 3-NT (3-Nitrotoluene), 4-NT (4-Nitrotoluene), 1,3-DNB (1,3-Dinitrobenzene), 1,2-DNB (1,2-Dinitrobenzene), 2,4-DNT (2,4-Dinitrotoluene), and TNT (Trinitrotoluene). To separate and to detect selected nitro compounds, gas chromatography with an electron capture detector was utilized, which is highly selective for analytes containing nitro groups. To determine optimal experimental conditions, extraction parameters were studied, including the impact of salt addition, temperature, and pH on extraction efficiency. Key performance parameters, such as limit of detection (LOD), limit of quantification (LOQ), repeatability, extraction recoveries, calibration range, and matrix effects, were assessed. The LOD values ranged from 0.01 to 0.09 μg/L in deionized water, 0.01 to 0.06 μg/L in tap water, 0.01 to 0.03 μg/L in seawater, and 0.03 to 0.11 μg/L in model forensic rinse water. The optimized method was successfully applied to the determination of nitro compounds in real environmental water samples and forensic rinse water samples. The environmental sustainability and greenness of the proposed method was evaluated with the AGREE, AGREEprep, and AESA techniques.
Full article
(This article belongs to the Special Issue Analytical Methods for Food and Environmental Pollutants: Current and Future Perspectives)
►▼
Show Figures

Figure 1
Open AccessArticle
New Cu(II), Cu(I) and Ag(I) Complexes of Phenoxy-Ketimine Schiff Base Ligands: Synthesis, Structures and Antibacterial Activity
by
Miriam Caviglia, Zhenzhen Li, Carlo Santini, Jo’ Del Gobbo, Cristina Cimarelli, Miao Du, Alessandro Dolmella and Maura Pellei
Molecules 2025, 30(9), 1893; https://doi.org/10.3390/molecules30091893 - 24 Apr 2025
Abstract
Two phenoxy-ketimines ligands, 2-(1-(benzylimino)ethyl)phenol (HLBSMe) and 2-((benzylimino)(phenyl)methyl)phenol (HLBSPh), were synthesized and used as supporting ligands of new copper(II), copper(I), and silver(I) complexes. In order to confer different solubility properties to the metal complexes and to stabilize Cu and Ag
[...] Read more.
Two phenoxy-ketimines ligands, 2-(1-(benzylimino)ethyl)phenol (HLBSMe) and 2-((benzylimino)(phenyl)methyl)phenol (HLBSPh), were synthesized and used as supporting ligands of new copper(II), copper(I), and silver(I) complexes. In order to confer different solubility properties to the metal complexes and to stabilize Cu and Ag in their +1 oxidation state, the lipophilic triphenylphosphine (PPh3) and the hydrophilic 1,3,5-triaza-7-phosphaadamantane (PTA) were selected as co-ligands in the syntheses of the Cu(I) and Ag(I) complexes. All compounds were characterized by CHN analysis, NMR, FT-IR spectroscopy, and electrospray ionization mass spectrometry (ESI-MS); the molecular structure of the copper(II) complex [Cu(LBSPh)2] was also determined by single-crystal X-ray diffraction. Finally, the antibacterial activity of the metal complexes, the Schiff base ligands and phosphane co-ligands, were assessed by determining the minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) against Gram-negative (Escherichia coli) and Gram-positive bacteria (Staphylococcus aureus).
Full article
(This article belongs to the Topic Metal Ions in Health and Diseases: Current Progress and Future Challenges)
►▼
Show Figures

Figure 1
Open AccessArticle
Antioxidant and Anti-Inflammatory Activities of Astilboides tabularis (Hemsl.) Engl. Root Extract
by
Nam Ho Yoo, Young Sun Baek, Hee Kyu Kim, Chan Ok Lee and Myong Jo Kim
Molecules 2025, 30(9), 1892; https://doi.org/10.3390/molecules30091892 - 24 Apr 2025
Abstract
►▼
Show Figures
Here, we examined the antioxidant and anti-inflammatory activities of the ethyl acetate (EtOAc) fraction of Astilboides tabularis (Hemsl.) Engl. root extracts, initially prepared from a 70% ethanol extraction. This EtOAc fraction exhibited significant scavenging activity against DPPH radicals (IC50: 11.38 ±
[...] Read more.
Here, we examined the antioxidant and anti-inflammatory activities of the ethyl acetate (EtOAc) fraction of Astilboides tabularis (Hemsl.) Engl. root extracts, initially prepared from a 70% ethanol extraction. This EtOAc fraction exhibited significant scavenging activity against DPPH radicals (IC50: 11.38 ± 0.48 µg/mL) and ABTS radicals (IC50: 7.46 ± 0.58 µg/mL), and had a high total phenolic content (i.e., 407.02 ± 13.56 mg GAE/g). In addition, the EtOAc fraction demonstrated concentration-dependent protective effects in a RAW264.7 macrophage cell model subjected to oxidative stress. In lipopolysaccharide (LPS)-stimulated RAW264.7 cells, nitric oxide (NO) production and the expression of inflammatory mediators (iNOS, COX-2, TNF-α, IL-1β, IFN-β) were inhibited in a concentration-dependent manner. Western blot and real-time PCR (RT-PCR) analyses revealed that the EtOAc fraction also suppressed inflammatory mediator expression via inhibiting the activation of the NF-κB and MAPK signaling pathways. Finally, LC-QTOF-MS and LC-MS/MS analyses identified gallic acid and bergenin as compounds contributing to observed antioxidant and anti-inflammatory effects. In conclusion, the EtOAc fraction of A. tabularis root extracts exhibited strong anti-oxidant and anti-inflammatory properties, suggesting potential usage for treating various inflammatory diseases.
Full article

Graphical abstract
Open AccessReview
“Pepper”: Different Spices, One Name—Analysis of Sensory and Biological Aspects
by
Pierina Díaz-Guerrero, Sofia Panzani, Chiara Sanmartin, Chiara Muntoni, Isabella Taglieri and Francesca Venturi
Molecules 2025, 30(9), 1891; https://doi.org/10.3390/molecules30091891 - 24 Apr 2025
Abstract
Spices are a part of modern and ancient cultures due to their recognized culinary and medicinal properties. Pepper is commonly used in many recipes; however, in the field of gastronomy, the term “pepper” usually refers to a group that includes several different spices,
[...] Read more.
Spices are a part of modern and ancient cultures due to their recognized culinary and medicinal properties. Pepper is commonly used in many recipes; however, in the field of gastronomy, the term “pepper” usually refers to a group that includes several different spices, such as black pepper (Piper nigrum L.), cubeb pepper (Piper cubeba L.f.), long pepper (Piper longum L.), pink pepper (Schinus terebinthifolius Raddi), allspice (Pimenta dioica L. Merrill), and Japanese pepper (Zanthoxylum piperitum DC.). Despite the extensive study of the chemical characterization and medicinal and culinary properties of “pepper”, sensory analysis (color, aroma profile, odor profile, and chemesthesis) of these spices have not been completed. Therefore, the aim of this review was to identify the strengths, weaknesses, opportunities, and threats within the spice supply chain considering these six “peppers” to analyze their positive and negative aspects. Finally, we selected the most representative molecules and properties of spices referred to as “pepper” to expand the research focus and highlight their key aspects related to health and sensory science for future applications. In this sense, this review provides a new strategic guideline that will help us understand and assess the key internal and external factors of pepper, allowing them to be applied in different sectors with different approaches.
Full article
(This article belongs to the Special Issue Nutrition and Sensory Analysis of Food)
►▼
Show Figures

Figure 1
Open AccessArticle
Reactive Behaviour of Platinum(II) Salts with Ethylenediamine in Sustainable Water/Choline Chloride-Based Deep Eutectic Solvents Mixtures
by
Nicola Garofalo, Francesco Messa, Alessandra Barbanente, Francesco Paolo Fanizzi, Antonio Salomone, Nicola Margiotta and Paride Papadia
Molecules 2025, 30(9), 1890; https://doi.org/10.3390/molecules30091890 - 24 Apr 2025
Abstract
Deep eutectic solvents (DESs) are environmentally friendly solvents formed by combining hydrogen bond donors and acceptors, resulting in a eutectic mixture with a lower melting point than the individual components. While there is extensive research on the electrochemical synthesis of platinum nanoparticles in
[...] Read more.
Deep eutectic solvents (DESs) are environmentally friendly solvents formed by combining hydrogen bond donors and acceptors, resulting in a eutectic mixture with a lower melting point than the individual components. While there is extensive research on the electrochemical synthesis of platinum nanoparticles in DESs, to the best of our knowledge, there are no studies on the chemical reactivity of platinum(II) complexes in these systems. This study investigates the simple model reaction between K2PtCl4 and ethylenediamine (en), exploring the behaviour in DES environment, to optimize the synthesis of simple cisplatin-like platinum compounds with the potential objective of improving the traditional methods, decreasing the number of steps required for obtaining target compounds and reducing chemical waste. The reactions were performed in two hydrophilic DESs: choline chloride:glycerol 1:2 (glyceline, GL) and choline chloride:ethylene glycol 1:2 (ethaline, EG). The experiments, conducted in a 70% (v/v) DES and 30% 1:1 H2O/D2O mixture to allow for direct NMR analysis, revealed that en quickly formed [PtCl2(en)], which further reacted to produce [Pt(en)2]Cl2. Reaction products were characterised by 1D (1H and 195Pt{1H}) and 2D ([1H,13C]-HSQC and [1H,15N]-HSQC) NMR experiments. The discolouration of solutions, due to the consumption of K2PtCl4, and the precipitation of the purple Magnus salt [Pt(en)2][PtCl4] occurred over time. The main observed difference between the two solvent mixtures was the slower reactivity in glyceline, due to the much higher viscosity of the solution. Diffusion-ordered spectroscopy (DOSY) indicated lower water mobility in DES mixtures than pure water, with the reaction products closely associated with DES molecules.
Full article
(This article belongs to the Special Issue Applications of NMR Spectroscopy to Problem Solving for Inorganic, Organometallic, and Organic Compounds)
►▼
Show Figures

Figure 1
Open AccessArticle
Bioresorbable High-Strength HA/PLLA Composites for Internal Fracture Fixation
by
Jie Liu, Mingtao Sun, Yipeng He, Weixia Yan, Muhuo Yu and Keqing Han
Molecules 2025, 30(9), 1889; https://doi.org/10.3390/molecules30091889 - 23 Apr 2025
Abstract
In modern surgery, the internal fixation plates fabricated from hydroxyapatite/poly(L-lactide) (HA/PLLA) composites encounter clinical limitations in fracture treatment due to their inadequate mechanical properties. In this work, pressure-induced flow (PIF) technique is employed to address this limitation. Under optimal processing conditions (140 °C
[...] Read more.
In modern surgery, the internal fixation plates fabricated from hydroxyapatite/poly(L-lactide) (HA/PLLA) composites encounter clinical limitations in fracture treatment due to their inadequate mechanical properties. In this work, pressure-induced flow (PIF) technique is employed to address this limitation. Under optimal processing conditions (140 °C and 250 MPa), the HA/PLLA composites exhibit an impressive flexural strength of 199.2 MPa, which is comparable to that of human cortical bone, the strongest bone tissue in the body. The tensile strength and the notched Izod impact strength are close to 84.2 MPa and 16.7 kJ/m2, respectively. Meanwhile, the HA/PLLA composites develop multi-level stacked crystal layers during PIF processing, accompanied by increases in crystallinity (53.1%), crystal orientation (81.6%) and glass transition temperature (78.8 °C). After 2 months of in vitro degradation, the HA/PLLA composites processed by the PIF technique still maintain considerable flexural strength (135.3 MPa). The excellent mechanical properties of HA/PLLA composites processed by PIF technique expand their potential as an internal fixation plate.
Full article
(This article belongs to the Special Issue Molecular Scaffolds Design and Biomedical Applications)
►▼
Show Figures

Figure 1
Open AccessReview
Molecular Links Between Circadian Rhythm Disruption, Melatonin, and Neurodegenerative Diseases: An Updated Review
by
Kemal Hüsnü Can Baser, Ismail Celil Haskologlu and Emine Erdag
Molecules 2025, 30(9), 1888; https://doi.org/10.3390/molecules30091888 - 23 Apr 2025
Abstract
►▼
Show Figures
Circadian rhythms are molecular oscillations governed by transcriptional–translational feedback loops (TTFLs) operating in nearly all cell types and are fundamental to physiological homeostasis. Key circadian regulators, such as circadian locomotor output cycles kaput (CLOCK), brain and muscle ARNT-like 1 (BMAL1), period
[...] Read more.
Circadian rhythms are molecular oscillations governed by transcriptional–translational feedback loops (TTFLs) operating in nearly all cell types and are fundamental to physiological homeostasis. Key circadian regulators, such as circadian locomotor output cycles kaput (CLOCK), brain and muscle ARNT-like 1 (BMAL1), period (PER), and cryptochrome (CRY) gene families, regulate intracellular metabolism, oxidative balance, mitochondrial function, and synaptic plasticity. Circadian disruption is known as a central contributor to the molecular pathophysiology of neurodegenerative disorders. Disease-specific disruptions in clock gene expression and melatoninergic signaling are known as potential early-stage molecular biomarkers. Melatonin, a neurohormone secreted by the pineal gland, modulates clock gene expression, mitochondrial stability, and inflammatory responses. It also regulates epigenetic and metabolic processes through nuclear receptors and metabolic regulators involved in circadian and cellular stress pathways, thereby exerting neuroprotective effects and maintaining neuronal integrity. This review provides recent findings from the past five years, highlighting how circadian dysregulation mediates key molecular and cellular disturbances and the translational potential of circadian-based therapies in neurodegenerative diseases.
Full article

Figure 1
Open AccessArticle
Perfluoropropionic Acid (CF3CF2C(O)OH): Three Conformations and Dimer Formation
by
Carlos O. Della Védova, Rosana M. Romano, Hans-Georg Stammler and Norbert W. Mitzel
Molecules 2025, 30(9), 1887; https://doi.org/10.3390/molecules30091887 - 23 Apr 2025
Abstract
Perfluoropropionic acid (CF3CF2C(O)OH) has been investigated with a focus on its complex structural properties. As a formal derivative of propanoic acid, the incorporation of fluorine atoms imparts unique structural features, including three distinct monomeric conformations and a dimeric structure.
[...] Read more.
Perfluoropropionic acid (CF3CF2C(O)OH) has been investigated with a focus on its complex structural properties. As a formal derivative of propanoic acid, the incorporation of fluorine atoms imparts unique structural features, including three distinct monomeric conformations and a dimeric structure. This study presents experimental findings, supported by computational modeling, to explore these characteristics. The analysis includes an FTIR study of the isolated species in an Ar-cryogenic matrix and the low-temperature determination of its crystalline structure using single-crystal X-ray diffraction.
Full article
(This article belongs to the Special Issue From Spectroscopic Insights to Structural Wonders: A Theme Issue Dedicated to Professor Jaan Laane)
►▼
Show Figures

Figure 1
Open AccessArticle
Evaluation of Polycyclic Aromatic Hydrocarbons (PAHs) in Pork Meat Cooked with Two Different Methods
by
Chiara Conchione, Silvia Socal, Laura Barp and Sabrina Moret
Molecules 2025, 30(9), 1886; https://doi.org/10.3390/molecules30091886 - 23 Apr 2025
Abstract
During domestic grilling, polycyclic aromatic hydrocarbons (PAHs), which include genotoxic and carcinogenic compounds, can be produced as a result of fat pyrolysis, leakage of cellular juices onto the heat source, and incomplete combustion of fuel. This study aimed to assess the formation of
[...] Read more.
During domestic grilling, polycyclic aromatic hydrocarbons (PAHs), which include genotoxic and carcinogenic compounds, can be produced as a result of fat pyrolysis, leakage of cellular juices onto the heat source, and incomplete combustion of fuel. This study aimed to assess the formation of PAHs in pork neck cooked using two different grilling methods (traditional flat grill with beech charcoal and asado grill with beech wood flame) under controlled conditions, with cooking stopping at a core temperature of 72 °C. The impact of marinating and cooking speed (fast or slow) was also evaluated over three cooking sessions. After grilling, the meat samples underwent microwave-assisted extraction, purification through solid-phase extraction (SPE), and analysis using ultra-high-performance liquid chromatography (UHPLC) with spectrofluorometric detection. Statistical analysis was performed using ANOVA (R software, version 4.3.0). None of the samples exceeded the legal limits for benzo[a]pyrene (BaP) and PAH4 (sum of chrysene, benzo[a]anthracene, BaP, and benzo[b]fluoranthene). However, the asado grill showed a significantly higher average PAH contamination (1.21 µg/kg of BaP and 3.92 µg/kg of PAH4) compared with the traditional grill (0.22 µg/kg of BaP and 1.71 µg/kg of PAH4). Marinating and cooking speed did not have a significant impact on PAH levels.
Full article
(This article belongs to the Special Issue Molecules in 2025)
►▼
Show Figures

Figure 1
Open AccessArticle
The Effects of Solvation Enthalpy, Surface Tension, and Conductivity of Common Additives on Positive Electrospray Ionization in Selected Pharmaceuticals
by
Pieter Venter
Molecules 2025, 30(9), 1885; https://doi.org/10.3390/molecules30091885 - 23 Apr 2025
Abstract
This study investigates the effects of common additives, which provide distinct proton sources—ammonium (NH4+) and hydronium (H3O+)—along with their corresponding conjugate base species, on signal intensity in positive ionization mode. The findings reveal that signal intensity
[...] Read more.
This study investigates the effects of common additives, which provide distinct proton sources—ammonium (NH4+) and hydronium (H3O+)—along with their corresponding conjugate base species, on signal intensity in positive ionization mode. The findings reveal that signal intensity is influenced by factors such as solvation enthalpy, surface tension, and conductivity. At lower additive concentrations (<10 mM), based on fold changes, no clear distinction could be made between formic acid, acetic acid, and their corresponding salts. At higher additive concentrations, NH4+ appears to be a more efficient proton source than H+ (H3O+), likely due to its more positive solvation enthalpy, which promotes greater enrichment of NH4+ on the droplet surface, as well as the reduced surface tension of ammonium salts compared to their acid counterparts. Additionally, ammonium hydroxide proves to be the most effective ammonium-based modifier, likely due to its anionic conjugate base, hydroxide, which has a more negative solvation enthalpy compared to acetate and formate. This characteristic is hypothesized to reduce charge neutralization of cations on the droplet surface and/or in the gas phase. Furthermore, ammonium hydroxide exhibits lower conductivity compared to the other ammonium additives, which is believed to enhance signal intensity. Ammonium bicarbonate, the second most effective additive, uniquely prevents metal adduct formation, leading to enhanced [M + H]+ ion signals.
Full article
(This article belongs to the Section Analytical Chemistry)
►▼
Show Figures

Figure 1

Journal Menu
► ▼ Journal Menu-
- Molecules Home
- Aims & Scope
- Editorial Board
- Reviewer Board
- Topical Advisory Panel
- Instructions for Authors
- Special Issues
- Topics
- Sections & Collections
- Article Processing Charge
- Indexing & Archiving
- Editor’s Choice Articles
- Most Cited & Viewed
- Journal Statistics
- Journal History
- Journal Awards
- Society Collaborations
- Conferences
- Editorial Office
Journal Browser
► ▼ Journal Browser-
arrow_forward_ios
Forthcoming issue
arrow_forward_ios Current issue - Vol. 30 (2025)
- Vol. 29 (2024)
- Vol. 28 (2023)
- Vol. 27 (2022)
- Vol. 26 (2021)
- Vol. 25 (2020)
- Vol. 24 (2019)
- Vol. 23 (2018)
- Vol. 22 (2017)
- Vol. 21 (2016)
- Vol. 20 (2015)
- Vol. 19 (2014)
- Vol. 18 (2013)
- Vol. 17 (2012)
- Vol. 16 (2011)
- Vol. 15 (2010)
- Vol. 14 (2009)
- Vol. 13 (2008)
- Vol. 12 (2007)
- Vol. 11 (2006)
- Vol. 10 (2005)
- Vol. 9 (2004)
- Vol. 8 (2003)
- Vol. 7 (2002)
- Vol. 6 (2001)
- Vol. 5 (2000)
- Vol. 4 (1999)
- Vol. 3 (1998)
- Vol. 2 (1997)
- Volumes not published by MDPI
Highly Accessed Articles
Latest Books
E-Mail Alert
News
Topics
Topic in
BioChem, Biomedicines, Biomolecules, IJMS, Metabolites, Molecules
Natural Products in Prevention and Therapy of Metabolic Syndrome
Topic Editors: Jianbo Wan, Ligen LinDeadline: 30 April 2025
Topic in
Chemistry, Materials, Molecules, Polymers, Pharmaceutics
Advanced Biomaterials: Processing and Applications
Topic Editors: Vincenzo Guarino, Roberto De Santis, Ugo D'AmoraDeadline: 31 May 2025
Topic in
Biomolecules, IJMS, Molecules, Pharmaceutics
Advances in Diagnostics, Brain Delivery Systems and Therapeutics of Neurodegenerative Disease
Topic Editors: Ashok Iyaswamy, Chuanbin Yang, Abhimanyu ThakurDeadline: 11 June 2025
Topic in
BioChem, Biomolecules, CIMB, Molecules, Pharmaceutics, Sci. Pharm.
Design, Synthesis and Biological Evaluation of Novel Small Molecules as Multi-target Enzyme Inhibitors
Topic Editors: Davide Moi, Daniele Passarella, Andrea CitarellaDeadline: 30 June 2025

Conferences
Special Issues
Special Issue in
Molecules
Bioactive Molecules in Agrifood Waste: Isolation, Analysis and Reuse
Guest Editor: Irene DiniDeadline: 30 April 2025
Special Issue in
Molecules
Advances in Water Electrolysis Technology
Guest Editor: Li DuDeadline: 30 April 2025
Special Issue in
Molecules
Novel Electrode Materials for Rechargeable Batteries, 2nd Edition
Guest Editors: Jian Peng, Wei Zhang, Shiyue CaoDeadline: 30 April 2025
Special Issue in
Molecules
Advances in Antibacterial Molecules
Guest Editor: Gildardo Rivera SanchezDeadline: 30 April 2025
Topical Collections
Topical Collection in
Molecules
Preanalytical Methods for Natural Products Production
Collection Editors: Young Hae Choi, Farid Chemat, Giancarlo Cravotto, Erica G. Wilson
Topical Collection in
Molecules
Green Energy and Environmental Materials
Collection Editors: Hongda Li, Shumin Chen, Xintong Liu, Xiong He
Topical Collection in
Molecules
Qualitative and Quantitative Analysis of Bioactive Natural Products
Collection Editors: Elisa Ovidi, Valentina Laghezza Masci