Plant Preparations and Compounds with Activities against Biofilms Formed by Candida spp.
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Plant Preparations That Display Activity against Candida Biofilms
3.2. Plant Compounds That Display Activity against Candida Biofilm
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Brown, G.D.; Denning, D.W.; Gow, N.A.R.; Levitz, S.M.; Netea, M.G.; White, T.C. Hidden Killers: Human Fungal Infections. Sci. Transl. Med. 2012, 4, 165rv13. [Google Scholar] [CrossRef] [Green Version]
- Ciurea, C.N.; Kosovski, I.-B.; Mare, A.D.; Toma, F.; Pintea-Simon, I.A.; Man, A. Candida and Candidiasis-Opportunism Versus Pathogenicity: A Review of the Virulence Traits. Microorganisms 2020, 8, 857. [Google Scholar] [CrossRef] [PubMed]
- Moran, G.; Coleman, D.; Sullivan, D. An Introduction to the Medically Important Candida Species. In Candida and Candidiasis, 2nd ed.; Wiley: Hoboken, NJ, USA, 2012; pp. 11–25. [Google Scholar]
- Buranarom, N.; Komin, O.; Matangkasombut, O. Hyposalivation, Oral Health, and Candida Colonization in Independent Dentate Elders. PLoS ONE 2020, 15, e0242832. [Google Scholar] [CrossRef] [PubMed]
- Arya, N.R.; Naureen, R.B. Candidiasis. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2021. [Google Scholar]
- Millet, N.; Solis, N.V.; Swidergall, M. Mucosal IgA Prevents Commensal Candida Albicans Dysbiosis in the Oral Cavity. Front. Immunol. 2020, 11, 555363. [Google Scholar] [CrossRef] [PubMed]
- Sobel, J.D. Vulvovaginal Candidosis. Lancet 2007, 369, 1961–1971. [Google Scholar] [CrossRef]
- Vila, T.; Sultan, A.S.; Montelongo-Jauregui, D.; Jabra-Rizk, M.A. Oral Candidiasis: A Disease of Opportunity. J. Fungi 2020, 6, 15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Karpiński, T.; Sopata, M.; Mańkowski, B. The Antimicrobial Effectiveness of Antiseptics as a Challenge in Hard to Heal Wounds. Leczenie Ran 2020, 17, 88–94. [Google Scholar] [CrossRef]
- Bhattacharya, S.; Sae-Tia, S.; Fries, B.C. Candidiasis and Mechanisms of Antifungal Resistance. Antibiotics 2020, 9, 312. [Google Scholar] [CrossRef]
- Cornely, O.A.; Bassetti, M.; Calandra, T.; Garbino, J.; Kullberg, B.J.; Lortholary, O.; Meersseman, W.; Akova, M.; Arendrup, M.C.; Arikan-Akdagli, S.; et al. ESCMID* Guideline for the Diagnosis and Management of Candida Diseases 2012: Non-Neutropenic Adult Patients. Clin. Microbiol. Infect. 2012, 18 (Suppl. 7), 19–37. [Google Scholar] [CrossRef] [Green Version]
- Pappas, P.G.; Kauffman, C.A.; Andes, D.R.; Clancy, C.J.; Marr, K.A.; Ostrosky-Zeichner, L.; Reboli, A.C.; Schuster, M.G.; Vazquez, J.A.; Walsh, T.J.; et al. Clinical Practice Guideline for the Management of Candidiasis: 2016 Update by the Infectious Diseases Society of America. Clin. Infect. Dis. 2016, 62, e1–e50. [Google Scholar] [CrossRef]
- Marak, M.B.; Dhanashree, B. Antifungal Susceptibility and Biofilm Production of Candida Spp. Isolated from Clinical Samples. Int. J. Microbiol. 2018, 2018, 7495218. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rudramurthy, S.M.; Chakrabarti, A.; Paul, R.A.; Sood, P.; Kaur, H.; Capoor, M.R.; Kindo, A.J.; Marak, R.S.K.; Arora, A.; Sardana, R.; et al. Candida auris Candidaemia in Indian ICUs: Analysis of Risk Factors. J. Antimicrob. Chemother. 2017, 72, 1794–1801. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mayer, F.L.; Wilson, D.; Hube, B. Candida Albicans Pathogenicity Mechanisms. Virulence 2013, 4, 119–128. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Łaska, G.; Sienkiewicz, A. Antifungal Activity of the Rhizome Extracts of Pulsatilla Vulgaris against Candida Glabrata. Eur. J. Biol. Res. 2019, 9, 93–103. [Google Scholar]
- Gebreyohannes, G.; Nyerere, A.; Bii, C.; Sbhatu, D.B. Challenges of Intervention, Treatment, and Antibiotic Resistance of Biofilm-Forming Microorganisms. Heliyon 2019, 5, e02192. [Google Scholar] [CrossRef] [Green Version]
- Pereira, R.; Dos Santos Fontenelle, R.O.; de Brito, E.H.S.; de Morais, S.M. Biofilm of Candida Albicans: Formation, Regulation and Resistance. J. Appl. Microbiol. 2020. [Google Scholar] [CrossRef] [PubMed]
- Tumbarello, M.; Fiori, B.; Trecarichi, E.M.; Posteraro, P.; Losito, A.R.; De Luca, A.; Sanguinetti, M.; Fadda, G.; Cauda, R.; Posteraro, B. Risk Factors and Outcomes of Candidemia Caused by Biofilm-Forming Isolates in a Tertiary Care Hospital. PLoS ONE 2012, 7, e33705. [Google Scholar] [CrossRef] [Green Version]
- Karpiński, T.M. Essential Oils of Lamiaceae Family Plants as Antifungals. Biomolecules 2020, 10, 103. [Google Scholar] [CrossRef] [Green Version]
- Müller-Sepúlveda, A.; Chevecich, C.C.; Jara, J.A.; Belmar, C.; Sandoval, P.; Meyer, R.S.; Quijada, R.; Moura, S.; López-Muñoz, R.; Díaz-Dosque, M.; et al. Chemical Characterization of Lavandula Dentata Essential Oil Cultivated in Chile and Its Antibiofilm Effect against Candida Albicans. Planta Med. 2020, 86, 1225–1234. [Google Scholar] [CrossRef]
- Motamedi, M.; Saharkhiz, M.J.; Pakshir, K.; Amini Akbarabadi, S.; Alikhani Khordshami, M.; Asadian, F.; Zareshahrabadi, Z.; Zomorodian, K. Chemical Compositions and Antifungal Activities of Satureja Macrosiphon against Candida and Aspergillus Species. Curr. Med. Mycol. 2019, 5, 20–25. [Google Scholar] [CrossRef]
- Abu-Darwish, M.S.; Cabral, C.; Gonçalves, M.J.; Cavaleiro, C.; Cruz, M.T.; Paoli, M.; Tomi, F.; Efferth, T.; Salgueiro, L. Ziziphora Tenuior, L. Essential Oil from Dana Biosphere Reserve (Southern Jordan); Chemical Characterization and Assessment of Biological Activities. J. Ethnopharmacol. 2016, 194, 963–970. [Google Scholar] [CrossRef] [PubMed]
- Abu-Darwish, M.S.; Cabral, C.; Gonçalves, M.J.; Cavaleiro, C.; Cruz, M.T.; Zulfiqar, A.; Khan, I.A.; Efferth, T.; Salgueiro, L. Chemical Composition and Biological Activities of Artemisia Judaica Essential Oil from Southern Desert of Jordan. J. Ethnopharmacol. 2016, 191, 161–168. [Google Scholar] [CrossRef]
- Soliman, S.S.M.; Semreen, M.H.; El-Keblawy, A.A.; Abdullah, A.; Uppuluri, P.; Ibrahim, A.S. Assessment of Herbal Drugs for Promising Anti-Candida Activity. BMC Complement. Altern. Med. 2017, 17, 257. [Google Scholar] [CrossRef] [Green Version]
- Jafri, H.; Ahmad, I. Thymus Vulgaris Essential Oil and Thymol Inhibit Biofilms and Interact Synergistically with Antifungal Drugs against Drug Resistant Strains of Candida Albicans and Candida Tropicalis. J. Mycol. Med. 2020, 30, 100911. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.-J.; Zhu, Y.-Y.; Yi, X.; Zhou, Z.-S.; He, Y.-J.; Zhou, Y.; Qi, Z.-H.; Jin, D.-N.; Zhao, L.-X.; Luo, X.-D. Bioguided Isolation, Identification and Activity Evaluation of Antifungal Compounds from Acorus Tatarinowii Schott. J. Ethnopharmacol. 2020, 261, 113119. [Google Scholar] [CrossRef]
- Said, M.M.; Watson, C.; Grando, D. Garlic Alters the Expression of Putative Virulence Factor Genes SIR2 and ECE1 in Vulvovaginal C. Albicans Isolates. Sci. Rep. 2020, 10, 3615. [Google Scholar] [CrossRef] [Green Version]
- Bersan, S.M.F.; Galvão, L.C.C.; Goes, V.F.F.; Sartoratto, A.; Figueira, G.M.; Rehder, V.L.G.; Alencar, S.M.; Duarte, R.M.T.; Rosalen, P.L.; Duarte, M.C.T. Action of Essential Oils from Brazilian Native and Exotic Medicinal Species on Oral Biofilms. BMC Complement. Altern. Med. 2014, 14, 451. [Google Scholar] [CrossRef] [Green Version]
- Teodoro, G.R.; Gontijo, A.V.L.; Salvador, M.J.; Tanaka, M.H.; Brighenti, F.L.; Delbem, A.C.B.; Delbem, Á.C.B.; Koga-Ito, C.Y. Effects of Acetone Fraction From Buchenavia Tomentosa Aqueous Extract and Gallic Acid on Candida Albicans Biofilms and Virulence Factors. Front. Microbiol. 2018, 9, 647. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barros Cota, B.; Batista Carneiro de Oliveira, D.; Carla Borges, T.; Cristina Catto, A.; Valverde Serafim, C.; Rogelis Aquiles Rodrigues, A.; Kohlhoff, M.; Leomar Zani, C.; Assunção Andrade, A. Antifungal Activity of Extracts and Purified Saponins from the Rhizomes of Chamaecostus Cuspidatus against Candida and Trichophyton Species. J. Appl. Microbiol. 2021, 130, 61–75. [Google Scholar] [CrossRef] [PubMed]
- Wijesinghe, G.K.; Maia, F.C.; de Oliveira, T.R.; de Feiria, S.N.B.; Joia, F.; Barbosa, J.P.; Boni, G.C.; de Cássia Orlandi Sardi, J.; Rosalen, P.L.; Höfling, J.F. Effect of Cinnamomum Verum Leaf Essential Oil on Virulence Factors of Candida Species and Determination of the In-Vivo Toxicity with Galleria Mellonella Model. Mem. Inst. Oswaldo. Cruz. 2020, 115, e200349. [Google Scholar] [CrossRef]
- Pedroso, R.D.S.; Balbino, B.L.; Andrade, G.; Dias, M.C.P.S.; Alvarenga, T.A.; Pedroso, R.C.N.; Pimenta, L.P.; Lucarini, R.; Pauletti, P.M.; Januário, A.H.; et al. In Vitro and In Vivo Anti-Candida Spp. Activity of Plant-Derived Products. Plants 2019, 8, 494. [Google Scholar] [CrossRef] [Green Version]
- Andrade, G.; Orlando, H.C.S.; Scorzoni, L.; Pedroso, R.S.; Abrão, F.; Carvalho, M.T.M.; Veneziani, R.C.S.; Ambrósio, S.R.; Bastos, J.K.; Mendes-Giannini, M.J.S.; et al. Brazilian Copaifera Species: Antifungal Activity against Clinically Relevant Candida Species, Cellular Target, and In Vivo Toxicity. J. Fungi 2020, 6, 153. [Google Scholar] [CrossRef]
- de Almeida Freires, I.; Murata, R.M.; Furletti, V.F.; Sartoratto, A.; de Alencar, S.M.; Figueira, G.M.; de Oliveira Rodrigues, J.A.; Duarte, M.C.T.; Rosalen, P.L. Coriandrum Sativum L. (Coriander) Essential Oil: Antifungal Activity and Mode of Action on Candida spp., and Molecular Targets Affected in Human Whole-Genome Expression. PLoS ONE 2014, 9, e99086. [Google Scholar] [CrossRef] [Green Version]
- Manoharan, R.K.; Lee, J.-H.; Kim, Y.-G.; Kim, S.-I.; Lee, J. Inhibitory Effects of the Essential Oils α-Longipinene and Linalool on Biofilm Formation and Hyphal Growth of Candida Albicans. Biofouling 2017, 33, 143–155. [Google Scholar] [CrossRef] [PubMed]
- Khan, M.S.A.; Ahmad, I. Biofilm Inhibition by Cymbopogon Citratus and Syzygium Aromaticum Essential Oils in the Strains of Candida Albicans. J. Ethnopharmacol. 2012, 140, 416–423. [Google Scholar] [CrossRef] [PubMed]
- Agarwal, V.; Lal, P.; Pruthi, V. Prevention of Candida Albicans Biofilm by Plant Oils. Mycopathologia 2008, 165, 13–19. [Google Scholar] [CrossRef] [PubMed]
- De Toledo, L.G.; Ramos, M.A.D.S.; Spósito, L.; Castilho, E.M.; Pavan, F.R.; Lopes, É.D.O.; Zocolo, G.J.; Silva, F.A.N.; Soares, T.H.; Dos Santos, A.G.; et al. Essential Oil of Cymbopogon Nardus (L.) Rendle: A Strategy to Combat Fungal Infections Caused by Candida Species. Int. J. Mol. Sci. 2016, 17, 1252. [Google Scholar] [CrossRef] [Green Version]
- Hendry, E.R.; Worthington, T.; Conway, B.R.; Lambert, P.A. Antimicrobial Efficacy of Eucalyptus Oil and 1,8-Cineole Alone and in Combination with Chlorhexidine Digluconate against Microorganisms Grown in Planktonic and Biofilm Cultures. J. Antimicrob. Chemother. 2009, 64, 1219–1225. [Google Scholar] [CrossRef]
- Quatrin, P.M.; Verdi, C.M.; de Souza, M.E.; de Godoi, S.N.; Klein, B.; Gundel, A.; Wagner, R.; de Almeida Vaucher, R.; Ourique, A.F.; Santos, R.C.V. Antimicrobial and Antibiofilm Activities of Nanoemulsions Containing Eucalyptus Globulus Oil against Pseudomonas Aeruginosa and Candida spp. Microb. Pathog. 2017, 112, 230–242. [Google Scholar] [CrossRef] [PubMed]
- Sardi, J.d.C.O.; Freires, I.A.; Lazarini, J.G.; Infante, J.; de Alencar, S.M.; Rosalen, P.L. Unexplored Endemic Fruit Species from Brazil: Antibiofilm Properties, Insights into Mode of Action, and Systemic Toxicity of Four Eugenia spp. Microb. Pathog. 2017, 105, 280–287. [Google Scholar] [CrossRef]
- Popović, V.; Stojković, D.; Nikolić, M.; Heyerick, A.; Petrović, S.; Soković, M.; Niketić, M. Extracts of Three Laserpitium L. Species and Their Principal Components Laserpitine and Sesquiterpene Lactones Inhibit Microbial Growth and Biofilm Formation by Oral Candida Isolates. Food. Funct. 2015, 6, 1205–1211. [Google Scholar] [CrossRef]
- Benzaid, C.; Belmadani, A.; Djeribi, R.; Rouabhia, M. The Effects of Mentha × Piperita Essential Oil on C. Albicans Growth, Transition, Biofilm Formation, and the Expression of Secreted Aspartyl Proteinases Genes. Antibiotics 2019, 8, 10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cannas, S.; Molicotti, P.; Usai, D.; Maxia, A.; Zanetti, S. Antifungal, Anti-Biofilm and Adhesion Activity of the Essential Oil of Myrtus Communis L. against Candida Species. Nat. Prod. Res. 2014, 28, 2173–2177. [Google Scholar] [CrossRef]
- Stojković, D.; Dias, M.I.; Drakulić, D.; Barros, L.; Stevanović, M.; C F R Ferreira, I.; D Soković, M. Methanolic Extract of the Herb Ononis Spinosa L. Is an Antifungal Agent with No Cytotoxicity to Primary Human Cells. Pharmaceuticals 2020, 13, 78. [Google Scholar] [CrossRef] [PubMed]
- Souza, C.M.C.; Pereira Junior, S.A.; Moraes, T.d.S.; Damasceno, J.L.; Amorim Mendes, S.; Dias, H.J.; Stefani, R.; Tavares, D.C.; Martins, C.H.G.; Crotti, A.E.M.; et al. Antifungal Activity of Plant-Derived Essential Oils on Candida Tropicalis Planktonic and Biofilms Cells. Med. Mycol. 2016, 54, 515–523. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Curvelo, J.A.R.; Marques, A.M.; Barreto, A.L.S.; Romanos, M.T.V.; Portela, M.B.; Kaplan, M.A.C.; Soares, R.M.A. A Novel Nerolidol-Rich Essential Oil from Piper Claussenianum Modulates Candida Albicans Biofilm. J. Med. Microbiol. 2014, 63, 697–702. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bakkiyaraj, D.; Nandhini, J.R.; Malathy, B.; Pandian, S.K. The Anti-Biofilm Potential of Pomegranate (Punica Granatum L.) Extract against Human Bacterial and Fungal Pathogens. Biofouling 2013, 29, 929–937. [Google Scholar] [CrossRef] [PubMed]
- Alves-Silva, J.M.; Zuzarte, M.; Gonçalves, M.J.; Cruz, M.T.; Cavaleiro, C.; Salgueiro, L. Unveiling the Bioactive Potential of the Essential Oil of a Portuguese Endemism, Santolina Impressa. J. Ethnopharmacol. 2019, 244, 112120. [Google Scholar] [CrossRef]
- Sharifzadeh, A.; Khosravi, A.R.; Ahmadian, S. Chemical Composition and Antifungal Activity of Satureja Hortensis L. Essentiall Oil against Planktonic and Biofilm Growth of Candida Albicans Isolates from Buccal Lesions of HIV(+) Individuals. Microb. Pathog. 2016, 96, 1–9. [Google Scholar] [CrossRef]
- Kipanga, P.N.; Liu, M.; Panda, S.K.; Mai, A.H.; Veryser, C.; Van Puyvelde, L.; De Borggraeve, W.M.; Van Dijck, P.; Matasyoh, J.; Luyten, W. Biofilm Inhibiting Properties of Compounds from the Leaves of Warburgia Ugandensis Sprague Subsp. Ugandensis against Candida and Staphylococcal Biofilms. J. Ethnopharmacol. 2020, 248, 112352. [Google Scholar] [CrossRef] [PubMed]
- Gabriela, N.; Rosa, A.M.; Catiana, Z.I.; Soledad, C.; Mabel, O.R.; Esteban, S.J.; Veronica, B.; Daniel, W.; Ines, I.M. The Effect of Zuccagnia Punctata, an Argentine Medicinal Plant, on Virulence Factors from Candida Species. Nat. Prod. Commun. 2014, 9, 933–936. [Google Scholar] [CrossRef] [Green Version]
- Karpiński, T.M. Efficacy of Octenidine against Pseudomonas Aeruginosa Strains. Eur. J. Biol. Res. 2019, 9, 135–140. [Google Scholar]
- Loures, F.V.; Levitz, S.M. XTT Assay of Antifungal Activity. Bio. Protoc. 2015, 5, e1543. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gonçalves, M.J.; Vicente, A.M.; Cavaleiro, C.; Salgueiro, L. Composition and Antifungal Activity of the Essential Oil of Mentha Cervina from Portugal. Nat. Prod. Res. 2007, 21, 867–871. [Google Scholar] [CrossRef] [Green Version]
- Ćavar, S.; Vidic, D.; Maksimović, M. Volatile Constituents, Phenolic Compounds, and Antioxidant Activity of Calamintha Glandulosa (Req.) Bentham. J. Sci. Food Agric. 2013, 93, 1758–1764. [Google Scholar] [CrossRef]
- Khan, M.S.A.; Ahmad, I. Antibiofilm Activity of Certain Phytocompounds and Their Synergy with Fluconazole against Candida Albicans Biofilms. J. Antimicrob. Chemother. 2012, 67, 618–621. [Google Scholar] [CrossRef] [Green Version]
- Pemmaraju, S.C.; Pruthi, P.A.; Prasad, R.; Pruthi, V. Candida Albicans Biofilm Inhibition by Synergistic Action of Terpenes and Fluconazole. Indian J. Exp. Biol. 2013, 51, 1032–1037. [Google Scholar]
- EUCAST: Breakpoints for Antifungals. Available online: https://eucast.org/astoffungi/clinicalbreakpointsforantifungals/ (accessed on 19 March 2021).
- Messier, C.; Grenier, D. Effect of Licorice Compounds Licochalcone A, Glabridin and Glycyrrhizic Acid on Growth and Virulence Properties of Candida Albicans. Mycoses 2011, 54, e801–e806. [Google Scholar] [CrossRef] [PubMed]
- Cao, Y.; Dai, B.; Wang, Y.; Huang, S.; Xu, Y.; Cao, Y.; Gao, P.; Zhu, Z.; Jiang, Y. In Vitro Activity of Baicalein against Candida Albicans Biofilms. Int. J. Antimicrob. Agents 2008, 32, 73–77. [Google Scholar] [CrossRef] [PubMed]
- Cretton, S.; Dorsaz, S.; Azzollini, A.; Favre-Godal, Q.; Marcourt, L.; Ebrahimi, S.N.; Voinesco, F.; Michellod, E.; Sanglard, D.; Gindro, K.; et al. Antifungal Quinoline Alkaloids from Waltheria Indica. J. Nat. Prod. 2016, 79, 300–307. [Google Scholar] [CrossRef]
- Cheng, A.; Sun, L.; Wu, X.; Lou, H. The Inhibitory Effect of a Macrocyclic Bisbibenzyl Riccardin D on the Biofilms of Candida Albicans. Biol. Pharm. Bull. 2009, 32, 1417–1421. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hu, D.-D.; Zhang, R.-L.; Zou, Y.; Zhong, H.; Zhang, E.-S.; Luo, X.; Wang, Y.; Jiang, Y.-Y. The Structure-Activity Relationship of Pterostilbene Against Candida Albicans Biofilms. Molecules 2017, 22, 360. [Google Scholar] [CrossRef] [Green Version]
- Feldman, M.; Sionov, R.V.; Mechoulam, R.; Steinberg, D. Anti-Biofilm Activity of Cannabidiol against Candida Albicans. Microorganisms 2021, 9, 441. [Google Scholar] [CrossRef] [PubMed]
- Xie, C.; Sun, L.; Meng, L.; Wang, M.; Xu, J.; Bartlam, M.; Guo, Y. Sesquiterpenes from Carpesium Macrocephalum Inhibit Candida Albicans Biofilm Formation and Dimorphism. Bioorg. Med. Chem. Lett. 2015, 25, 5409–5411. [Google Scholar] [CrossRef] [PubMed]
- Raut, J.S.; Shinde, R.B.; Chauhan, N.M.; Karuppayil, S.M. Phenylpropanoids of Plant Origin as Inhibitors of Biofilm Formation by Candida Albicans. J. Microbiol. Biotechnol. 2014, 24, 1216–1225. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Raut, J.S.; Shinde, R.B.; Chauhan, N.M.; Karuppayil, S.M. Terpenoids of Plant Origin Inhibit Morphogenesis, Adhesion, and Biofilm Formation by Candida Albicans. Biofouling 2013, 29, 87–96. [Google Scholar] [CrossRef] [PubMed]
- Ivanov, M.; Kannan, A.; Stojković, D.S.; Glamočlija, J.; Calhelha, R.C.; Ferreira, I.C.F.R.; Sanglard, D.; Soković, M. Camphor and Eucalyptol-Anticandidal Spectrum, Antivirulence Effect, Efflux Pumps Interference and Cytotoxicity. Int. J. Mol. Sci. 2021, 22, 483. [Google Scholar] [CrossRef] [PubMed]
- Dalleau, S.; Cateau, E.; Bergès, T.; Berjeaud, J.-M.; Imbert, C. In Vitro Activity of Terpenes against Candida Biofilms. Int. J. Antimicrob. Agents 2008, 31, 572–576. [Google Scholar] [CrossRef] [PubMed]
- Touil, H.F.Z.; Boucherit, K.; Boucherit-Otmani, Z.; Khoder, G.; Madkour, M.; Soliman, S.S.M. Optimum Inhibition of Amphotericin-B-Resistant Candida Albicans Strain in Single- and Mixed-Species Biofilms by Candida and Non-Candida Terpenoids. Biomolecules 2020, 10, 342. [Google Scholar] [CrossRef] [Green Version]
- Janeczko, M.; Masłyk, M.; Kubiński, K.; Golczyk, H. Emodin, a Natural Inhibitor of Protein Kinase CK2, Suppresses Growth, Hyphal Development, and Biofilm Formation of Candida Albicans. Yeast 2017, 34, 253–265. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ali, I.; Khan, F.G.; Suri, K.A.; Gupta, B.D.; Satti, N.K.; Dutt, P.; Afrin, F.; Qazi, G.N.; Khan, I.A. In Vitro Antifungal Activity of Hydroxychavicol Isolated from Piper Betle L. Ann. Clin. Microbiol. Antimicrob. 2010, 9, 7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abirami, G.; Alexpandi, R.; Durgadevi, R.; Kannappan, A.; Veera Ravi, A. Inhibitory Effect of Morin Against Candida Albicans Pathogenicity and Virulence Factor Production: An in Vitro and in Vivo Approaches. Front. Microbiol. 2020, 11, 561298. [Google Scholar] [CrossRef] [PubMed]
- Rivas da Silva, A.C.; Lopes, P.M.; Barros de Azevedo, M.M.; Costa, D.C.M.; Alviano, C.S.; Alviano, D.S. Biological Activities of α-Pinene and β-Pinene Enantiomers. Molecules 2012, 17, 6305–6316. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lemos, A.S.O.; Florêncio, J.R.; Pinto, N.C.C.; Campos, L.M.; Silva, T.P.; Grazul, R.M.; Pinto, P.F.; Tavares, G.D.; Scio, E.; Apolônio, A.C.M.; et al. Antifungal Activity of the Natural Coumarin Scopoletin Against Planktonic Cells and Biofilms From a Multidrug-Resistant Candida Tropicalis Strain. Front. Microbiol. 2020, 11, 1525. [Google Scholar] [CrossRef]
- Kim, H.-R.; Eom, Y.-B. Antifungal and Anti-Biofilm Effects of 6-Shogaol against Candida Auris. J. Appl. Microbiol. 2020. [Google Scholar] [CrossRef] [PubMed]
- Dal Piaz, F.; Bader, A.; Malafronte, N.; D’Ambola, M.; Petrone, A.M.; Porta, A.; Ben Hadda, T.; De Tommasi, N.; Bisio, A.; Severino, L. Phytochemistry of Compounds Isolated from the Leaf-Surface Extract of Psiadia Punctulata (DC.) Vatke Growing in Saudi Arabia. Phytochemistry 2018, 155, 191–202. [Google Scholar] [CrossRef] [PubMed]
- Shu, C.; Sun, L.; Zhang, W. Thymol Has Antifungal Activity against Candida Albicans during Infection and Maintains the Innate Immune Response Required for Function of the P38 MAPK Signaling Pathway in Caenorhabditis Elegans. Immunol. Res. 2016, 64, 1013–1024. [Google Scholar] [CrossRef] [PubMed]
- Braga, P.C.; Culici, M.; Alfieri, M.; Dal Sasso, M. Thymol Inhibits Candida Albicans Biofilm Formation and Mature Biofilm. Int. J. Antimicrob. Agents 2008, 31, 472–477. [Google Scholar] [CrossRef]
- Mandal, S.M.; Migliolo, L.; Franco, O.L.; Ghosh, A.K. Identification of an Antifungal Peptide from Trapa Natans Fruits with Inhibitory Effects on Candida Tropicalis Biofilm Formation. Peptides 2011, 32, 1741–1747. [Google Scholar] [CrossRef] [PubMed]
- Patel, M.; Srivastava, V.; Ahmad, A. Dodonaea Viscosa Var Angustifolia Derived 5,6,8-Trihydroxy-7,4’ Dimethoxy Flavone Inhibits Ergosterol Synthesis and the Production of Hyphae and Biofilm in Candida Albicans. J. Ethnopharmacol. 2020, 259, 112965. [Google Scholar] [CrossRef]
Name of Plant (Family) | Main Compounds Presented in the Reference (EO: Essential Oil) | Targeted Species of Candida | MICs (mg/L; mL/L) | Inhibition of Biofilm Formation by at Least 50% (mg/L; mL/L) | Inhibited Stage of Biofilm; Method of Biofilm Detection | Ref. |
---|---|---|---|---|---|---|
Acorus calamus var. angustatus Besser = A. tatarinowii Schott (Acoraceae) | EO: asaraldehyde, 1-(2,4,5-trimethoxyphenyl)-1,2-propanediol, α-asarone, β-asarone, γ-asarone, acotatarone C | C. albicans | 51.2 | 50–200 | Mature biofilm; crystal violet and fluorescence microscopy | [27] |
Allium sativum L. (Amaryllidaceae) | Extract: allicin | C. albicans | 400 | 60 | Biofilm formation; XTT | [28] |
Aloysia gratissima (Aff & Hook).Tr (Verbenaceae) | EO: E-pinocamphone (16.07%), β-pinene (12.01%), guaiol (8.53%), E-pinocarveol acetate (8.19%) | C. albicans | 15 | 500 | Biofilm formation; crystal violet | [29] |
Artemisia judaica L. (Asteraceae) | EO: piperitone (30.4%), camphor (16.1%), ethyl cinnamate (11.0%), chrysanthenone (6.7%) | C. albicans | 1.25 | 2.5 | Mature biofilm; XTT | [24] |
C. guillermondii | 1.25 | 2.5 | ||||
C. krusei | 1.25 | 2.5 | ||||
C. parapsilosis | 1.25 | 2.5 | ||||
C. tropicalis | 1.25 | 2.5 | ||||
Buchenavia tomentosa Eichler (Combretaceae) | Extract: gallic acid, kaempferol, epicatechin, ellagic acid, vitexin, and corilagin | C. albicans | 625 | 312.5 | Biofilm formation and mature biofilm; culture | [30] |
Chamaecostus cuspidatus (Nees & Mart.) C.Specht & D.W.Stev. (Costaceae) | Extract: dioscin, aferoside A, aferoside C | C. albicans | 250 | 15.62 | Biofilm formation and mature biofilm; MTT | [31] |
Cinnamomum verum J. Presl (Lauraceae) | EO: eugenol (77.22%), benzyl benzoate (4.53%), trans-caryophyllene (3.39%), acetyl eugenol (2.75%), linalool 2.11% | C. albicans | 1000 | 150 | Biofilm adhesion; XTT | [32] |
C. dubliniensis | 1000 | 200 | ||||
C. tropicalis | 1000 | 350 | ||||
Citrus limon (L.) Osbeck (Rutaceae) | EO: limonene (53.4%), neral (11%), geraniol (9%), trans-limonene oxide (7%), nerol (6%) | C. albicans | 500 | 2000 | Biofilm formation and mature biofilm; XTT | [33] |
C. glabrata | 250 | 1000 | ||||
C. krusei | 500 | 125 | ||||
C. orthopsilosis | 500 | 1000 | ||||
C. parapsilosis | 500 | 2000 | ||||
C. tropicalis | 250 | 2000 | ||||
Copaifera paupera (Herzog) Dwyer (Fabaceae) | Extract: galloylquinic acids, quercetrin, afzelin | C. glabrata | 5.89 | 46.87 | Biofilm formation and mature biofilm; XTT | [34] |
Copaifera reticulata Ducke (Fabaceae) | Extract: galloylquinic acids, quercetrin, afzelin | C. glabrata | 5.89 | 46.87 | Biofilm formation and mature biofilm; XTT | [34] |
Coriandrum sativum L. (Apiaceae) | EO: 1-decanol (33.91%), E-2-decen-1-ol (23.59%), 2-dodecen-1-ol (13.06%), E-2-tetradecen-1-ol (5.46%) | C. albicans | 7 | 250 | Biofilm formation; crystal violet | [29] |
EO: decanal (19.09%), trans-2-decenal (17.54%), 2-decen-1-ol (12.33%), cyclodecane (12.15%) | C. albicans | 15.6 | 62.5–125 | Biofilm adhesion; crystal violet | [35] | |
C. dubliniensis | 31.2 | 62.5–125 | ||||
C. rugosa | 15.6 | 62.5 | ||||
C. tropicalis | 31.2 | 31.25–250 | ||||
Croton eluteria (L.) W.Wright (Euphorbiaceae) | EO: α-pinene (29.37%), β-pinene (19.35%), camphene (10.31%), 1,8-cineole (9.68%) | C. albicans | 4000 | 5–500 | Biofilm formation; confocal laser microscopy | [36] |
Cupressus sempervirens L. (Cupressaceae) | EO: sabinene (20.3%), citral (20%), terpinene-4-ol (15.4%), α-pinene (8%) | C. albicans | 250 | 1000 | Biofilm formation and mature biofilm; XTT | [33] |
C. glabrata | 31.25 | 250 | ||||
C. krusei | 62.5 | 62.5 | ||||
C. orthopsilosis | 31.25 | 125 | ||||
C. parapsilosis | 62.5 | 500 | ||||
C. tropicalis | 250 | 500 | ||||
Cymbopogon citratus (DC.) Stapf (Poaceae) | EO: no composition | C. albicans | 180–360 | 22.5–180 | Biofilm formation; XTT | [37] |
Cymbopogon martini (Roxb.) W.Watson (Poaceae) | EO: no composition | C. albicans | 16,800 | 800 | Biofilm formation; XTT | [38] |
Cymbopogon nardus (L.) Rendle (Poaceae) | EO: citronellal (27.87%), geraniol (22.77%), geranial (14.54%), citronellol (11.85%), neral (11.21%) | C. albicans | 1000 | 2500–5000 | Biofilm adhesion; XTT | [39] |
C. krusei | 250–500 | 2500 | ||||
C. parapsilosis | 500–1000 | 5000–10,000 | ||||
Cyperus articulatus L. (Cyperaceae) | EO: α-pinene (5.72%), mustakone (5.66%), α-bulnesene (5.02%), α-copaene (4.97%) | C. albicans | 125 | 250 | Biofilm formation; crystal violet | [29] |
Eucalyptus sp. (Myrtaceae) | EO: no composition | C. albicans | 8 | 8 | Mature biofilm; luminescence | [40] |
Eucalyptus globulus Labill. (Myrtaceae) | EO: 1,8-cineole (75.8%), p-cymene (7.5%), α-pinene (7.4%), limonene (6.4%) | C. albicans | 219 | 11,250–22,500 | Mature biofilm; atomic force microscopy | [41] |
C. glabrata | 219 | 11,250–22,500 | ||||
C. tropicalis | 885 | 11,250–22,500 | ||||
EO: no composition | C. albicans | 8400 | 500 | Biofilm formation; XTT | [38] | |
Eugenia brasiliensis Lam. (Myrtaceae) | Extract: no composition | C. albicans | 15.62–31.25 | 156 | Mature biofilm; scanning electron microscopy | [42] |
Eugenia leitonii Legrand nom. inval. (Myrtaceae) | Extract: no composition | C. albicans | 15.62–250 | 156 | Mature biofilm; scanning electron microscopy | [42] |
Helichrysum italicum (Roth) G.Don (Asteraceae) | EO: α-pinene (27.64%), γ-elemene (23.84%), β-caryophyllene (13.05%), α-longipinene (11.25%) | C. albicans | 6000 | 10–500 | Biofilm formation; confocal laser microscopy | [36] |
Laserpitium latifolium L. (Apiaceae) | Extract: laserpitine | C. albicans | 1250 | 6300 | Mature biofilm; luminescence | [43] |
C. krusei | 1250 | 6300 | ||||
Laserpitium ochridanum Micevski (Apiaceae) | Extract: isomontanolide, montanolide, tarolide | C. albicans | 5000 | 10,000 | Mature biofilm; luminescence | [43] |
C. krusei | 5000 | 10,000 | ||||
Laserpitium zernyi Hayek = L. siler subsp. zernyi (Hayek) Tutin (Apiaceae) | Extract: isomontanolide, montanolide, tarolide | C. albicans | 7500 | 15,000 | Mature biofilm; luminescence | [43] |
C. krusei | 7500 | 37,500 | ||||
Lavandula dentata L. (Lamiaceae) | EO: eucalyptol (42.66%), β-pinene (8.59%), trans-α-bisabolene (6.34%), pinocarveol (6.3%) | C. albicans | 0.15–0.18 | 0.045–0.07 | Mature biofilm; XTT | [21] |
Lawsonia inermis L. (Lythraceae) | Extract: no composition | C. albicans | 10 | 2.5–12.5 | Mature biofilm; MTT | [25] |
Lippia sidoides Cham. (Verbenaceae) | EO: thymol (65.76%), p-cymene (17.28%), α-caryophyllene (10.46%), cyclohexanone (6.5%) | C. albicans | 250 | 500 | Biofilm formation; crystal violet | [29] |
Litsea cubeba (Lour.) Pers. (Lauraceae) | EO: limonene (37%), neral (31.4%), citral (12%), linalool (4%) | C. albicans | 500 | 2000 | Biofilm formation and mature biofilm; XTT | [33] |
C. glabrata | 250 | 2000 | ||||
C. krusei | 62.5 | 250 | ||||
C. orthopsilosis | 250 | 2000 | ||||
C. parapsilosis | 500 | 1000 | ||||
C. tropicalis | 1000 | 2000 | ||||
Mentha × piperita L. (Lamiaceae) | EO: menthol (32.93%), menthone (24.41%), 1,8-cineole (7.89%) | C. albicans | 1–10 | 10 | Biofilm formation; MTT | [44] |
EO: no composition | C. albicans | 11,600 | 800 | Biofilm formation; XTT | [38] | |
Mikania glomerata Spreng (Asteraceae) | EO: germacrene D (38.29%), α-caryophyllene (9.49%), bicyclogermacrene (7.98%), caryophyllene oxide (4.28%) | C. albicans | 250 | 500 | Biofilm formation; crystal violet | [29] |
Myrtus communis L. (Myrtaceae) | EO: α-pinene (39.8%), 1,8-cineole (24.8%), limonene (10.7%), linalool (6.4%) | C. albicans | 1250–10,000 | None or 1250 | No data; no data | [45] |
C. parapsilosis | 1250 to >16,000 | 1250 | ||||
C. tropicalis | 1250–16,000 | 1250 | ||||
Ononis spinosa L. (Fabaceae) | Extract: kaempherol-O-dihexoside, kaempherol-O-hexoside-pentoside, kaempherol-O-hexoside, quercetin-O-hexoside-pentoside, acetylquercetin-O-hexoside | C. albicans | 620 | 10,000 | Mature biofilm; luminescence | [46] |
C. krusei | 620 | 5000 | ||||
C. tropicalis | 310 | 10,000 | ||||
Pelargonium graveolens L’Hér. (Geraniaceae) | EO: geraniol (42.3%), linalool (20.1%), citronellol (11.1%), menthone (8.0%) | C. albicans | 125 | 4000–8000 | Mature biofilm; XTT | [47] |
Piper claussenianum (Miq.) C. DC. (Piperaceae) | EO: nerolidols | C. albicans | 4100–9600 | 2400–12,600 | Mature biofilm; MTT | [48] |
Portulaca oleracea L. (Portulacaceae) | Extract: no composition | C. albicans | 10 | 12.5 | Mature biofilm; MTT | [25] |
Punica granatum L. (Lythraceae) | Extract: ellagic acid | C. albicans | 1000 | 100–750 | Biofilm formation and mature biofilm; crystal violet | [49] |
Santolina impressa Hoffmanns. & Link (Asteraceae) | EO: β-pinene (22.5%), 1,8-cineole (10.0%), limonene (9.1%), camphor (8.1%), β-phellandrene (8.0%) | C. albicans | 540 | 70–1050 | Biofilm formation; XTT | [50] |
Satureja hortensis L. (Lamiaceae) | EO: thymol (45.9%), gamma-terpinen (16.71%), carvacrol (12.81%), p-cymene (9.61%) | C. albicans | 200–400 | 400–4800 | Biofilm adhesion, formation, and mature biofilm; MTT | [51] |
Satureja macrosiphon (Coss.) = Micromeria macrosiphon Coss. (Lamiaceae) | EO: linalool (28.46%), borneol (16.22%), terpinene-4-ol (14.58%), cis-sabinene hydrate (12.96%) | C. albicans | 0.06–4 | 0.06–8 | Biofilm formation; XTT | [22] |
C. dubliniensis | 0.25–4 | 2–8 | ||||
Syzygium aromaticum (L.) Merr. & L.M.Perry = Eugenia caryophyllus (Spreng.) Bullock & S.G.Harrison (Myrtaceae) | EO: no composition | C. albicans | 100–200 | 50 | Biofilm formation; XTT | [37] |
EO: no composition | C. albicans | 48,000 | 3300 | Biofilm formation; XTT | [38] | |
Thymus vulgaris L. (Lamiaceae) | EO: thymol (54.73%), carvacrol (12.42%), terpineol (4.00%), nerol acetate (2.86%), fenchol (0.5%) | C. albicans | 1.56–25 | 12.5 | Biofilm formation; absorbance, crystal violet, and scanning electron microscopy | [26] |
C. tropicalis | 25–50 | 12.5 | ||||
Warburgia ugandensis Sprague (Canellaceae) | Extract: ugandenial A, warburganal, polygodial, alpha-linolenic acid ALA | C. albicans | Lack of data | 1000 | Biofilm formation and mature biofilm; XTT and confocal laser microscopy | [52] |
C. glabrata | Lack of data | 1000 | ||||
Ziziphora tenuior L. (Lamiaceae) | EO: pulegone (46.8%), p-menth-3-en-8-ol (12.5%), isomenthone (6.6%), 8-hydroxymenthone (6.2%), isomenthol (4.7%) | C. albicans | 1.25 | 2.5 | Mature biofilm; XTT | [23] |
Zuccagnia punctata L. (Fabaceae) | Extract: no composition | C. albicans | 400 | 100 | Biofilm formation and mature biofilm; XTT and crystal violet | [53] |
Active Compound | Example of Plant Origin | Targeted Fungus | MICs (mg/L, mL/L) | Inhibition of Biofilm Formation by at Least 50% (mg/L, mL/L) | Inhibited Stage of Biofilm; Method of Biofilm Detection | Ref. |
---|---|---|---|---|---|---|
Antidesmone (alkaloid) | Waltheria indica, W. brachypetala | C. albicans | 32 | 16 | Mature biofilm; XTT | [63] |
C. glabrata | >32 | 16 | ||||
C. krusei | 16 | 16 | ||||
C. parapsilosis | 4 | 16 | ||||
C. tropicalis | >32 | 16 | ||||
Anisaldehyde (phenolic aldehyde) |
Pimpinella anisum
,
Foeniculum vulgare | C. albicans | 500 | 500 | Mature biofilm; XTT, crystal violet, and inverted light microscopy | [68] |
Anisic acid (phenolic acid) | Pimpinella anisum | C. albicans | 4000 | 4000 | Mature biofilm; XTT, crystal violet, and inverted light microscopy | [68] |
Anisyl alcohol (phenolic alcohol) | Pimpinella anisum | C. albicans | 31 | 500 | Mature biofilm; XTT, crystal violet, and inverted light microscopy | [68] |
Baicalein (flavonoid) | Scutellaria baicalensis, S. lateriflora | C. albicans | No data | 4–32 | Biofilm formation; XTT | [62] |
Camphene (monotherpene) | Croton eluteria, Cinnamomum verum | C. albicans | No data | 500 | Biofilm formation; confocal laser microscopy | [36] |
C. albicans | 1000 | 2000 | Mature biofilm; XTT, crystal violet, and inverted light microscopy | [69] | ||
Camphor (bicyclic monotherpene) | Cinnamomum camphora, Artemisia annua | C. albicans | 125–250 | Not or 62.5–250 | Biofilm formation; crystal violet and absorbance | [70] |
C. glabrata | 175 | Not | ||||
C. krusei | 350 | Not | ||||
C. parapsilosis | 125 | Not | ||||
C. tropicalis | 175 | 175 | ||||
Cannabidiol (cannabinoid) | Cannabis sativa | C. albicans | No data | 12.5–100 | Biofilm formation; confocal microscopy | [66] |
Carvacrol (phenol) | Thymus serpyllum, Carum carvi, Origanum vulgare | C. albicans | 250 | 500 | Mature biofilm; XTT, crystal violet, and inverted light microscopy | [69] |
100–20,000 | 300–1250 | Mature biofilm; XTT | [71] | |||
1000 | 750–1500 | Biofilm formation; MTT | [72] | |||
C. glabrata | 100–20,000 | 300–1250 | Mature biofilm; XTT | [71] | ||
C. parapsilosis | 100–20,000 | 300–1250 | ||||
Carvene/Limonene (monotherpene) | Citrus × aurantium, Citrus limon | C. albicans | 1000 | 4000 | Mature biofilm; XTT, crystal violet, and inverted light microscopy | [69] |
Carvone/Carvol (monotherpene) | Carum carvi, Mentha spicata | C. albicans | >4000 | 250 | Mature biofilm; XTT, crystal violet, and inverted light microscopy | [69] |
β-Caryophyllene (sesquiterpene) | Helichrysum italicum, Caryophyllusaromaticus | C. albicans | No data | 100–500 | Biofilm formation; confocal laser microscopy | [36] |
1,4-Cineole (monotherpene) |
Rosmarinus officinalis
, Thymus vulgaris | C. albicans | >4000 | 4000 | Mature biofilm; XTT, crystal violet, and inverted light microscopy | [69] |
1,8-Cineole/Eucalyptol (monotherpene) | Eucalyptus globulus, Salvia officinalis, Pinus sylvestris | C. albicans | 4000 | 4000 | Mature biofilm; XTT, crystal violet, and inverted light microscopy | [69] |
8 | 4 | Mature biofilm; luminescence | [40] | |||
3000–23,000 | Not or 3000–23,000 | Biofilm formation; crystal violet and absorbance | [70] | |||
C. glabrata | 2000 | Not | ||||
C. krusei | 4000 | 2000–4000 | ||||
C. parapsilosis | 2000 | 1000–2000 | ||||
C. tropicalis | 4000 | 2000–4000 | ||||
Cinnamaldehyde (aldehyde) | Cinnamomum sp., Apium graveolens | C. albicans | 62 | 125 | Mature biofilm; XTT, crystal violet, and inverted light microscopy | [68] |
50–400 | 25–200 | Mature biofilm; XTT | [58] | |||
Cinnamic acid (phenolic acid) | Cinnamomum sp. | C. albicans | 2000 | 4000 | Mature biofilm; XTT, crystal violet, and inverted light microscopy | [68] |
Citral (monotherpene) | Melissa officinalis, Backhousia citriodora | C. albicans | 500 | 1000 | Mature biofilm; XTT, crystal violet, and inverted light microscopy | [69] |
Citronellal (monotherpene) |
Cymbopogon citratus
,
Melissa officinalis | C. albicans | 500 | 1000 | Mature biofilm; XTT, crystal violet, and inverted light microscopy | [69] |
β-Citronellol (monotherpene) | Melissa officinalis, Pelargonium roseum | C. albicans | 500 | 1000 | Mature biofilm; XTT, crystal violet, and inverted light microscopy | [69] |
Cuminaldehyde (monotherpene) |
Carum carvi
,
Cinnamomum verum | C. albicans | 1000 to >4000 | 6000–7000 | Biofilm formation; MTT | [72] |
p-Cymene (monotherpene) | Thymus vulgaris, Eucalyptus sp. | C. albicans | 2000 | 4000 | Mature biofilm; XTT, crystal violet, and inverted light microscopy | [69] |
8-Deoxoantidesmone (alkaloid) | Waltheria indica | C. albicans | 16 | 32 | Mature biofilm; XTT | [63] |
C. glabrata | >32 | 32 | ||||
C. krusei | 32 | 32 | ||||
C. parapsilosis | 32 | 32 | ||||
C. tropicalis | >32 | 32 | ||||
2′,4′-Dihydroxy-3′-methoxychalcone (chalcone) | Zuccagnia punctata, Oxytropis falcata | C. albicans | 100 | 25 | Biofilm formation and mature biofilm; XTT and crystal violet | [53] |
Dioscin (steroidal saponin) | Dioscorea sp., Chamaecostus | C. albicans | 3.9–15.62 | 3.9–31.25 | Biofilm formation and mature biofilm; MTT | [31] |
Ellagic acid (polyphenol) | Punica granatum L. | C. albicans | 75–100 | 25–40 | Biofilm formation and mature biofilm; crystal violet | [49] |
Emodin (anthraquinone) | Rheum palmatum, Frangula alnus | C. albicans | 12.5–50 | Not or 100–400 | Biofilm adhesion; MTT | [73] |
4α,5α-Epoxy-10α,14H-1-epi-inuviscolide (sesquiterpene lactone) | Carpesium macrocephalum | C. albicans | >128 | 38 | Biofilm formation and mature biofilm; XTT | [67] |
Eugenol (phenol) |
Syzygium aromaticum
,
Cinnamomum sp. | C. albicans | 50–400 | 12.5–200 | Mature biofilm; XTT | [58] |
250 | 500 | Mature biofilm; XTT, crystal violet, and inverted light microscopy | [69] | |||
500 | 500 | Mature biofilm; XTT, crystal violet, and inverted light microscopy | [68] | |||
1200 | 10,000–80,000 | Mature biofilm; XTT | [59] | |||
Farnesol (sesquiterpene) | Tilia sp., Cymbopogon sp. | C. albicans | 1000 | 500 | Mature biofilm; XTT, crystal violet, and inverted light microscopy | [68] |
1000 | 500 | Mature biofilm; XTT, crystal violet, and inverted light microscopy | [69] | |||
Gallic acid (phenolic acid) | Polygonum sp., Buchenavia tomentosa | C. albicans | 5000 | 2500 | Biofilm formation and mature biofilm; culture | [30] |
Geraniol (monotherpene) | Pelargonium graveolens, Rosa sp. | C. albicans | 1000 | 1000 | Mature biofilm; XTT, crystal violet, and inverted light microscopy | [69] |
C. albicans | 100–20,000 | 300–1250 | Mature biofilm; XTT | [71] | ||
C. albicans | No data | 1000–8000 | Mature biofilm; XTT | [47] | ||
C. glabrata | 100–20,000 | 300–1250 | Mature biofilm; XTT | [71] | ||
C. parapsilosis | 100–20,000 | 300–1250 | ||||
Guaiacol (phenol) |
Guaiacum officinale
,
Apium graveolens | C. albicans | 500 | 1000 | Mature biofilm; XTT, crystal violet, and inverted light microscopy | [68] |
Hydroxychavicol (phenol) | Piper betle | C. albicans | 125–500 | 125–1000 | Biofilm formation and mature biofilm; XTT | [74] |
β-Ionone (carotenoid) |
Lawsonia inermis
,
Camellia sinensis | C. albicans | 250 | 250 | Mature biofilm; XTT, crystal violet, and inverted light microscopy | [69] |
Isomontanolide (sesquiterpenic lactone) | Laserpitium ochridanum, L. zernyi | C. albicans | 50 | 250 | Mature biofilm; luminescence | [43] |
C. krusei | 200 | 250 | ||||
Isopulegol (monotherpene) |
Mentha
rotundifolia,
Melissa officinalis | C. albicans | >4000 | 250 | Mature biofilm; XTT, crystal violet, and inverted light microscopy | [69] |
Ivalin (sesquiterpene lactone) | Geigeria aspera, Carpesium macrocephalum | C. albicans | >128 | 15.4 | Biofilm formation and mature biofilm; XTT | [67] |
Laserpitine (sesquiterpene lactone) | Laserpitium latifolium, Laserpitiumhalleri | C. albicans | 200 | 400 | Mature biofilm; luminescence | [43] |
C. krusei | 200 | 400 | ||||
Lichochalcone A (chalconoid) | Glycyrrhiza sp. | C. albicans | 6.25–12.5 | 0.2–20 | Biofilm formation; crystal violet | [61] |
Linalool (monotherpene) | Lavandula officinalis, Pelargonium graveolens | C. albicans | No data | 100–500 | Biofilm formation; confocal laser microscopy | [36] |
2000 | 1000 | Mature biofilm; XTT, crystal violet, and inverted light microscopy | [69] | |||
No data | 1000–8000 | Mature biofilm; XTT | [47] | |||
α-Longipinene (sesquiterpene) | Croton eluteria, Helichrysum italicum | C. albicans | No data | 100–500 | Biofilm formation; confocal laser microscopy | [36] |
Menthol (monotherpene) | Mentha spp. | C. albicans | >4000 | 2000 | Mature biofilm; XTT, crystal violet, and inverted light microscopy | [69] |
2500 | 10,000–80,000 | Mature biofilm; XTT | [59] | |||
Montanolide (sesquiterpene lactone) | Laserpitium ochridanum, L. zernyi | C. albicans | 200 | 400 | Mature biofilm; luminescence | [43] |
C. krusei | 200 | 400 | ||||
Morin (flavonoid) |
Prunus dulcis
,
Morus alba | C. albicans | 150 | 37.5–600 | Biofilm formation; crystal violet | [75] |
Myrcene (monotherpene) | Humulus lupulus, Cannabis sativa | C. albicans | 1000 | 2000 | Mature biofilm; XTT, crystal violet, and inverted light microscopy | [69] |
Nerol (monotherpene) | Citrus × aurantium, Humulus lupulus | C. albicans | 2000 | 500 | Mature biofilm; XTT, crystal violet, and inverted light microscopy | [69] |
Nerolidols (sesquiterpene) | Citrus × aurantium, Piper claussenianum | C. albicans | 18,600–62,500 | 2500–10,000 | Mature biofilm; MTT | [48] |
α-Pinene (monotherpene) | Pinus sylvestris, Picea abies | C. albicans | 3125 | 3125 | Biofilm formation; XTT | [76] |
β-Pinene (monotherpene) | Pinus sylvestris, Picea abies | C. albicans | 2000 | 4000 | Mature biofilm; XTT, crystal violet, and inverted light microscopy | [69] |
187 | 187 | Biofilm formation; XTT | [76] | |||
Polygodial (sesquiterpene) | Warburgia ugandensis, Polygonum hydropiper | C. albicans | 4.1 | 10.8 | Biofilm formation and mature biofilm; XTT and confocal laser microscopy | [52] |
C. glabrata | 94.1 | 50.6–61.9 | ||||
Pterostilbene (polyphenol) | Pterocarpus marsupium, Pterocarpus santalinus, Vitis vinifera | C. albicans | No data | 8–32 | Biofilm formation and mature biofilm; XTT | [65] |
Riccardin D (macrocyclic bisbibenzyl) | Dumortiera hirsuta | C. albicans | 16 | 8–64 | Mature biofilm; XTT | [64] |
Salicylaldehyde (phenolic aldehyde) | Filipendula ulmaria, Fagopyrum esculentum | C. albicans | 31 | 125 | Mature biofilm; XTT, crystal violet, and inverted light microscopy | [68] |
Salicylic acid (phenolic acid) | Salix sp., Filipendula ulmaria | C. albicans | 4000 | 2000 | Mature biofilm; XTT, crystal violet, and inverted light microscopy | [68] |
Scopoletin (cumarin) | Mitracarpus frigidus, Scopolia carniola | C. tropicalis | 50 | 50 | Biofilm adhesion, formation, and mature biofilm; absorbance and digital scanning | [77] |
6-Shogaol (phenylalkane) | Zingiber officinale | C. auris | 32–64 | 16–64 | Mature biofilm; crystal violet | [78] |
Tarolide (sesquiterpene lactone) | Laserpitium ochridanum, L. zernyi | C. albicans | 400 | 1000 | Mature biofilm; luminescence | [43] |
C. krusei | 400 | 1000 | ||||
Telekin (sesquiterpene lactone) | Carpesium macrocephalum, Telekia speciose | C. albicans | >128 | 36 | Biofilm formation and mature biofilm; XTT | [67] |
Terpinolene (terpene) | Cannabis sativa, Citrus limon | C. albicans | 2000 | 4000 | Mature biofilm; XTT, crystal violet, and inverted light microscopy | [69] |
5,7,3′,4′-Tetramethoxyflavone (flavonoid) | Psiadia punctulate, Kaempferia parviflora | C. albicans | 100 | 40 | Biofilm formation; crystal violet | [79] |
α-Thujone (monotherpene) | Artemisia absinthium, Tanacetum vulgare | C. albicans | >4000 | 500 | Mature biofilm; XTT, crystal violet, and inverted light microscopy | [69] |
Thymol (phenol) | Thymus vulgaris, Trachyspermum copticum | C. albicans | 250 | 250 | Mature biofilm; XTT, crystal violet, and inverted light microscopy | [69] |
1.56–50 | 3.12 | Biofilm formation; absorbance, crystal violet, and scanning electron microscopy | [26] | |||
32–128 | 128 | Biofilm adhesion and mature biofilm; XTT | [80] | |||
100–20,000 | 300–1250 | Mature biofilm; XTT | [71] | |||
125 | 125–250 | Biofilm formation and mature biofilm; XTT | [81] | |||
1200 | 5000–80,000 | Mature biofilm; XTT | [59] | |||
C. tropicalis | 1.56–50 | 12.5 | Biofilm formation; absorbance, crystal violet, and scanning electron microscopy | [26] | ||
C. glabrata | 100–20,000 | 300–1250 | Mature biofilm; XTT | [71] | ||
C. parapsilosis | 100–20,000 | 300–1250 | ||||
Tn-AFP1 (protein) | Trapa natans | C. tropicalis | 32 | 16 | Mature biofilm; XTT | [82] |
5,6,8-Trihydroxy-7,4′ dimethoxy flavone (flavonoid) | Thymus membranaceus subsp. membranaceus, Dodonaea viscosa var. angustifolia | C. albicans | 390 | 390 | Biofilm formation and mature biofilm; MTT | [83] |
5(R)-Vanessine (alkaloid) | Waltheria indica | C. albicans | 32 | 16 | Mature biofilm; XTT | [63] |
C. glabrata | >32 | 16 | ||||
C. krusei | 32 | 16 | ||||
C. parapsilosis | >32 | 16 | ||||
C. tropicalis | >32 | 16 | ||||
Vanillic acid (phenolic acid) |
Angelica sinensis
,
Solanum tuberosum | C. albicans | >4000 | 4000 | Mature biofilm; XTT, crystal violet, and inverted light microscopy | [68] |
Vanillin (phenol) | Vanilla planifolia | C. albicans | 1000 | 500 | Mature biofilm; XTT, crystal violet, and inverted light microscopy | [68] |
Waltheriones (alkaloid) | Waltheria indica, W.viscosissima | C. albicans | 4–32 | 8–32 | Mature biofilm; XTT | [63] |
C. glabrata | 32 or >32 | 8–32 | ||||
C. krusei | 16–32 or >32 | 8–32 | ||||
C. parapsilosis | 2–32 or >32 | 8–32 | ||||
C. tropicalis | 32 or >32 | 8–32 | ||||
Warburganal (sesquiterpene) | Warburgia sp. | C. albicans | 4 | 4.5 | Biofilm formation and mature biofilm; XTT and confocal laser microscopy | [52] |
C. glabrata | 72–72.6 | 49.1–55.9 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Karpiński, T.M.; Ożarowski, M.; Seremak-Mrozikiewicz, A.; Wolski, H.; Adamczak, A. Plant Preparations and Compounds with Activities against Biofilms Formed by Candida spp. J. Fungi 2021, 7, 360. https://doi.org/10.3390/jof7050360
Karpiński TM, Ożarowski M, Seremak-Mrozikiewicz A, Wolski H, Adamczak A. Plant Preparations and Compounds with Activities against Biofilms Formed by Candida spp. Journal of Fungi. 2021; 7(5):360. https://doi.org/10.3390/jof7050360
Chicago/Turabian StyleKarpiński, Tomasz M., Marcin Ożarowski, Agnieszka Seremak-Mrozikiewicz, Hubert Wolski, and Artur Adamczak. 2021. "Plant Preparations and Compounds with Activities against Biofilms Formed by Candida spp." Journal of Fungi 7, no. 5: 360. https://doi.org/10.3390/jof7050360
APA StyleKarpiński, T. M., Ożarowski, M., Seremak-Mrozikiewicz, A., Wolski, H., & Adamczak, A. (2021). Plant Preparations and Compounds with Activities against Biofilms Formed by Candida spp. Journal of Fungi, 7(5), 360. https://doi.org/10.3390/jof7050360