Interaction of Soy Protein Isolate Hydrolysates with Cyanidin-3-O-Glucoside and Its Effect on the In Vitro Antioxidant Capacity of the Complexes under Neutral Condition
Abstract
:1. Introduction
2. Results and Discussion
2.1. Mw Distributions
2.2. Intrinsic Fluorescence Spectra Analysis
2.2.1. Fluorescence Quenching Mechanism Analysis
2.2.2. Binding Parameter Analysis
2.2.3. Thermodynamic Parameters and Binding Force Analysis
2.3. CD Spectrum Analysis
2.4. FTIR Spectrum Analysis
2.5. Surface Hydrophobicity (H0) Analysis
2.6. Particle Size Distribution Analysis
2.7. Determination of Antioxidant Capacity
3. Materials and Methods
3.1. Materials
3.2. Preparation of SPI and Its Hydrolysates
3.3. Determination of Molecular Weight (Mw) Distributions
3.4. Preparation of SPI/SPIHs–C3G Complexes
3.5. Intrinsic Fluorescence Spectra Determination
3.6. CD Spectroscopy Determination
3.7. FTIR Spectroscopy Determination
3.8. Surface Hydrophobicity (H0) Measurement
3.9. Particle Size Distribution Measurement
3.10. Antioxidant Capacity Analysis
3.10.1. ABTS Radical Scavenging Activity
3.10.2. DPPH Radical Scavenging Activity
3.11. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample availability
References
- Morales-de la Peña, M.; Salvia-Trujillo, L.; Rojas-Graü, M.A.; Martín-Belloso, O. Changes on phenolic and carotenoid composition of high intensity pulsed electric field and thermally treated fruit juice-soymilk beverages during refrigerated storage. Food Chem. 2011, 129, 982–990. [Google Scholar] [CrossRef]
- Rodríguez-Roque, M.J.; Rojas-Graü, M.A.; Elez-Martínez, P.; Martín-Belloso, O. In vitro bioaccessibility of health-related compounds from a blended fruit juice–soymilk beverage: Influence of the food matrix. J. Funct. Foods 2014, 7, 161–169. [Google Scholar] [CrossRef]
- Foegeding, E.A.; Plundrich, N.; Schneider, M.; Campbell, C.; Lila, M.A. Protein-polyphenol particles for delivering structural and health functionality. Food Hydrocoll. 2017, 72, 163–173. [Google Scholar] [CrossRef]
- Chatterjee, C.; Gleddie, S.; Xiao, C.W. Soybean Bioactive Peptides and Their Functional Properties. Nutrients 2018, 10, 1211. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ren, C.; Xiong, W.; Peng, D.; He, Y.; Zhou, P.; Li, J.; Li, B. Effects of thermal sterilization on soy protein isolate/polyphenol complexes: Aspects of structure, in vitro digestibility and antioxidant activity. Food Res. Int. 2018, 112, 284–290. [Google Scholar] [CrossRef] [PubMed]
- Zou, Y.; Wu, C.; Ma, C.; He, S.; Brennan, C.; Yuan, Y. Interactions of grape seed procyanidins with soy protein isolate: Contributing antioxidant and stability properties. LWT 2019, 115, 108465. [Google Scholar] [CrossRef]
- Ju, M.; Zhu, G.; Huang, G.; Shen, X.; Zhang, Y.; Jiang, L.; Sui, X. A novel pickering emulsion produced using soy protein-anthocyanin complex nanoparticles. Food Hydrocoll. 2020, 99, 105329. [Google Scholar] [CrossRef]
- Arts, M.J.T.J.; Haenen, G.R.M.M.; Wilms, L.C.; Beetstra, S.A.J.N.; Heijnen, C.G.M.; Voss, H.P.; Bast, A. Interactions between Flavonoids and Proteins: Effect on the Total Antioxidant Capacity. J. Agric. Food Chem. 2002, 50, 1184–1187. [Google Scholar] [CrossRef]
- Memon, A.H.; Ding, R.; Yuan, Q.; Wei, Y.; Liang, H. Facile synthesis of alcalase-inorganic hybrid nanoflowers used for soy protein isolate hydrolysis to improve its functional properties. Food Chem. 2019, 289, 568–574. [Google Scholar] [CrossRef]
- Freitas, A.C.; Andrade, J.C.; Silva, F.M.; Rocha-Santos, T.A.P.; Duarte, A.C.; Gomes, A.M. Antioxidative peptides: Trends and perspectives for future research. Curr. Med. Chem. 2013, 20, 4575–4594. [Google Scholar] [CrossRef]
- Budryn, G.; Zaczyńska, D.; Pałecz, B.; Rachwał-Rosiak, D.; Belica, S.; den-Haan, H.; Peña-García, J.; Pérez-Sánchez, H. Interactions of free and encapsulated hydroxycinnamic acids from green coffee with egg ovalbumin, whey and soy protein hydrolysates. LWT 2016, 65, 823–831. [Google Scholar] [CrossRef]
- Jin, B.; Zhou, X.; Zhou, S.; Liu, Y.; Zheng, Z.; Liang, Y.; Chen, S. Nano-encapsulation of curcumin using soy protein hydrolysates—Tannic acid complexes regulated by photocatalysis: A study on the storage stability and in vitro release. J. Microencapsul. 2019, 36, 385–398. [Google Scholar] [CrossRef]
- Pan, R.; Zou, Y.; Wang, J.; Wan, Z.; Guo, J.; Yang, J.; Yang, X. Gamma/alpha-zein hydrolysates as oral delivery vehicles: Enhanced physicochemical stability and in vitro bioaccessibility of curcumin. Int. J. Food Sci. Technol. 2018, 53, 1622–1630. [Google Scholar] [CrossRef]
- Milea, Ș.A.; Aprodu, I.; Vasile, A.M.; Barbu, V.; Râpeanu, G.; Bahrim, G.E.; Stănciuc, N. Widen the functionality of flavonoids from yellow onion skins through extraction and microencapsulation in whey proteins hydrolysates and different polymers. Int. J. Food Eng. 2019, 251, 29–35. [Google Scholar] [CrossRef]
- Hernández-Jabalera, A.; Cortés-Giraldo, I.; Dávila-Ortíz, G.; Vioque, J.; Alaiz, M.; Girón-Calle, J.; Megías, C.; Jiménez-Martínez, C. Influence of peptides-phenolics interaction on the antioxidant profile of protein hydrolysates from Brassica napus. Food Chem. 2015, 178, 346–357. [Google Scholar] [CrossRef]
- Su, S.; Wan, Y.; Guo, S.; Zhang, C.; Zhang, T.; Liang, M. Effect of peptide-phenolic interaction on the antioxidant capacity of walnut protein hydrolysates. Int. J. Food Sci. Technol. 2018, 53, 508–515. [Google Scholar] [CrossRef]
- Khoo, H.E.; Azlan, A.; Tang, S.T.; Lim, S.M. Anthocyanidins and anthocyanins: Colored pigments as food, pharmaceutical ingredients, and the potential health benefits. Food Nutr. Res. 2017, 61, 1361779. [Google Scholar] [CrossRef] [Green Version]
- He, W.; Mu, H.; Liu, Z.; Lu, M.; Hang, F.; Chen, J.; Zeng, M.; Qin, F.; He, Z. Effect of preheat treatment of milk proteins on their interactions with cyanidin-3-O-glucoside. Food Res. Int. 2018, 107, 394–405. [Google Scholar] [CrossRef] [PubMed]
- Olivas-Aguirre, F.J.; Rodrigo-Garcia, J.; Martinez-Ruiz, N.D.; Cardenas-Robles, A.I.; Mendoza-Diaz, S.O.; Alvarez-Parrilla, E.; Gonzalez-Aguilar, G.A.; de la Rosa, L.A.; Ramos-Jimenez, A.; Wall-Medrano, A. Cyanidin-3-O-glucoside: Physical-Chemistry, Foodomics and Health Effects. Molecules 2016, 21, 1264. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tang, L.; Li, S.; Bi, H.; Gao, X. Interaction of cyanidin-3-O-glucoside with three proteins. Food Chem. 2016, 196, 550–559. [Google Scholar] [CrossRef] [PubMed]
- Ren, C.; Xiong, W.; Li, J.; Li, B. Comparison of binding interactions of cyanidin-3-O-glucoside to β-conglycinin and glycinin using multi-spectroscopic and thermodynamic methods. Food Hydrocoll. 2019, 92, 155–162. [Google Scholar] [CrossRef]
- Liu, R.; Wang, L.; Liu, Y.; Wu, T.; Zhang, M. Fabricating soy protein hydrolysate/xanthan gum as fat replacer in ice cream by combined enzymatic and heat-shearing treatment. Food Hydrocoll. 2018, 81, 39–47. [Google Scholar] [CrossRef]
- Zhao, J.; Xiong, Y.L.; McNear, D.H. Changes in structural characteristics of antioxidative soy protein hydrolysates resulting from scavenging of hydroxyl radicals. J. Food Sci. 2013, 78, C152–C159. [Google Scholar] [CrossRef] [PubMed]
- Jiang, P.; Huang, J.; Bao, C.; Jiao, L.; Zhao, H.; Du, Y.; Fazheng, R.; Li, Y. Enzymatically Partially Hydrolyzed alpha-Lactalbumin Peptides for Self-Assembled Micelle Formation and Their Application for Coencapsulation of Multiple Antioxidants. J. Agric. Food Chem. 2018, 66, 12921–12930. [Google Scholar] [CrossRef]
- Chen, Z.; Wang, C.; Gao, X.; Chen, Y.; Santhanam, R.K.; Wang, C.; Xu, L.; Chen, H. Interaction characterization of preheated soy protein isolate with cyanidin-3-O-glucoside and their effects on the stability of black soybean seed coat anthocyanins extracts. Food Chem. 2019, 271, 266–273. [Google Scholar] [CrossRef]
- He, Z.; Zhu, H.; Xu, M.; Zeng, M.; Qin, F.; Chen, J. Complexation of bovine beta-lactoglobulin with malvidin-3-O-glucoside and its effect on the stability of grape skin anthocyanin extracts. Food Chem. 2016, 209, 234–240. [Google Scholar] [CrossRef]
- Dai, T.; Chen, J.; McClements, D.J.; Hu, P.; Ye, X.; Liu, C.; Li, T. Protein-polyphenol interactions enhance the antioxidant capacity of phenolics: Analysis of rice glutelin-procyanidin dimer interactions. Food Funct. 2019, 10, 765–774. [Google Scholar] [CrossRef]
- Cheng, J.; Liu, J.H.; Prasanna, G.; Jing, P. Spectrofluorimetric and molecular docking studies on the interaction of cyanidin-3-O-glucoside with whey protein, beta-lactoglobulin. Int. J. Biol. Macromol. 2017, 105, 965–972. [Google Scholar] [CrossRef]
- Achouri, A.; Zhang, W. Effect of succinylation on the physicochemical properties of soy protein hydrolysate. Food Res. Int. 2001, 34, 507–514. [Google Scholar] [CrossRef]
- Zhou, S.; Lin, Y.; Xu, X.; Meng, L.; Dong, M. Effect of non-covalent and covalent complexation of (−)-epigallocatechin gallate with soybean protein isolate on protein structure and in vitro digestion characteristics. Food Chem. 2020, 309, 125718. [Google Scholar] [CrossRef]
- Gan, J.; Chen, H.; Liu, J.; Wang, Y.; Nirasawa, S.; Cheng, Y. Interactions of β-Conglycinin (7S) with Different Phenolic Acids-Impact on Structural Characteristics and Proteolytic Degradation of Proteins. Int. J. Mol. Sci. 2016, 17, 1671. [Google Scholar] [CrossRef] [Green Version]
- Deng, J.; Li, M.; Zhang, T.; Chen, B.; Leng, X.; Zhao, G. Binding of proanthocyanidins to soybean (Glycine max) seed ferritin inhibiting protein degradation by protease in vitro. Food Res. Int. 2011, 44, 33–38. [Google Scholar] [CrossRef]
- Chen, F.P.; Li, B.S.; Tang, C.H. Nanocomplexation between Curcumin and Soy Protein Isolate: Influence on Curcumin Stability/Bioaccessibility and in Vitro Protein Digestibility. J. Agric. Food Chem. 2015, 63, 3559–3569. [Google Scholar] [CrossRef]
- Zang, X.; Yue, C.; Wang, Y.; Shao, M.; Yu, G. Effect of limited enzymatic hydrolysis on the structure and emulsifying properties of rice bran protein. J. Cereal Sci. 2019, 85, 168–174. [Google Scholar] [CrossRef]
- Xu, X.; Liu, W.; Liu, C.; Luo, L.; Chen, J.; Luo, S.; McClements, D.J.; Wu, L. Effect of limited enzymatic hydrolysis on structure and emulsifying properties of rice glutelin. Food Hydrocoll. 2016, 61, 251–260. [Google Scholar] [CrossRef] [Green Version]
- Yin, Z.; Wu, Y.; Chen, Y.; Qie, X.; Zeng, M.; Wang, Z.; Qin, F.; Chen, J.; He, Z. Analysis of the interaction between cyanidin-3-O-glucoside and casein hydrolysates and its effect on the antioxidant ability of the complexes. Food Chem. 2021, 340, 127915. [Google Scholar] [CrossRef] [PubMed]
- He, Z.; Yuan, B.; Zeng, M.; Tao, G.; Chen, J. Effect of simulated processing on the antioxidant capacity and in vitro protein digestion of fruit juice-milk beverage model systems. Food Chem. 2015, 175, 457–464. [Google Scholar] [CrossRef] [PubMed]
- Stojadinovic, M.; Radosavljevic, J.; Ognjenovic, J.; Vesic, J.; Prodic, I.; Stanic-Vucinic, D.; Cirkovic Velickovic, T. Binding affinity between dietary polyphenols and beta-lactoglobulin negatively correlates with the protein susceptibility to digestion and total antioxidant activity of complexes formed. Food Chem. 2013, 136, 1263–1271. [Google Scholar] [CrossRef] [PubMed]
- Zheng, L.; Lin, L.; Su, G.; Zhao, Q.; Zhao, M. Pitfalls of using 1,1-diphenyl-2-picrylhydrazyl (DPPH) assay to assess the radical scavenging activity of peptides: Its susceptibility to interference and low reactivity towards peptides. Food Res. Int. 2015, 76, 359–365. [Google Scholar] [CrossRef] [PubMed]
- Feng, J.; Xiong, Y.L. Interaction and Functionality of Mixed Myofibrillar and Enzyme-hydrolyzed Soy Proteins. J. Food Sci. 2003, 68, 803–809. [Google Scholar] [CrossRef]
- He, Z.; Li, W.; Guo, F.; Li, W.; Zeng, M.; Chen, J. Foaming Characteristics of Commercial Soy Protein Isolate as Influenced by Heat-Induced Aggregation. Int. J. Food Prop. 2015, 18, 1817–1828. [Google Scholar] [CrossRef] [Green Version]
- Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef]
- Arise, A.K.; Alashi, A.M.; Nwachukwu, I.D.; Ijabadeniyi, O.A.; Aluko, R.E.; Amonsou, E.O. Antioxidant activities of bambara groundnut (Vigna subterranea) protein hydrolysates and their membrane ultrafiltration fractions. Food Funct. 2016, 7, 2431–2437. [Google Scholar] [CrossRef] [PubMed]
MW Distribution (%) | SPI | SPIHs | ||
---|---|---|---|---|
SPIH1 | SPIH2 | SPIH3 | ||
>10 kDa | 87.28 ± 0.17 a | 45.26 ± 0.63 a | 26.26 ± 0.95 b | 12.11 ± 0.18 d |
5–10 kDa | 6.50 ± 0.12 b | 8.46 ± 0.11 d | 9.99 ± 0.23 d | 6.42 ± 0.05 e |
1–5 kDa | 5.39 ± 0.10 c | 26.27 ± 0.52 b | 37.34 ± 1.02 a | 36.23 ± 1.26 a |
0.5–1 kDa | 0.76 ± 0.01 d | 11.19 ± 0.29 c | 13.53 ± 0.49 c | 26.34 ± 0.68 b |
<0.5 kDa | 0.07 ± 0.00 e | 8.82 ± 0.20 d | 12.88 ± 0.37 c | 18.90 ± 0.46 c |
Sample | T (K) | KSV (×104 M−1) | Kq (×1012 M−1 S−1) | Ka (×105 M−1) | n | ΔH (kJ mol−1) | ΔG (kJ mol−1) | ΔS (J mol−1 K−1) |
---|---|---|---|---|---|---|---|---|
SPI + C3G | 298 | 4.65 ± 0.15 | 4.65 ± 0.15 | 6.01 ± 0.88 a | 1.29 ± 0.02 | 18.28 | −32.97 | 171.98 |
306 | 5.21 ± 0.39 | 5.21 ± 0.39 | 7.38 ± 2.04 | 1.30 ± 0.03 | −34.37 | 172.08 | ||
314 | 4.82 ± 0.44 | 4.82 ± 0.44 | 8.75 ± 2.49 | 1.33 ± 0.03 | −35.72 | 171.98 | ||
SPIH1 + C3G | 298 | 3.83 ± 0.09 | 3.83 ± 0.09 | 4.10 ± 0.02 b | 1.27 ± 0.00 | 66.08 | −32.02 | 329.19 |
306 | 4.55 ± 0.22 | 4.55 ± 0.22 | 6.28 ± 0.74 | 1.30 ± 0.02 | −33.96 | 326.95 | ||
314 | 4.12 ± 0.15 | 4.11 ± 0.15 | 16.02 ± 0.79 | 1.41 ± 0.01 | −37.30 | 329.23 | ||
SPIH2 + C3G | 298 | 3.85 ± 0.30 | 3.85 ± 0.30 | 2.15 ± 0.40 d | 1.20 ± 0.01 | 23.00 | −30.43 | 179.27 |
306 | 3.99 ± 0.15 | 3.99 ± 0.15 | 2.64 ± 0.34 | 1.22 ± 0.01 | −31.76 | 178.96 | ||
314 | 3.93 ± 0.04 | 3.93 ± 0.04 | 3.46 ± 0.18 | 1.25 ± 0.01 | −33.30 | 179.27 | ||
SPIH3 + C3G | 298 | 3.63 ± 0.12 | 3.63 ± 0.12 | 3.31 ± 0.63 c | 1.25 ± 0.02 | 2.53 | −31.49 | 114.15 |
306 | 4.02 ± 0.08 | 4.02 ± 0.08 | 3.38 ± 0.85 | 1.24 ± 0.03 | −32.38 | 114.10 | ||
314 | 4.27 ± 0.06 | 4.27 ± 0.06 | 3.48 ± 1.00 | 1.24 ± 0.03 | −33.31 | 114.15 |
Samples | α-Helix (%) | β-Sheet (%) | β-Turn (%) | Random Coil (%) |
---|---|---|---|---|
SPI | 16.86 | 34.78 | 19.65 | 28.81 |
SPIH1 | 6.73 | 15.54 | 31.49 | 46.34 |
SPIH2 | 6.91 | 20.32 | 29.43 | 43.24 |
SPIH3 | 5.46 | 13.01 | 31.48 | 49.95 |
SPI + C3G | 16.73 | 35.00 | 19.62 | 28.65 |
SPIH1 + C3G | 6.76 | 14.31 | 32.06 | 46.86 |
SPIH2 + C3G | 6.82 | 20.16 | 29.49 | 43.53 |
SPIH3 + C3G | 5.57 | 13.63 | 31.34 | 49.45 |
Sample | Radical Scavenging Activity (%) | ||
---|---|---|---|
ABTS | DPPH | ||
SPI | 13.52 ± 0.50 i | 4.85 ± 0.41 c | |
SPIH1 | 27.43 ± 0.73 h | 6.50 ± 0.48 c | |
SPIH2 | 34.85 ± 2.09 f | 5.23 ± 0.22 c | |
SPIH3 | 41.34 ± 2.19 e | 4.84 ± 0.21 c | |
SPI + C3G | Mix | 31.00 ± 1.13 g | 33.62 ± 1.74 b |
Sum | 41.26 ± 0.52 e | 38.53 ± 2.12 a | |
SPIH1 + C3G | Mix | 44.28 ± 2.03 e | 32.23 ± 0.53 b |
Sum | 55.16 ± 0.72 d | 40.18 ± 2.05 a | |
SPIH2 + C3G | Mix | 58.73 ± 3.97 c | 32.69 ± 1.87 b |
Sum | 62.58 ± 2.03 b | 38.91 ± 2.30 a | |
SPIH3 + C3G | Mix | 66.07 ± 1.85 a | 33.95 ± 1.21 b |
Sum | 69.08 ± 2.10 a | 38.52 ± 2.15 a |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, Y.; Yin, Z.; Qie, X.; Chen, Y.; Zeng, M.; Wang, Z.; Qin, F.; Chen, J.; He, Z. Interaction of Soy Protein Isolate Hydrolysates with Cyanidin-3-O-Glucoside and Its Effect on the In Vitro Antioxidant Capacity of the Complexes under Neutral Condition. Molecules 2021, 26, 1721. https://doi.org/10.3390/molecules26061721
Wu Y, Yin Z, Qie X, Chen Y, Zeng M, Wang Z, Qin F, Chen J, He Z. Interaction of Soy Protein Isolate Hydrolysates with Cyanidin-3-O-Glucoside and Its Effect on the In Vitro Antioxidant Capacity of the Complexes under Neutral Condition. Molecules. 2021; 26(6):1721. https://doi.org/10.3390/molecules26061721
Chicago/Turabian StyleWu, Yaru, Zhucheng Yin, Xuejiao Qie, Yao Chen, Maomao Zeng, Zhaojun Wang, Fang Qin, Jie Chen, and Zhiyong He. 2021. "Interaction of Soy Protein Isolate Hydrolysates with Cyanidin-3-O-Glucoside and Its Effect on the In Vitro Antioxidant Capacity of the Complexes under Neutral Condition" Molecules 26, no. 6: 1721. https://doi.org/10.3390/molecules26061721
APA StyleWu, Y., Yin, Z., Qie, X., Chen, Y., Zeng, M., Wang, Z., Qin, F., Chen, J., & He, Z. (2021). Interaction of Soy Protein Isolate Hydrolysates with Cyanidin-3-O-Glucoside and Its Effect on the In Vitro Antioxidant Capacity of the Complexes under Neutral Condition. Molecules, 26(6), 1721. https://doi.org/10.3390/molecules26061721