-
The Role of Oral Yeasts in the Development and Progression of Oral Squamous Cell Carcinoma: A Scoping Review
-
The Growth, Pathogenesis, and Secondary Metabolism of Fusarium verticillioides Are Epigenetically Modulated by Putative Heterochromatin Protein 1 (FvHP1)
-
The Hidden Fortress: A Comprehensive Review of Fungal Biofilms with Emphasis on Cryptococcus neoformans
Journal Description
Journal of Fungi
Journal of Fungi
is an international, peer-reviewed, open access journal of mycology published monthly online by MDPI. The Medical Mycological Society of the Americas (MMSA) and the Spanish Phytopathological Society (SEF) are affiliated with the Journal of Fungi, and their members receive a discount on the article processing charges.
- Open Access— free for readers, with article processing charges (APC) paid by authors or their institutions.
- High Visibility: indexed within Scopus, SCIE (Web of Science), PubMed, PMC, CAPlus / SciFinder, AGRIS, and other databases.
- Journal Rank: JCR - Q1 (Mycology) / CiteScore - Q1 (Ecology, Evolution, Behavior and Systematics)
- Rapid Publication: manuscripts are peer-reviewed and a first decision is provided to authors approximately 18.2 days after submission; acceptance to publication is undertaken in 2.8 days (median values for papers published in this journal in the first half of 2025).
- Recognition of Reviewers: reviewers who provide timely, thorough peer-review reports receive vouchers entitling them to a discount on the APC of their next publication in any MDPI journal, in appreciation of the work done.
Impact Factor:
4.0 (2024);
5-Year Impact Factor:
4.5 (2024)
Latest Articles
Recent Advances in Heterologous Protein Expression and Natural Product Synthesis by Aspergillus
J. Fungi 2025, 11(7), 534; https://doi.org/10.3390/jof11070534 - 17 Jul 2025
Abstract
The filamentous fungal genus Aspergillus represents an industrially significant group of eukaryotic microorganisms. For nearly a century, it has been widely utilized in the production of diverse high-value products, including organic acids, industrial enzymes, recombinant proteins, and various bioactive natural compounds. With the
[...] Read more.
The filamentous fungal genus Aspergillus represents an industrially significant group of eukaryotic microorganisms. For nearly a century, it has been widely utilized in the production of diverse high-value products, including organic acids, industrial enzymes, recombinant proteins, and various bioactive natural compounds. With the rapid advancement of synthetic biology, Aspergillus has been extensively exploited as a heterologous chassis for the production of heterologous proteins (e.g., sweet proteins and antibodies) and the synthesis of natural products (e.g., terpenoids and polyketides) due to its distinct advantages, such as superior protein secretion capacity, robust precursor supply, and efficient eukaryotic post-translational modifications. In this review, we provide a comprehensive summary of the advancements in the successful expression of heterologous proteins and the biosynthesis of natural products using Aspergillus platforms (including Aspergillus niger, Aspergillus nidulans, and Aspergillus oryzae) in recent years. Emphasis is placed on the applications of A. oryzae in the heterologous biosynthesis of terpenoids. More importantly, we thoroughly examine the current state of the art in utilizing CRISPR-Cas9 for genetic modifications in A. oryzae and A. niger. In addition, future perspectives on developing Aspergillus expression systems are discussed in this article, along with an exploration of their potential applications in natural product biosynthesis.
Full article
(This article belongs to the Special Issue Filamentous Fungi as Excellent Industrial Strains: Development and Applications, 2nd Edition)
►
Show Figures
Open AccessArticle
Superficial Fungal Infections in the Pediatric Dermatological Population of Northern Poland
by
Katarzyna Rychlik, Julia Sternicka, Monika Zabłotna, Roman J. Nowicki, Leszek Bieniaszewski and Dorota Purzycka-Bohdan
J. Fungi 2025, 11(7), 533; https://doi.org/10.3390/jof11070533 - 17 Jul 2025
Abstract
Superficial fungal infections (SFIs) remain a common dermatological issue in the pediatric population, with varying prevalence across regions and age groups. This study aimed to assess the epidemiology of SFIs among children and adolescents in northern Poland in the years 2019 to 2024.
[...] Read more.
Superficial fungal infections (SFIs) remain a common dermatological issue in the pediatric population, with varying prevalence across regions and age groups. This study aimed to assess the epidemiology of SFIs among children and adolescents in northern Poland in the years 2019 to 2024. A retrospective analysis was conducted on 1237 patients under 18 years of age who underwent direct mycological examination and culture, due to suspicion of SFIs. Data were evaluated based on age, gender, infection site, fungal species identified, and place of residence. The prevalence of SFIs in the studied population was 21.4%. The most frequently isolated fungi were Microsporum canis and Trichophyton rubrum complex. Infection patterns varied by age: tinea capitis and tinea cutis glabrae predominated in younger children, while adolescents were more affected by tinea pedis and onychomycosis. A higher proportion of positive results was observed in rural patients, although more urban dwellers were tested. Species distribution also varied with gender and place of residence. No significant change in SFI prevalence or pathogen profile was observed over the study period. This study provides updated insights into the epidemiology of SFIs in Polish children, highlighting the influence of demographic and environmental factors. The findings underscore the importance of accurate diagnosis and suggest a need for further research into behavioral and socio-economic contributors to infection patterns.
Full article
(This article belongs to the Special Issue Pediatric Fungal Infections, 2nd Edition)
Open AccessArticle
Mechanism Underlying Ganoderma lucidum Polysaccharide Biosynthesis Regulation by the β-1,3-Glucosyltransferase Gene gl20535
by
Jingyun Liu, Mengmeng Xu, Mengye Shen, Junxun Li, Lei Chen, Zhenghua Gu, Guiyang Shi and Zhongyang Ding
J. Fungi 2025, 11(7), 532; https://doi.org/10.3390/jof11070532 - 17 Jul 2025
Abstract
Ganoderma lucidum polysaccharides (GLPs) are natural compounds with a broad spectrum of biological activities. β-1,3-glucosyltransferase (GL20535) plays an important role in polysaccharide synthesis by catalyzing the transfer of UDP-glucose to extend sugar chains, but its underlying mechanism remains unclear. In this study,
[...] Read more.
Ganoderma lucidum polysaccharides (GLPs) are natural compounds with a broad spectrum of biological activities. β-1,3-glucosyltransferase (GL20535) plays an important role in polysaccharide synthesis by catalyzing the transfer of UDP-glucose to extend sugar chains, but its underlying mechanism remains unclear. In this study, the regulatory mechanism of GL20535 in polysaccharide synthesis was elucidated by overexpressing and silencing gl20535 in G. lucidum. Overexpression of gl20535 resulted in maximum increases of 18.08%, 79.04%, and 18.01% in intracellular polysaccharide (IPS), extracellular polysaccharide (EPS), and β-1,3-glucan contents, respectively. In contrast, silencing gl20535 resulted in maximum reductions of 16.97%, 30.20%, and 23.56% in IPS, EPS, and β-1,3-glucan contents, respectively. These phenomena in the overexpression strains were attributed to gl20535-mediated promotion of UDP-glucose synthesis in the sugar donor pathway and upregulation of the expression of glycoside hydrolase genes. The opposite trend was observed in the silenced strains. In mycelial growth studies, neither overexpression nor silencing of gl20535 affected biomass and cell wall thickness. Furthermore, the GL20535 isozyme gene gl24465 remained unaffected in gl20535-overexpressed strains but was upregulated in gl20535-silenced strains, suggesting a compensatory regulatory relationship. These findings reveal the regulatory role of GL20535 on gene expression in the GLPs synthesis pathway and deepen our understanding of GL20535 function in the polysaccharide network of edible and medicinal fungi.
Full article
(This article belongs to the Special Issue Molecular Biology of Mushroom)
►▼
Show Figures

Figure 1
Open AccessArticle
Topographic Habitat Drive the Change of Soil Fungal Community and Vegetation Soil Characteristics in the Rhizosphere of Kengyilia thoroldiana in the Sanjiangyuan Region
by
Liangyu Lyu, Pei Gao, Zongcheng Cai, Fayi Li and Jianjun Shi
J. Fungi 2025, 11(7), 531; https://doi.org/10.3390/jof11070531 - 17 Jul 2025
Abstract
This study aims to reveal the impact mechanisms of five typical topographic habitats in the Sanjiangyuan region (sunny slope, depression, shady slope, mountain pass, and transitional zone) on the characteristics and functions of rhizosphere soil fungal communities of Kengyilia thoroldiana, and to
[...] Read more.
This study aims to reveal the impact mechanisms of five typical topographic habitats in the Sanjiangyuan region (sunny slope, depression, shady slope, mountain pass, and transitional zone) on the characteristics and functions of rhizosphere soil fungal communities of Kengyilia thoroldiana, and to elucidate the association patterns between these communities and soil physicochemical factors. The species composition, diversity, molecular co-occurrence network, and FUNGuild function of microbial communities were investigated based on high-throughput sequencing technology. By combining the Mantel test and RDA analysis, the key habitat factors affecting the structure of the soil fungal community in the rhizosphere zone of Kengyilia thoroldiana were explored. The results showed that: ① The composition of the soil fungal community in the rhizosphere of Kengyilia thoroldiana in five topographical habitats showed significant differentiation characteristics: the number of OTUs in H2 (depression) and H5 (transitional zone) habitats was the highest (336 and 326, respectively). Habitats H2 showed a significant increase in the abundance of Ascomycota and Mortierellomycota and a significant decrease in the abundance of Basidiomycota compared to the other topographical habitats. ② The diversity and aggregation degree of the soil fungal community in the rhizosphere of Kengyilia thoroldiana in five topographical habitats showed differences. ③ Cluster analysis showed that the rhizosphere soil fungi in five topographical habitats of Kengyilia thoroldiana could be divided into two groups, with H2, H4 (mountain pass), and H5 habitats as one group (group 1) and H1 and H3 (shady slope) as one group (group 2). ④ The characteristics of the Kengyilia thoroldiana community and the physical and chemical properties of rhizosphere soil in five topographical habitats were significantly different, and the height, coverage, biomass, and soil nutrient content were the highest in H2 and H5 habitats, while lower in H1 and H3 habitats, with significant differences (p < 0.05). ⑤ Redundancy analysis showed that soil water content was the main driving factor to change the structure and function of the soil fungal community in the rhizosphere of Kengyilia thoroldiana in five topographic habitats in the Sanjiangyuan region. This study demonstrated that topographic habitats affected the species composition, functional pattern, and ecosystem service efficiency of the Kengyilia thoroldiana rhizosphere fungal community by mediating soil environmental heterogeneity, which provides microbial mechanistic insights for alpine meadow ecosystem protection.
Full article
(This article belongs to the Special Issue Fungal Communities in Various Environments, 2nd Edition)
►▼
Show Figures

Figure 1
Open AccessCase Report
Tinea Incognito Caused by Microsporum spp. Mimicking Subacute Cutaneous Lupus Erythematosus—Case Report
by
Marta Kasprowicz-Furmańczyk and Agnieszka Owczarczyk-Saczonek
J. Fungi 2025, 11(7), 530; https://doi.org/10.3390/jof11070530 - 17 Jul 2025
Abstract
Tinea incognito is an incorrectly diagnosed form of fungal infection due to a changed clinical picture as a result of systemic or topical corticosteroids or even local immunomodulators. This type of skin lesion is most often located on the trunk but can affect
[...] Read more.
Tinea incognito is an incorrectly diagnosed form of fungal infection due to a changed clinical picture as a result of systemic or topical corticosteroids or even local immunomodulators. This type of skin lesion is most often located on the trunk but can affect any part of the body. We present a case report of 76-year-old woman with a history of systemic lupus erythematosus who was admitted to hospital because of extensive, painful, and burning erythematous and papular lesions in an annular pattern, covered with a thick, yellow crust, located on the scalp and neck. The skin lesions were accompanied by extensive hair loss. The patient had previously undergone intensified treatment of the underlying disease due to the exacerbation of skin lesions of a subacute cutaneous lupus erythematosus type. A suspicion of tinea incognito was raised, and direct mycological examination and culture confirmed the presence of dermatophytes (Microsporum spp.). Tinea incognito can be difficult to diagnose because the clinical picture is relatively nonspecific and can mimic other dermatoses, such as subacute lupus erythematosus. Therefore, in doubtful cases it is necessary to perform a direct test and culture for fungal infection, especially before initiating treatment with glucocorticosteroids and other immunosuppressive agents.
Full article
(This article belongs to the Special Issue Advances in Human and Zoonotic Dermatophytoses)
►▼
Show Figures

Figure 1
Open AccessReview
Insights from Mass Spectrometry-Based Proteomics on Cryptococcus neoformans
by
Jovany Jordan Betancourt and Kirsten Nielsen
J. Fungi 2025, 11(7), 529; https://doi.org/10.3390/jof11070529 - 17 Jul 2025
Abstract
Cryptococcus neoformans is an opportunistic fungal pathogen and causative agent of cryptococcosis and cryptococcal meningitis (CM). Cryptococcal disease accounts for up to 19% of AIDS-related mortalities globally, warranting its label as a pathogen of critical priority by the World Health Organization. Standard treatments
[...] Read more.
Cryptococcus neoformans is an opportunistic fungal pathogen and causative agent of cryptococcosis and cryptococcal meningitis (CM). Cryptococcal disease accounts for up to 19% of AIDS-related mortalities globally, warranting its label as a pathogen of critical priority by the World Health Organization. Standard treatments for CM rely heavily on high doses of antifungal agents for long periods of time, contributing to the growing issue of antifungal resistance. Moreover, mortality rates for CM are still incredibly high (13–78%). Attempts to create new and effective treatments have been slow due to the complex and diverse set of immune-evasive and survival-enhancing virulence factors that C. neoformans employs. To bolster the development of better clinical tools, deeper study into host–Cryptococcus proteomes is needed to identify clinically relevant proteins, pathways, antigens, and beneficial host response mechanisms. Mass spectrometry-based proteomics approaches serve as invaluable tools for investigating these complex questions. Here, we discuss some of the insights into cryptococcal disease and biology learned using proteomics, including target proteins and pathways regulating Cryptococcus virulence factors, metabolism, and host defense responses. By utilizing proteomics to probe deeper into these protein interaction networks, new clinical tools for detecting, diagnosing, and treating C. neoformans can be developed.
Full article
(This article belongs to the Special Issue Proteomic Studies of Pathogenic Fungi and Hosts)
►▼
Show Figures

Figure 1
Open AccessArticle
Fusarium Species Infecting Greenhouse-Grown Cannabis (Cannabis sativa) Plants Show Potential for Mycotoxin Production in Inoculated Inflorescences and from Natural Inoculum Sources
by
Zamir K. Punja, Sheryl A. Tittlemier and Sean Walkowiak
J. Fungi 2025, 11(7), 528; https://doi.org/10.3390/jof11070528 - 16 Jul 2025
Abstract
Several species of Fusarium are reported to infect inflorescences of high-THC-containing cannabis (Cannabis sativa L.) plants grown in greenhouses in Canada. These include F. graminearum, F. sporotrichiodes, F. proliferatum, and, to a lesser extent, F. oxysporum and F. solani.
[...] Read more.
Several species of Fusarium are reported to infect inflorescences of high-THC-containing cannabis (Cannabis sativa L.) plants grown in greenhouses in Canada. These include F. graminearum, F. sporotrichiodes, F. proliferatum, and, to a lesser extent, F. oxysporum and F. solani. The greatest concern surrounding the infection of cannabis by these Fusarium species, which cause symptoms of bud rot, is the potential for the accumulation of mycotoxins that may go undetected. In the present study, both naturally infected and artificially infected inflorescence tissues were tested for the presence of fungal-derived toxins using HPLC-MS/MS analysis. Naturally infected cannabis tissues were confirmed to be infected by both F. avenaceum and F. graminearum using PCR. Pure cultures of these two species and F. sporotrichiodes were inoculated onto detached inflorescences of two cannabis genotypes, and after 7 days, they were dried and assayed for mycotoxin presence. In these assays, all Fusarium species grew prolifically over the tissue surface. Tissues infected by F. graminearum contained 3-acetyl DON, DON, and zearalenone in the ranges of 0.13–0.40, 1.18–1.91, and 31.8 to 56.2 μg/g, respectively, depending on the cannabis genotype. In F. sporotrichiodes-infected samples, HT2 and T2 mycotoxins were present at 13.9 and 10.9 μg/g in one genotype and were lower in the other. In F. avenaceum-inoculated tissues, the mycotoxins enniatin A, enniatin A1, enniatin B, and enniatin B1 were produced at varying concentrations, depending on the isolate and cannabis genotype. Unexpectedly, these tissues also contained detectable levels of 3-acetyl DON, DON, and zearalenone, which was attributed to apre-existing natural infection by F. graminearum that was confirmed by RT-qPCR. Beauvericin was detected in tissues infected by F. avenaceum and F. sporotrichiodes, but not by F. graminearum. Naturally infected, dried inflorescences from which F. avenaceum was recovered contained beauvericin, enniatin A1, enniatin B, and enniatin B1 as expected. Uninoculated cannabis inflorescences were free of mycotoxins except for culmorin at 0.348 μg/g, reflecting pre-existing infection by F. graminearum. The mycotoxin levels were markedly different between the two cannabis genotypes, despite comparable mycelial colonization. Tall fescue plants growing in the vicinity of the greenhouse were shown to harbor F. avenaceum and F. graminearum, suggesting a likely external source of inoculum. Isolates of both species from tall fescue produced mycotoxins when inoculated onto cannabis inflorescences. These findings demonstrate that infection by F. graminearum and F. avenaceum, either from artificial inoculation or natural inoculum originating from tall fescue plants, can lead to mycotoxin accumulation in cannabis inflorescences. However, extensive mycelial colonization following prolonged incubation of infected tissues under high humidity conditions is required. Inoculations with Penicillium citrinum and Aspergillus ochraceus under these conditions produced no detectable mycotoxins. The mycotoxins alternariol and tentoxin were detected in several inflorescence samples, likely as a result of natural infection by Alternaria spp. Fusarium avenaceum is reported to infect cannabis inflorescences for the first time and produces mycotoxins in diseased tissues.
Full article
(This article belongs to the Special Issue Plant Pathogens and Mycotoxins)
►▼
Show Figures

Figure 1
Open AccessArticle
Compost Tea Combined with Fungicides Modulates Grapevine Bacteriome and Metabolome to Suppress Downy Mildew
by
Giuliano Bonanomi, Giuseppina Iacomino, Ayoub Idbella, Giandomenico Amoroso, Alessia Staropoli, Andrea De Sio, Franco Saccocci, Ahmed M. Abd-ElGawad, Mauro Moreno and Mohamed Idbella
J. Fungi 2025, 11(7), 527; https://doi.org/10.3390/jof11070527 - 16 Jul 2025
Abstract
Downy mildew, caused by Plasmopara viticola, is a major threat to grapevine (Vitis vinifera) cultivation in humid climates. Restrictions on synthetic pesticides and inconsistent efficacy of current biocontrol agents, especially under rainy conditions, complicate disease management. This study evaluated the
[...] Read more.
Downy mildew, caused by Plasmopara viticola, is a major threat to grapevine (Vitis vinifera) cultivation in humid climates. Restrictions on synthetic pesticides and inconsistent efficacy of current biocontrol agents, especially under rainy conditions, complicate disease management. This study evaluated the potential of compost tea to suppress downy mildew in a two-year field experiment (2023 and 2024), combined with reduced synthetic fungicide applications. The study design compared two phytosanitary management strategies on a commercial vineyard: a conventional fungicide against a compost tea strategy supplemented with two cymoxanil applications. The experiment set up had three replicated blocks, each consisting of 100 plants for a total of 600 plants. Mechanistic insights were provided through controlled laboratory experiments involving pre- and post-infection leaf assays, vineyard bacteriome profiling, via 16S rRNA gene sequencing for bacterial communities, across vineyard compartments, i.e., bulk soil, rhizosphere, and phyllosphere, and grapevine metabolomic analysis by GC-MS analysis. Field trials demonstrated that compost tea combined with two fungicide applications effectively reduced disease severity, notably outperforming the fungicide alone in the particularly rainy year of 2023. Bacteriome analysis revealed that compost tea treatment enriched beneficial bacterial genera, including Pseudomonas, Sphingomonas, Enterobacter, Massilia, and Bacillus, known for their growth-promoting and biocontrol activity in the rhizosphere and phyllosphere. Laboratory assays on detached leaves further showed that compost tea alone could suppress both infection and sporulation of P. viticola. Metabolomic analysis highlighted the accumulation of compounds such as tartaric and shikimic acids in compost tea treated leaves, suggesting a potential role in induced resistance. The findings indicate that applying compost tea with reduced fungicide treatments represents a promising and sustainable strategy for managing grapevine downy mildew, even in challenging climates.
Full article
(This article belongs to the Special Issue Biological Control of Fungal Plant Pathogens)
Open AccessArticle
Relationship Between Aquatic Fungal Diversity in Surface Water and Environmental Factors in Yunnan Dashanbao Black-Necked Crane National Nature Reserve, China
by
Kaize Shen, Yufeng Tang, Jiaoxu Shi, Zhongxiang Hu, Meng He, Jinzhen Li, Yuanjian Wang, Mingcui Shao and Honggao Liu
J. Fungi 2025, 11(7), 526; https://doi.org/10.3390/jof11070526 - 16 Jul 2025
Abstract
Aquatic fungi serve as core ecological engines in freshwater ecosystems, driving organic matter decomposition and energy flow to sustain environmental balance. Wetlands, with their distinct hydrological dynamics and nutrient-rich matrices, serve as critical habitats for these microorganisms. As an internationally designated Ramsar Site,
[...] Read more.
Aquatic fungi serve as core ecological engines in freshwater ecosystems, driving organic matter decomposition and energy flow to sustain environmental balance. Wetlands, with their distinct hydrological dynamics and nutrient-rich matrices, serve as critical habitats for these microorganisms. As an internationally designated Ramsar Site, Yunnan Dashanbao Black-Necked Crane National Nature Reserve in China not only sustains endangered black-necked cranes but also harbors a cryptic reservoir of aquatic fungi within its peat marshes and alpine lakes. This study employed high-throughput sequencing to characterize fungal diversity and community structure across 12 understudied wetland sites in the reserve, while analyzing key environmental parameters (dissolved oxygen, pH, total nitrogen, and total phosphorus). A total of 5829 fungal operational taxonomic units (OTUs) spanning 649 genera and 15 phyla were identified, with Tausonia (4.17%) and Cladosporium (1.89%) as dominant genera. Environmental correlations revealed 19 genera significantly linked to abiotic factors. FUNGuild functional profiling highlighted saprotrophs (organic decomposers) and pathogens as predominant trophic guilds. Saprotrophs exhibited strong associations with pH, total nitrogen, and phosphorus, whereas pathogens correlated primarily with pH. These findings unveil the hidden diversity and ecological roles of aquatic fungi in alpine wetlands, emphasizing their sensitivity to environmental gradients. By establishing baseline data on fungal community dynamics, this work advances the understanding of wetland microbial ecology and informs conservation strategies for Ramsar sites.
Full article
(This article belongs to the Section Environmental and Ecological Interactions of Fungi)
►▼
Show Figures

Figure 1
Open AccessArticle
Communities of Arbuscular Mycorrhizal Fungi and Their Effects on Plant Biomass Allocation Patterns in Degraded Karst Grasslands of Southwest China
by
Wangjun Li, Xiaolong Bai, Dongpeng Lv and Yurong Yang
J. Fungi 2025, 11(7), 525; https://doi.org/10.3390/jof11070525 - 16 Jul 2025
Abstract
The biomass allocation patterns between aboveground and belowground are an essential functional trait for plant survival under a changing environment. The effects of arbuscular mycorrhizal fungi (AMF) communities on plant biomass allocation, particularly in degraded Festuca ovina grasslands in ecologically fragile karst areas,
[...] Read more.
The biomass allocation patterns between aboveground and belowground are an essential functional trait for plant survival under a changing environment. The effects of arbuscular mycorrhizal fungi (AMF) communities on plant biomass allocation, particularly in degraded Festuca ovina grasslands in ecologically fragile karst areas, remain unclear. Therefore, we conducted a field investigation combined with a greenhouse experiment to explore the importance of AMF compared to bacteria and fungi for plant biomass allocation. The results showed that plant biomass in degraded grasslands exhibited allometric biomass allocation, contrasting with isometric partitioning in non-degraded grasslands. AMF, not bacteria or fungi, were the primary microbial mediators of grassland degradation effects on plant biomass allocation based on structural equation modeling. The greenhouse experiment demonstrated that the selected AMF keystone species from the field study performed according to ecological network analysis, particularly multi-species combinations, enhanced the belowground biomass allocation of F. ovina under rocky desertification stress compared to single-species inoculations, through decreasing soil pH, enhancing alkaline phosphatase (ALP) activity, and increasing the expression level of AMF-inducible phosphate transporter (PT4). This study highlights the critical role of the AMF community, rather than individual species, in mediating plant survival strategies under rocky desertification stress.
Full article
(This article belongs to the Section Environmental and Ecological Interactions of Fungi)
►▼
Show Figures

Figure 1
Open AccessArticle
Evolutionary History and Distribution Analysis of Rhamnosyltransferases in the Fungal Kingdom
by
Joaquín O. Chávez-Santiago, Luz A. López-Ramírez, Luis A. Pérez-García, Iván Martínez-Duncker, Bernardo Franco, Israel E. Padilla-Guerrero, Vianey Olmedo-Monfil, J. Félix Gutiérrez-Corona, Gustavo A. Niño-Vega, Jorge H. Ramírez-Prado and Héctor M. Mora-Montes
J. Fungi 2025, 11(7), 524; https://doi.org/10.3390/jof11070524 - 15 Jul 2025
Abstract
Rhamnose is a natural sugar found in glycoproteins and structural polysaccharides of plants, fungi, and bacteria. Its incorporation into glycoconjugates is mediated by rhamnosyltransferases (RHTs), key enzymes for biomolecular stability and function. While rhamnose biosynthesis has been studied in certain fungal genera, the
[...] Read more.
Rhamnose is a natural sugar found in glycoproteins and structural polysaccharides of plants, fungi, and bacteria. Its incorporation into glycoconjugates is mediated by rhamnosyltransferases (RHTs), key enzymes for biomolecular stability and function. While rhamnose biosynthesis has been studied in certain fungal genera, the evolutionary history and distribution of RHTs across the fungal kingdom remain largely unknown. In this study, 351 fungal species were found to encode putative RHTs. Phylogenetic and structural analyses revealed conserved patterns and similarities with previously characterized RHTs. Molecular docking predicted a high affinity of these proteins for UDP-L-rhamnose, and in silico mutagenesis identified key residues potentially involved in substrate binding. Carbohydrate profiling confirmed the presence of rhamnose in the cell walls of multiple fungi, including Aspergillus, Madurella, Metarhizium, and Trichoderma species. Enzymatic assays further supported rhamnose transfer activity. These findings provide the first comprehensive in silico characterization of fungal RHTs, uncovering conserved sequence motifs despite overall diversity, which may be linked to functional adaptation in different fungal lineages.
Full article
(This article belongs to the Section Fungal Cell Biology, Metabolism and Physiology)
►▼
Show Figures

Figure 1
Open AccessCase Report
Dermatophytoses Caused by Trichophyton indotineae: The First Case Reports in Malaysia and the Global Epidemiology (2018–2025)
by
Yi Xian Er, Kin Fon Leong, Henry Boon Bee Foong, Anis Amirah Abdul Halim, Jing Shun Kok, Nan Jiun Yap, Yuong Chin Tan, Sun Tee Tay and Yvonne Ai-Lian Lim
J. Fungi 2025, 11(7), 523; https://doi.org/10.3390/jof11070523 - 15 Jul 2025
Abstract
Trichophyton indotineae is emerging globally from its origin in India, presenting with a terbinafine resistance and causing significant clinical burden. We report herein the first four confirmed cases of T. indotineae dermatophytoses in Malaysia, which were diagnosed based on the microscopic examination of
[...] Read more.
Trichophyton indotineae is emerging globally from its origin in India, presenting with a terbinafine resistance and causing significant clinical burden. We report herein the first four confirmed cases of T. indotineae dermatophytoses in Malaysia, which were diagnosed based on the microscopic examination of skin scrapings using potassium hydroxide (KOH) wet mount, followed by confirmation via culture and Internal Transcribed Spacer (ITS1) sequencing. In contrast to conventional Trichophyton infections, T. indotineae dermatophytoses demonstrate extensive cutaneous involvement and marked inflammation with erythematous lesions. All cases exhibited a chronic course lasting more than three months, with evidence of person-to-person transmission. Although one patient reported a travel to Singapore, three had no recent travel history, suggesting possible local transmission. The isolates produced characteristic white, cottony colonies with radial mycelial growth on Mycosel agar after incubation at 30 °C for four days. Three patients responded well to oral itraconazole (200 mg daily), with reduced inflammation and erythematous lesions observed two weeks after treatment initiation. The occurrence of T. indotineae particularly among patients without a travel history, suggests a potential endemic establishment. This fungal pathogen warrants consideration in cases of extensive or recalcitrant dermatophytoses. Further investigations into the diagnostic methods, antifungal susceptibility profiles, and epidemiological risk factors of Malaysian strains are warranted to enhance clinical management and inform public health interventions.
Full article
(This article belongs to the Section Fungal Pathogenesis and Disease Control)
►▼
Show Figures

Figure 1
Open AccessReview
From the Metabolic Effects and Mechanism of Monovalent Cation Transport to the Actual Measurement of the Plasma Membrane Potential in Yeast
by
Antonio Peña, Norma Silvia Sánchez and Martha Calahorra
J. Fungi 2025, 11(7), 522; https://doi.org/10.3390/jof11070522 - 15 Jul 2025
Abstract
The effects of potassium (K+) on yeast metabolism were documented as early as 1940. Studies proposing a mechanism for its transport started in 1950, and in 1953, a mechanism for the stimulation of fermentation was suggested. However, it was not until
[...] Read more.
The effects of potassium (K+) on yeast metabolism were documented as early as 1940. Studies proposing a mechanism for its transport started in 1950, and in 1953, a mechanism for the stimulation of fermentation was suggested. However, it was not until the 1970s that both mechanisms were clarified in Mexico, and the actual internal pH of the cells was measured. The presence of an H+-ATPase that generates an electric plasma membrane difference (PMP), which is used by specific transporters to facilitate the influx of K+ and other cations into the cells, was discovered. For years, many efforts were made to estimate and measure the value of the PMP; the obtained results were variable and erratic. In the 1980s, a methodology was developed to estimate the plasma membrane potential by following the fluorescence changes in the DiSC3(3) dye and measuring its accumulation, which provided actual but inaccurate values. Similar values were obtained by measuring the accumulation of tetraphenylphosphonium. The most reliable method of measuring the actual values of the plasma membrane potential was only recently devised using the also fluorescent dye thioflavin T. This review presents the attempts and outcomes of these experiments necessary to clarify the results reported by different research groups. Innovative research with Genetically Encoded Voltage Indicators (GEVIs) is also included.
Full article
(This article belongs to the Special Issue Mycological Research in Mexico)
►▼
Show Figures

Figure 1
Open AccessArticle
Interaction of Trichoderma Species with Fusarium graminearum Growth and Its Trichothecene Biosynthesis as Further Contribution in Selection of Potential Biocontrol Agents
by
Xianfeng Ren, Lixia Fan, Guidong Li, Ilya V. Lyagin, Bingchun Zhang, Mingxiao Ning, Mengmeng Yan, Jing Gao, Fei Wang, Changying Guo and Antonio F. Logrieco
J. Fungi 2025, 11(7), 521; https://doi.org/10.3390/jof11070521 - 14 Jul 2025
Abstract
The interactions of Fusarium graminearum PG-Fg1 and its main trichothecenes with the 28 Trichoderma isolates were studied in vitro. The antagonistic effect assessed by dual-culture tests showed that Trichoderma isolates arrested the growth of PG-Fg1 after contact, overgrew the PG-Fg1 colony and inhibited
[...] Read more.
The interactions of Fusarium graminearum PG-Fg1 and its main trichothecenes with the 28 Trichoderma isolates were studied in vitro. The antagonistic effect assessed by dual-culture tests showed that Trichoderma isolates arrested the growth of PG-Fg1 after contact, overgrew the PG-Fg1 colony and inhibited the production of deoxynivalenol (DON), 3-acetyl-deoxynivalenol (3-ADON), and 15-acetyldeoxynivalenol (15-ADON) by up to 95.3%, 99.4%, and 99.6%, respectively. PG-Fg1 was hard to overgrow Trichoderma for further extension. Additionally, the inhibitory effects on PG-Fg1 by the Trichoderma metabolites, including volatiles and non-volatiles, were also investigated. Most of the Trichoderma isolates produced metabolites which inhibited PG-Fg1 growth and mycotoxins production. Specifically, Trichoderma non-volatiles and volatiles showed Fusarium growth inhibition rates ranging from 7% to 72% and 3% to 32%, respectively. Notably, non-volatile compounds from two isolates and volatiles from one isolate up-regulated the expression of DON biosynthesis genes (tri4 and tri5), leading to increased production of DON, 3-ADON, and 15-ADON. This study highlights the potential risk posed by certain Trichoderma strains as microbial agents, which can stimulate toxigenic fungi to produce higher levels of mycotoxins. Based on our results and previous reports, when selecting Trichoderma species as biocontrol agents against Fusarium graminearum, its effects on mycotoxins production should be carefully assessed, particularly given observed stimulatory impacts.
Full article
(This article belongs to the Special Issue Biological Control of Fungal Plant Pathogens)
►▼
Show Figures

Figure 1
Open AccessArticle
Specific Primers and Nested PCR Find Trichophyton rubrum Missed by Culture of Ground Toenails from Onychomycosis in Podiatric Patients in Eastern Australia
by
Anjana C. Santosh, Danilla Grando and Ann C. Lawrie
J. Fungi 2025, 11(7), 520; https://doi.org/10.3390/jof11070520 - 14 Jul 2025
Abstract
Toenail onychomycosis causes significant problems in public health and is more common among the elderly and immune-compromised populations. A previous culture-based survey of communal finely ground toenails from the east coast of Australia isolated 125 T. interdigitale but only one T. rubrum.
[...] Read more.
Toenail onychomycosis causes significant problems in public health and is more common among the elderly and immune-compromised populations. A previous culture-based survey of communal finely ground toenails from the east coast of Australia isolated 125 T. interdigitale but only one T. rubrum. This paucity of T. rubrum was surprising because it is one of the most common dermatophytes isolated worldwide. Our aim was to find out if T. rubrum was present but not cultured. DNA was extracted from ground toenails from the same samples. New specific primers were designed for the ITS region of T. rubrum that excluded T. interdigitale and vice versa. PCR with these new primers found T. rubrum as well as T. interdigitale in all ground toenail samples. This suggests that T. rubrum was present and common in the ground toenails. It was possibly missed by culture because it grows slowly and was overgrown by T. interdigitale and non-dermatophyte moulds. Alternatively, its viability may have declined earlier, during collection, treatment, or storage of the ground toenails. This has implications for studies of clinical materials, especially nails, as infection by T. rubrum (the most common dermatophyte) may be missed by culture, the main method used in pathology laboratories.
Full article
(This article belongs to the Special Issue Advances in Onychomycosis Research)
►▼
Show Figures

Figure 1
Open AccessArticle
Antimicrobial Peptides Act-6 and Act 8-20 Derived from Scarabaeidae Cecropins Exhibit Differential Antifungal Activity
by
Melissa Rodríguez, Lily J. Toro, Carolina Firacative, Beatriz L. Gómez, Bruno Rivas-Santiago, David Andreu, Jhon C. Castaño, German A. Téllez and Julián E. Muñoz
J. Fungi 2025, 11(7), 519; https://doi.org/10.3390/jof11070519 - 12 Jul 2025
Abstract
The number of fungal infections is steadily increasing, with considerable morbidity and mortality. Additionally, antifungal resistance is a growing concern, highlighting the need to develop new treatment options. One alternative is the use of antimicrobial peptides (AMPs). The aim of this study was
[...] Read more.
The number of fungal infections is steadily increasing, with considerable morbidity and mortality. Additionally, antifungal resistance is a growing concern, highlighting the need to develop new treatment options. One alternative is the use of antimicrobial peptides (AMPs). The aim of this study was to assess the in vitro and in vivo antifungal activity of designed short AMPs, Act-6 and Act 8-20, derived from cecropin transcripts of beetles from the family Scarabaeidae, against eight reference strains of the pathogenic yeasts Candida and Cryptococcus. We also evaluated the effect of these modified AMPs on the biofilm, morphogenesis, and cell morphology of Candida albicans, as well as the in vivo activity via a murine model of disseminated candidiasis. The AMPs herein analyzed exhibit differential antifungal activity against the yeasts assessed, and inhibit biofilm, hyphae, and pseudohyphae formation with morphological alterations in C. albicans. Moreover, the fungal load in mice treated with these AMPs significantly decreased. Altogether, our results suggest that Act-6 and Act 8-20 are promising antifungal molecules to control mycoses.
Full article
(This article belongs to the Special Issue New Strategies to Combat Human Fungal Infections)
►▼
Show Figures

Figure 1
Open AccessArticle
Antifungal Minimal Inhibitory Concentrations of Mold Isolates from Patients with Cancer; Single-Center Experience, 2018–2023
by
Hafij Al Mahmud, Sanjeet Singh Dadwal and Rosemary C. She
J. Fungi 2025, 11(7), 518; https://doi.org/10.3390/jof11070518 - 12 Jul 2025
Abstract
►▼
Show Figures
The increasing emergence of antifungal resistance poses potential clinical challenges, particularly among immunocompromised patients with cancer at risk of invasive mold infections, but data on antifungal susceptibility trends specific to this population are few. We evaluated distributions of minimal inhibitory concentrations (MIC), including
[...] Read more.
The increasing emergence of antifungal resistance poses potential clinical challenges, particularly among immunocompromised patients with cancer at risk of invasive mold infections, but data on antifungal susceptibility trends specific to this population are few. We evaluated distributions of minimal inhibitory concentrations (MIC), including minimal effective concentrations (MEC) for echinocandins, of 11 antifungal agents for 523 mold isolates (395 Aspergillus spp.) from cancer patients. Based on published Clinical and Laboratory Standards Institute guidelines, isavuconazole had notably high rates of non-wild-type MICs for A. fumigatus (19.6%), A. flavus/oryzae (34.8%), A. niger complex (26.1%), and A. terreus complex (8.33%). Persistent low baseline resistance of A. fumigatus to voriconazole was observed across multiple years (2.4–11.5% per year, average 8.41%) without significant trends in MIC change over time. Itraconazole and posaconazole demonstrated the lowest MIC distributions (MIC50 ≤ 0.06–0.5 µg/mL) of the azoles against Aspergillus spp. Amongst the A. niger complex, 29.4% (27/92) demonstrated non-wild-type MICs to itraconazole. While the A. nidulans group was less frequent (n = 24), bimodal peaks in MIC/MEC were noted for caspofungin (≤0.06 and 1 µg/mL). Non-Aspergillus molds of significance (Zygomycetes, Fusarium spp., Scedosporium spp., and Lomentospora prolificans) demonstrated variable but increased MICs to antifungal agents as previously described. Our results highlight increased rates of non-wild type MICs for Aspergillus spp. to isavuconazole and voriconazole, which are commonly used antifungal agents in cancer patients. Such AST trends should be closely monitored in populations with frequent antifungal use and encourage increased antifungal stewardship efforts.
Full article

Figure 1
Open AccessReview
Biocontrol Strategies Against Plant-Parasitic Nematodes Using Trichoderma spp.: Mechanisms, Applications, and Management Perspectives
by
María Belia Contreras-Soto, Juan Manuel Tovar-Pedraza, Alma Rosa Solano-Báez, Heriberto Bayardo-Rosales and Guillermo Márquez-Licona
J. Fungi 2025, 11(7), 517; https://doi.org/10.3390/jof11070517 - 11 Jul 2025
Abstract
►▼
Show Figures
Plant-parasitic nematodes represent a significant threat to agriculture, causing substantial economic losses worldwide. Among the biological alternatives for their control, the genus Trichoderma has emerged as a promising solution for suppressing various nematode species. This article reviews key studies on the interaction between
[...] Read more.
Plant-parasitic nematodes represent a significant threat to agriculture, causing substantial economic losses worldwide. Among the biological alternatives for their control, the genus Trichoderma has emerged as a promising solution for suppressing various nematode species. This article reviews key studies on the interaction between Trichoderma spp. and plant-parasitic nematodes, highlighting the most studied species such as Trichoderma harzianum, Trichoderma longibrachiatum, Trichoderma virens, and Trichoderma viride, mainly against the genera Meloidogyne, Pratylenchus, Globodera, and Heterodera. Trichoderma spp. act through mechanisms such as mycoparasitism, antibiosis, competition for space in the rhizosphere, production of lytic enzymes, and modulation of plant defense responses. They also produce metabolites that affect nematode mobility, reproduction, and survival, such as gliotoxin, viridin and cyclosporine A. In addition, they secrete enzymes such as chitinases, proteases, lipases, and glucanases, which degrade the cuticle of nematodes and their eggs. Furthermore, Trichoderma spp. induce systemic resistance in plants through modulation of phytohormones such as jasmonic acid, ethylene, salicylic acid and auxins. The use of Trichoderma in integrated nematode management enables its application in combination with crop rotation, organic amendments, plant extracts, and resistant varieties, thereby reducing the reliance on synthetic nematicides and promoting more sustainable and climate-resilient agriculture.
Full article

Figure 1
Open AccessArticle
Host-Specific and Environment-Dependent Effects of Endophyte Alternaria oxytropis on Three Locoweed Oxytropis Species in China
by
Yue-Yang Zhang, Yan-Zhong Li and Zun-Ji Shi
J. Fungi 2025, 11(7), 516; https://doi.org/10.3390/jof11070516 - 9 Jul 2025
Abstract
Plant–endophyte symbioses are widespread in grasslands. While symbiotic interactions often provide hosts with major fitness enhancements, the role of the endophyte Alternaria oxytropis, which produces swainsonine in locoweeds (Oxytropis and Astragalus spp.), remains enigmatic. We compared endophyte-infected (E+) and endophyte-free (E−)
[...] Read more.
Plant–endophyte symbioses are widespread in grasslands. While symbiotic interactions often provide hosts with major fitness enhancements, the role of the endophyte Alternaria oxytropis, which produces swainsonine in locoweeds (Oxytropis and Astragalus spp.), remains enigmatic. We compared endophyte-infected (E+) and endophyte-free (E−) plants of three main Chinese locoweed species (O. kansuensis, O. glabra, and O. ochrocephala) under controlled conditions, and analyzed environmental factors at locoweed poisoning hotspots for herbivores. The results demonstrated significant species-specific effects: E+ plants of O. glabra and O. ochrocephala exhibited 26–39% reductions in biomass, net photosynthetic rate, and stomatal conductance, with elevated CO2 levels, while O. kansuensis showed no measurable impacts. Swainsonine concentrations were 16–20 times higher in E+ plants (122.6–151.7 mg/kg) than in E− plants. Geospatial analysis revealed that poisoning hotspots for herbivores consistently occurred in regions with extreme winter conditions (minimum temperatures ≤ −17 °C and precipitation ≤ 1 mm during the driest month), suggesting context-dependent benefits under abiotic stress. These findings suggest that the ecological role of A. oxytropis may vary depending on both host species and environmental context, highlighting a trade-off between growth costs and potential stress tolerance conferred by A. oxytropis. The study underscores the need for field validation to elucidate the adaptive mechanisms maintaining this symbiosis in harsh environments.
Full article
(This article belongs to the Section Fungi in Agriculture and Biotechnology)
►▼
Show Figures

Figure 1
Open AccessArticle
Inhibitory Effects of Origanum vulgare Essential Oil on Mycogone perniciosa Growth in Agaricus bisporus Cultivation
by
Jasmina Glamočlija, Marija Ivanov, Marina Soković, Ana Ćirić, Slavica Ninković, Danijela Mišić, Ivanka Milenković and Dejan Stojković
J. Fungi 2025, 11(7), 515; https://doi.org/10.3390/jof11070515 - 9 Jul 2025
Abstract
Mycogone perniciosa is the causative agent of wet bubble disease, which induces significant losses in the production of Agaricus bisporus, indicating the high importance of the development of novel inhibitory agents. The isolation, identification, and molecular characterization of five isolates of M.
[...] Read more.
Mycogone perniciosa is the causative agent of wet bubble disease, which induces significant losses in the production of Agaricus bisporus, indicating the high importance of the development of novel inhibitory agents. The isolation, identification, and molecular characterization of five isolates of M. perniciosa from diseased fruit bodies of A. bisporus was done. Moreover, the study evaluated the in vitro and in situ potential of Origanum vulgare essential oil (EO) to limit M. perniciosa growth and provided chemical characterization of its volatile components. The obtained strains differed phenotypically and according to their molecular characteristics. O. vulgare EO has shown more promising antifungal activity than the commercial fungicide Prochloraz-Mn in the microatmospheric method. In the treatment of experimentally induced wet bubble disease on A. bisporus in the growing chambers with 2% of O. vulgare EO and simultaneous application of spore suspension of mycopathogen, O. vulgare EO totally inhibited the growth of M. perniciosa. Carvacrol, p-cymene, γ-terpinene, and thymol were dominant constituents of O. vulgare EO examined in this study. O. vulgare EO has shown promising potential to limit growth of M. perniciosa and should be further explored as a novel biofungicide.
Full article
(This article belongs to the Special Issue Innovative Insights and Challenges in Managing Fungal Diseases in Crops: Toward Sustainable Agricultural Practices)
►▼
Show Figures

Figure 1

Journal Menu
► ▼ Journal Menu-
- JoF Home
- Aims & Scope
- Editorial Board
- Reviewer Board
- Topical Advisory Panel
- Instructions for Authors
- Special Issues
- Topics
- Sections & Collections
- Article Processing Charge
- Indexing & Archiving
- Editor’s Choice Articles
- Most Cited & Viewed
- Journal Statistics
- Journal History
- Journal Awards
- Society Collaborations
- Conferences
- Editorial Office
- 10th Anniversary
Journal Browser
► ▼ Journal BrowserHighly Accessed Articles
Latest Books
E-Mail Alert
News
Topics
Topic in
Antibiotics, Antioxidants, JoF, Microbiology Research, Microorganisms
Redox in Microorganisms, 2nd Edition
Topic Editors: Michal Letek, Volker BehrendsDeadline: 31 July 2025
Topic in
JoF, Microbiology Research, Microorganisms, Pathogens
Pathophysiology and Clinical Management of Fungal Infections
Topic Editors: Allan J. Guimarães, Marcos de Abreu AlmeidaDeadline: 30 November 2025
Topic in
Biomedicines, JoF, Pharmaceuticals, Pharmaceutics, Reports, Molecules
Natural Products to Fight Fungal Infections
Topic Editors: Célia Fortuna Rodrigues, Shasank Sekhar SwainDeadline: 30 December 2025
Topic in
Applied Microbiology, Forests, Insects, JoF, Microorganisms
Diversity of Insect-Associated Microorganisms
Topic Editors: Dilnora E. Gouliamova, Teun BoekhoutDeadline: 28 February 2026

Conferences
Special Issues
Special Issue in
JoF
Genetic, Genomics and Big Data Analysis of the Interaction Between Pathogenic Fungi and Plants—Second Edition
Guest Editors: Houxiang Kang, Zhigang Li, Wei LiDeadline: 20 July 2025
Special Issue in
JoF
Mycological Research in Mexico
Guest Editor: Liliana Aguilar-MarcelinoDeadline: 31 July 2025
Special Issue in
JoF
Current Research in Soil Borne Plant Pathogens
Guest Editors: Andrew Chen, Elizabeth AitkenDeadline: 31 July 2025
Special Issue in
JoF
Protein Research in Pathogenic Fungi
Guest Editors: Justyna Karkowska-Kuleta, Dorota SatalaDeadline: 31 July 2025
Topical Collections
Topical Collection in
JoF
Superficial Fungal Infections
Collection Editors: Aditya Gupta, Bianca Maria Piraccini
Topical Collection in
JoF
Advances in Plant Pathogenic Fungi: Diagnosis, Biological Control, and Eco-Sustainable Formulations
Collection Editors: Santa Olga Cacciola, Carlos Agustí-Brisach, Josep Armengol
Topical Collection in
JoF
Entomopathogenic and Nematophagous Fungi
Collection Editors: Jinkui Yang, Xuemei Niu