Association between Food Intake, Clinical and Metabolic Markers and DNA Damage in Older Subjects
Abstract
:1. Introduction
2. Materials and Methods
2.1. Setting and Subjects’ Recruitment
2.2. Food Intake
2.3. Anthropometric, Clinical and Metabolic Makers Analysis
2.4. Isolation of Peripheral Blood Mononuclear Cells
2.5. Analysis of DNA Damage by the Comet Assay
2.6. Statistical Analysis
3. Results
3.1. Subject Characteristics
3.2. Correlation between DNA Damage and Dietary Markers
3.3. Correlation between the Levels of DNA Damage and Anthropometric, Metabolic and Clinical Markers
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- da Silva, P.F.L.; Schumacher, B. DNA damage responses in ageing. Open Biol. 2019, 9, 190168. [Google Scholar] [CrossRef]
- Nikitaki, Z.; Hellweg, C.E.; Georgakilas, A.G.; Ravanat, J.-L. Stress-induced DNA damage biomarkers: Applications and limitations. Front. Chem. 2015, 3, 35. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- EFSA NDA Panel (EFSA Panel on Dietetic Products, Nutrition and Allergies); Turck, D.; Bresson, J.-L.; Burlingame, B.; Dean, T.; Fairweather-Tait, S.; Heinonen, M.; Hirsch-Ernst, K.I.; Mangelsdorf, I.; McArdle, H.J.; et al. Guidance for the scientific requirements for health claims related to antioxidants, oxidative damage and cardiovascular health (Revision 1). EFSA J. 2018, 16, 5136. [Google Scholar]
- Martini, D.; Rossi, S.; Biasini, B.; Zavaroni, I.; Bedogni, G.; Musci, M.; Pruneti, C.; Passeri, G.; Ventura, M.; Di Nuzzo, S.; et al. Claimed effects, outcome variables and methods of measurement for health claims proposed under European Community Regulation 1924/2006 in the framework of protection against oxidative damage and cardiovascular health. Nutr. Metab. Cardiovasc. Dis. 2017, 27, 473–503. [Google Scholar] [CrossRef]
- Valavanidis, A.; Vlachogianni, T.; Fiotakis, C. 8-hydroxy-2′-deoxyguanosine (8-OHdG): A critical biomarker of oxidative stress and carcinogenesis. J. Environ. Sci. Health C Environ. Carcinog. Ecotoxicol. Rev. 2009, 27, 120–139. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Singh, N.P. The comet assay: Reflections on its development, evolution and applications. Mutat. Res. Rev. Mutat. Res. 2016, 767, 23–30. [Google Scholar] [CrossRef]
- Møller, P.; Azqueta, A.; Boutet-Robinet, E.; Koppen, G.; Bonassi, S.; Milić, M.; Gajski, G.; Costa, S.; Paulo Teixeira, J.; Pereira, C.C.; et al. Minimum Information for Reporting on the Comet Assay (MIRCA): Recommendations for describing comet assay procedures and results. Nat. Protoc. 2020, 15, 3817–3826. [Google Scholar] [CrossRef] [PubMed]
- Pu, X.; Wang, Z.; Klaunig, J.E. Alkaline comet assay for assessing DNA damage in individual cells. Curr. Protoc. Toxicol. 2015, 65, 3.12.1–3.12.11. [Google Scholar] [CrossRef] [PubMed]
- Azqueta, A.; Ladeira, C.; Giovannelli, L.; Boutet-Robinet, E.; Bonassi, S.; Neri, M.; Gajski, G.; Duthie, S.; Del Bo’, C.; Riso, P.; et al. Application of the comet assay in human biomonitoring: An hCOMET perspective. Mutat. Res. 2020, 783, 108288. [Google Scholar] [CrossRef] [PubMed]
- Muruzabal, D.; Collins, A.; Azqueta, A. The enzyme-modified comet assay: Past, present and future. Food Chem. Toxicol. 2021, 147, 111865. [Google Scholar] [CrossRef]
- Collins, A.; Vettorazzi, A.; Azqueta, A. The role of the enzyme-modified comet assay in in vivo studies. Toxicol. Lett. 2020, 327, 58–68. [Google Scholar] [CrossRef] [PubMed]
- Pinto Soares, P.; Cortinhas, A.; Bento, T.; Carlos Leitão, J.; Collins, A.R.; Gaivã, I.; Mota, M.P. Aging and DNA damage in humans: A meta-analysis study. Aging 2014, 6, 432–439. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yousefzadeh, M.; Henpita, C.; Vyas, R.; Soto-Palma, C.; Robbins, P.; Niedernhofer, L. DNA damage—How and why we age? eLife 2021, 10, e62852. [Google Scholar] [CrossRef]
- Sies, H.; Berndt, C.; Jones, D.P. Oxidative stress. Annu. Rev. Biochem. 2017, 86, 715–748. [Google Scholar] [CrossRef]
- Rea, I.M.; Gibson, D.S.; McGilligan, V.; McNerlan, S.E.; Denis Alexander, H.; Ross, O.A. Age and age-related diseases: Role of inflammation triggers and cytokines. Front. Immunol. 2018, 9, 586. [Google Scholar] [CrossRef]
- Vetrani, C.; Costabile, G.; Di Marino, L.; Rivellese, A.A. Nutrition and oxidative stress: A systematic review of human studies. Int. J. Food Sci. Nutr. 2013, 64, 312–326. [Google Scholar] [CrossRef]
- Böhm, V.; Lietz, G.; Olmedilla-Alonso, B.; Phelan, D.; Reboul, E.; Bánati, D.; Borel, P.; Corte-Real, J.; de Lera, A.R.; Desmarchelier, C.; et al. From carotenoid intake to carotenoid blood and tissue concentrations—Implications for dietary intake recommendations. Nutr. Rev. 2021, 79, 544–573. [Google Scholar] [CrossRef]
- Marino, M.; Del Bo’, C.; Martini, D.; Porrini, M.; Riso, P. A Review of Registered Clinical Trials on Dietary (Poly)Phenols: Past Efforts and Possible Future Directions. Foods 2020, 9, 1606. [Google Scholar] [CrossRef]
- Costanzo, G.; Iesce, M.R.; Naviglio, D.; Ciaravolo, M.; Vitale, E.; Arena, C. Comparative Studies on Different Citrus Cultivars: A Revaluation of Waste Mandarin Components. Antioxidants 2020, 9, 517. [Google Scholar] [CrossRef]
- Peritore, A.F.; Siracusa, R.; Crupi, R.; Cuzzocrea, S. Therapeutic Efficacy of Palmitoylethanolamide and Its New Formulations in Synergy with Different Antioxidant Molecules Present in Diets. Nutrients 2019, 11, 2175. [Google Scholar] [CrossRef] [Green Version]
- Riso, P.; Martini, D.; Visioli, F.; Martinetti, A.; Porrini, M. Effect of broccoli intake on markers related to oxidative stress and cancer risk in healthy smokers and nonsmokers. Nutr. Cancer 2009, 61, 232–237. [Google Scholar] [CrossRef]
- Riso, P.; Martini, D.; Møller, P.; Loft, S.; Bonacina, G.; Moro, M.; Porrini, M. DNA damage and repair activity after broccoli intake in young healthy smokers. Mutagenesis 2010, 25, 595–602. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Del Bo’, C.; Martini, D.; Vendrame, S.; Riso, P.; Ciappellano, S.; Klimis-Zacas, D.; Porrini, M. Improvement of lymphocyte resistance against H2O2-induced DNA damage in Sprague-Dawley rats after eight weeks of a wild blueberry (Vaccinium angustifolium)-enriched diet. Mutat. Res. 2010, 703, 158–162. [Google Scholar] [CrossRef] [PubMed]
- Proshkina, E.; Shaposhnikov, M.; Moskalev AInt, J. Genome-protecting compounds as potential geroprotectors. Int. J. Mol. Sci. 2020, 21, 4484. [Google Scholar] [CrossRef] [PubMed]
- Kaźmierczak-Barańska, J.; Boguszewska, K.; Karwowski, B.T. Nutrition can help DNA repair in the case of aging. Nutrients 2020, 12, 3364. [Google Scholar] [CrossRef]
- Włodarczyk, M.; Nowicka, G. Obesity, DNA damage, and development of obesity-related diseases. Int. J. Mol. Sci. 2019, 20, 1146. [Google Scholar] [CrossRef]
- Freitas, A.A.; de Magalhães, J.P. A review and appraisal of the DNA damage theory of ageing. Mutat. Res. 2011, 728, 12–22. [Google Scholar] [CrossRef] [PubMed]
- Piperakis, S.M.; Kontogianni, K.; Karanastasi, G.; Iakovidou-Kritsi, Z.; Piperakis, M.M. The use of comet assay in measuring DNA damage and repair efficiency in child, adult, and old age populations. Cell Biol. Toxicol. 2009, 25, 65–71. [Google Scholar] [CrossRef]
- Lian, P.; Braber, S.; Garssen, J.; Wichers, H.J.; Folkerts, G.; Fink-Gremmels, J.; Varasteh, S. Beyond heat stress: Intestinal integrity disruption and mechanism-based intervention strategies. Nutrients 2020, 12, 734. [Google Scholar] [CrossRef] [Green Version]
- Guglielmetti, S.; Bernardi, S.; Del Bo’, C.; Cherubini, A.; Porrini, M.; Gargari, G.; Hidalgo-liberona, N.; Gonzalez-dominguez, R.; Peron, G.; Zamora-Ros, R.; et al. Effect of a polyphenol-rich dietary pattern on intestinal permeability and gut and blood microbiomics in older subjects: Study protocol of the MaPLE randomised controlled trial. BMC Geriatr. 2020, 20, 77. [Google Scholar] [CrossRef] [Green Version]
- Martini, D.; Bernardi, S.; Del Bo’, C.; Hidalgo Liberona, N.; Zamora-Ros, R.; Tucci, M.; Cherubini, A.; Porrini, M.; Gargari, G.; González-Domínguez, R.; et al. Estimated Intakes of Nutrients and Polyphenols in Participants Completing the MaPLE Randomised Controlled Trial and Its Relevance for the Future Development of Dietary Guidelines for the Older Subjects. Nutrients 2020, 12, 2458. [Google Scholar] [CrossRef] [PubMed]
- Seefeldt, V.D.; Harrison, G.G. Anthropometric Standardization Reference Manual; Lohman, T.G., Roche, A.F., Martorell, R., Eds.; Human Kinetics Books: Champaign, IL, USA, 1988; p. 111. [Google Scholar]
- Chobanian, A.V.; Bakris, G.L.; Black, H.R.; Cushman, W.C.; Green, L.A.; Izzo, J.L., Jr.; Jones, D.W.; Materson, B.J.; Oparil, S.; Wright, J.T., Jr.; et al. Joint National Committee on Prevention, Detection, Evaluation, and Treatment of High Blood Pressure. National Heart, Lung, and Blood Institute; National High Blood Pressure Education Program Coordinating Committee Seventh report of the joint National Committee on prevention, detection, evaluation, and treatment of high blood pressure. Hypertension 2003, 42, 1206–1252. [Google Scholar] [PubMed] [Green Version]
- Del Bo’, C.; Bernardi, S.; Cherubini, A.; Porrini, M.; Zamora-ros, R.; Peron, G.; Marino, M.; Gigliotti, L.; Winterbone, M.S.; Kirkup, B.; et al. A polyphenol-rich dietary pattern improves intestinal permeability, evaluated as serum zonulin levels, in older subjects: The MaPLE randomised controlled trial. Clin. Nutr. 2020. [Google Scholar] [CrossRef]
- Del Bo’, C.; Fracassetti, D.; Lanti, C.; Porrini, M.; Riso, P. Comparison of DNA damage by the comet assay in fresh versus cryopreserved peripheral blood mononuclear cells obtained following dietary intervention. Mutagenesis 2015, 30, 29–35. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Løhr, M.; Jensen, A.; Eriksen, L.; Grønbæk, M.; Loft, S.; Møller, P. Age and metabolic risk factors associated with oxidatively damaged DNA in human peripheral blood mononuclear cells. Oncotarget 2015, 6, 2641–2653. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sirota, N.P.; Kuznetsova, E.A. Spontaneous DNA damage in peripheral blood leukocytes from donors of different age. Bull. Exp. Biol. Med. 2008, 145, 194–197. [Google Scholar] [CrossRef] [PubMed]
- Humphreys, V.; Martin, R.M.; Ratcliffe, B.; Duthie, S.; Wood, S.; Gunnell, D.; Collins, A.R. Age-related increases in DNA repair and antioxidant protection: A comparison of the Boyd Orr Cohort of elderly subjects with a younger population sample. Age Ageing 2007, 36, 521–526. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Møller, P. Effect of age and sex on the level of DNA strand breaks and oxidatively damaged DNA in human blood cells. Mutat. Res. Genet. Toxicol. Environ. Mutagen. 2019, 838, 16–21. [Google Scholar] [CrossRef]
- Del Bo’, C.; Marino, M.; Martini, D.; Tucci, M.; Ciappellano, S.; Riso, P.; Porrini, M. Overview of human intervention studies evaluating the impact of the Mediterranean diet on markers of DNA damage. Nutrients 2019, 11, 391. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kazimírová, A.; Barancoková, M.; Volkovová, K.; Staruchová, M.; Krajcovicová-Kudlácková, M.; Wsólová, L. Does a vegetarian diet influence genomic stability? Eur. J. Nutr. 2004, 43, 32–38. [Google Scholar] [CrossRef]
- Bishop, K.S.; Erdrich, S.; Karunasinghe, N.; Han, D.Y.; Zhu, S.; Jesuthasan, A.; Ferguson, L.R. An investigation into the association between DNA damage and dietary fatty acid in men with prostate cancer. Nutrients 2015, 7, 405–422. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tan, B.L.; Norhaizan, M.E.; Liew, W.P. Nutrients and oxidative stress: Friend or foe? Oxid. Med. Cell Longev. 2018, 2018, 9719584. [Google Scholar] [CrossRef]
- Barber, T.M.; Kabisch, S.; Pfeiffer, A.F.H.; Weickert, M.O. The health benefits of dietary fibre. Nutrients 2020, 12, 3209. [Google Scholar] [CrossRef] [PubMed]
- Włodarczyk, M.; Jabłonowska-Lietz, B.; Olejarz, W.; Nowicka, G. Anthropometric and dietary factors as predictors of DNA damage in obese women. Nutrients 2018, 10, 578. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Duthie, S.J.; Narayanan, S.; Brand, G.M.; Pirie, L.; Grant, G. Impact of folate deficiency on DNA stability. J. Nutr. 2002, 132 (Suppl. 8), 2444S–2449S. [Google Scholar] [CrossRef]
- Ames, B.N. DNA damage from micronutrient deficiencies is likely to be a major cause of cancer. Mutat. Res. 2001, 475, 7–20. [Google Scholar] [CrossRef]
- Kuwahara, K.; Nanri, A.; Pham, N.M.; Kurotani, K.; Kume, A.; Sato, M.; Kawai, K.; Kasai, H.; Mizoue, T. Serum vitamin B6, folate, and homocysteine concentrations and oxidative DNA damage in Japanese men and women. Nutrition 2013, 29, 1219–1223. [Google Scholar] [CrossRef] [PubMed]
- Ferguson, L.R.; Fenech, M.F. Vitamin and minerals that influence genome integrity, and exposure/intake levels associated with DNA damage prevention. Mutat. Res. 2012, 733, 1–3. [Google Scholar] [CrossRef] [PubMed]
- Fenech, M. Recommended dietary allowances (RDAs) for genomic stability. Mutat. Res. 2001, 480–481, 51–54. [Google Scholar] [CrossRef]
- Ladeira, C.; Carolino, E.; Gomes, M.C.; Brito, M. Role of macronutrients and micronutrients in DNA damage: Results from a Food Frequency Questionnaire. Nutr. Metab. Insights 2017, 10, 117863881668466. [Google Scholar] [CrossRef] [PubMed]
- Smith, D.F.; MacGregor, J.T.; Hiatt, R.A.; Hooper, N.K.; Wehr, C.M.; Peters, B.; Goldman, L.R.; Yuan, L.A.; Smith, P.A.; Becker, C.E. Micronucleated erythrocytes as an index of cytogenetic damage in humans: Demographic and dietary factors associated with micronucleated erythrocytes in splenectomized subjects. Cancer Res. 1990, 50, 5049–5054. [Google Scholar]
- Dhalaria, R.; Verma, R.; Kumar, D.; Puri, S.; Tapwal, A.; Kumar, V.; Nepovimova, E.; Kuca, K. Bioactive compounds of edible fruits with their anti-aging properties: A comprehensive review to prolong human life. Antioxidants 2020, 9, 1123. [Google Scholar] [CrossRef]
- Tan, B.L.; Norhaizan, M.E.; Liew, W.P.; Sulaiman Rahman, H. Antioxidant and oxidative stress: A mutual interplay in age-related diseases. Front. Pharmacol. 2018, 9, 1162. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Azqueta, A.; Collins, A. Polyphenols and DNA damage: A mixed blessing. Nutrients 2016, 8, 785. [Google Scholar] [CrossRef]
- Del Bo’, C.; Porrini, M.; Campolo, J.; Parolini, M.; Lanti, C.; Klimis-Zacas, D.; Riso, P. A single blueberry (Vaccinium corymbosum) portion does not affect markers of antioxidant defence and oxidative stress in healthy volunteers following cigarette smoking. Mutagenesis 2016, 31, 215–224. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Del Bo’, C.; Bernardi, S.; Marino, M.; Porrini, M.; Tucci, M.; Guglielmetti, S.; Cherubini, A.; Carrieri, B.; Kirkup, B.; Kroon, P.; et al. Systematic review on polyphenol intake and health outcomes: Is there sufficient evidence to define a health-promoting polyphenol-rich dietary pattern? Nutrients 2019, 11, 1355. [Google Scholar]
- Del Bo’, C.; Riso, P.; Campolo, J.; Møller, P.; Loft, S.; Klimis-Zacas, D.; Brambilla, A.; Rizzolo, A.; Porrini, M. A single portion of blueberry (Vaccinium corymbosum L.) improves protection against DNA damage but not vascular function in healthy male volunteers. Nutr. Res. 2013, 33, 220–227. [Google Scholar] [CrossRef]
- Riso, P.; Klimis-Zacas, D.; Del Bo’, C.; Martini, D.; Campolo, J.; Vendrame, S.; Møller, P.; Loft, S.; De Maria, R.; Porrini, M. Effect of a wild blueberry (Vaccinium angustifolium) drink intervention on markers of oxidative stress, inflammation and endothelial function in humans with cardiovascular risk factors. Eur. J. Nutr. 2013, 52, 949–961. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martini, D.; Del Bo’, C.; Tassotti, M.; Riso, P.; Del Rio, D.; Brighenti, F.; Porrini, M. Coffee consumption and oxidative stress: A review of human intervention studies. Molecules 2016, 21, 979. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rabassa, M.; Zamora-Ros, R.; Andres-Lacueva, C.; Urpi-Sarda, M.; Bandinelli, S.; Ferrucci, L.; Cherubini, A. Association between both total baseline urinary and dietary polyphenols and substantial physical performance decline risk in older adults: A 9-year follow-up of the InCHIANTI study. J. Nutr. Health Aging 2016, 20, 478–484. [Google Scholar] [CrossRef] [Green Version]
- Setayesh, T.; Nersesyan, A.; Mišík, M.; Ferk, F.; Langie, S.; Andrade, V.M.; Haslberger, A.; Knasmüller, S. Impact of obesity and overweight on DNA stability: Few facts and many hypotheses. Mutat. Res. 2018, 777, 64–91. [Google Scholar] [CrossRef] [PubMed]
- Tomasello, B.; Malfa, G.; Galvano, F.; Reins, M. DNA damage in normal-weight obese syndrome measured by Comet assay. Mediterr. J. Nutr. Metab. 2011, 2, 99–104. [Google Scholar] [CrossRef]
- Adenan, D.M.; Jaafar, Z.; Jayapalan, J.J.; Abdul Aziz, A. Plasma antioxidants and oxidative stress status in obese women: Correlation with cardiopulmonary response. PeerJ 2020, 8, e9230. [Google Scholar] [CrossRef]
- Awad, M.A.; Aldosari, S.R.; Abid, M.R. Genetic alterations in oxidant and antioxidant enzymes in the vascular system. Front. Cardiovasc. Med. 2018, 5, 107. [Google Scholar] [CrossRef] [Green Version]
- Wei, Y.P.; Jia, C.N.; Lan, Y.; Hou, X.Q.; Zuo, J.J.; Cui, H.; Guan, X.J.; Wang, Y.; Mao, G.Y. Serum cholesterol positively associated with oxidative DNA damage: A propensity score-matched analysis. Free Radic. Res. 2019, 53, 411–417. [Google Scholar] [CrossRef] [PubMed]
- De Barros, K.V.; De Abreu, C.G.; Xavier, R.A.; Ribeiro, M.L.; Gambero, A.; de Oliveira Carvalho, P.; Silveira, V.L. Effects of a high fat or a balanced omega 3/omega 6 diet on cytokines levels and DNA damage in experimental colitis. Nutrition 2011, 27, 221–226. [Google Scholar] [CrossRef] [PubMed]
- Anderson, R.F.; Harris, T.A. Dopamine and uric acid act as antioxidants in the repair of DNA radicals: Implications in Parkinson’s disease. Free Radic. Res. 2003, 37, 1131–1136. [Google Scholar] [CrossRef]
- Foksinski, M.; Gackowski, D.; Rozalski, R.; Siomek, A.; Guz, J.; Szpila, A.; Dziaman, T.; Olinski, R. Effects of basal level of antioxidants on oxidative DNA damage in humans. Eur. J. Nutr. 2007, 46, 174–180. [Google Scholar] [CrossRef] [PubMed]
- Ruggiero, C.; Cherubini, A.; Ble, A.; Bos, A.J.; Maggio, M.; Dixit, V.D.; Lauretani, F.; Bandinelli, S.; Senin, U.; Ferrucci, L. Uric acid and inflammatory markers. Eur. Heart J. 2006, 27, 1174–1181. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gormally, B.M.G.; Fuller, R.; McVey, M.; Romero, L.M. DNA damage as an indicator of chronic stress: Correlations with corticosterone and uric acid. Comp. Biochem. Physiol. A Mol. Integr. Physiol. 2019, 227, 116–122. [Google Scholar] [CrossRef]
- Ndrepepa, G. Uric acid and cardiovascular disease. Clin. Chim. Acta 2018, 484, 150–163. [Google Scholar] [CrossRef] [PubMed]
- Brombo, G.; Bonetti, F.; Volpato, S.; Morieri, M.L.; Napoli, E.; Bandinelli, S.; Cherubini, A.; Maggio, M.; Guralnik, J.; Ferrucci, L.; et al. Uric acid within the “normal” range predict 9-year cardiovascular mortality in older individuals. The InCHIANTI study. Nutr. Metab. Cardiovasc. Dis. 2019, 29, 1061–1067. [Google Scholar] [CrossRef]
- Bernardi, S.; Del Bo’, C.; Marino, M.; Gargari, G.; Cherubini, A.; Andrés-Lacueva, C.; Hidalgo-Liberona, N.; Peron, G.; González-Dominguez, R.; Kroon, P.; et al. Polyphenols and Intestinal Permeability: Rationale and Future Perspectives. J. Agric. Food Chem. 2020, 68, 1816–1829. [Google Scholar] [CrossRef]
- Söderholm, J.D.; Perdue, M.H. Stress and gastrointestinal tract. II. Stress and intestinal barrier function. Am. J. Physiol. Gastrointest. Liver Physiol. 2001, 280, G7–G13. [Google Scholar] [CrossRef] [PubMed]
Marker of DNA Damage | All (n = 49) | Men (n = 22) | Women (n = 27) | p-Value |
---|---|---|---|---|
FPG-sensitive sites (% DNA in tail) | 16.5 ± 9.0 | 18.6 ± 10.4 | 14.8 ± 6.8 | 0.071 |
H2O2-induced DNA damage (% DNA in tail) | 28.7 ± 11.4 | 28.5 ± 11.6 | 29.0 ± 2.4 | 0.438 |
Dietary Markers | FPG-Sensitive Sites | H2O2-Induced Damage | ||||
---|---|---|---|---|---|---|
Tau | Z | p-Level | Tau | Z | p-Level | |
Energy (kcal) | 0.064 | 0.650 | 0.516 | 0.023 | 0.234 | 0.815 |
Total Carbohydrates (% of energy) | 0.021 | 0.217 | 0.828 | −0.032 | −0.322 | 0.748 |
Simple Carbohydrates (% of energy) | −0.026 | −0.261 | 0.794 | −0.019 | −0.191 | 0.849 |
Proteins (% of energy) | −0.016 | −0.167 | 0.867 | −0.032 | −0.325 | 0.745 |
Animal Proteins (% of energy) | −0.067 | −0.675 | 0.500 | 0.051 | 0.517 | 0.605 |
Vegetal Proteins (% of energy) | 0.013 | 0.135 | 0.893 | 0.038 | 0.386 | 0.700 |
Total Lipids (% of energy) | −0.048 | −0.488 | 0.626 | 0.082 | 0.827 | 0.408 |
SFA (% of energy) | −0.069 | −0.699 | 0.485 | 0.113 | 1.143 | 0.253 |
MUFA (% of energy) | −0.137 | −1.387 | 0.165 | 0.099 | 1.000 | 0.317 |
PUFA (%of energy) | −0.056 | −0.571 | 0.568 | 0.061 | 0.616 | 0.538 |
ω-6 (%of energy) | −0.112 | −1.131 | 0.258 | 0.082 | 0.835 | 0.404 |
ω-3 (%of energy) | −0.101 | −1.027 | 0.305 | 0.114 | 1.159 | 0.247 |
Total Fibre (g/1000 kcal) | −0.084 | −0.849 | 0.396 | −0.108 | −1.093 | 0.274 |
Cholesterol (mg) | 0.006 | 0.061 | 0.951 | 0.289 | 2.929 | 0.003 |
Calcium (mg) | −0.022 | −0.225 | 0.822 | 0.038 | 0.381 | 0.703 |
Iron (mg) | 0.157 | 1.596 | 0.110 | 0.016 | 0.158 | 0.875 |
Vitamin B12 (mcg) | −0.002 | −0.019 | 0.985 | 0.161 | 1.632 | 0.103 |
Vitamin C (mg) | −0.294 | −2.978 | 0.003 | 0.123 | 1.245 | 0.213 |
Vitamin E (mg) | −0.262 | −2.653 | 0.008 | 0.083 | 0.843 | 0.399 |
Vitamin B1 (mg) | −0.100 | −1.012 | 0.312 | 0.008 | 0.076 | 0.939 |
Folates (mcg) | −0.310 | −3.138 | 0.002 | 0.153 | 1.546 | 0.122 |
Vitamin B6 (mg) | −0.263 | −2.670 | 0.008 | 0.212 | 2.147 | 0.032 |
Flavonoids (mg) | 0.167 | 1.692 | 0.091 | 0.005 | 0.052 | 0.959 |
Lignans (mg) | −0.031 | −0.315 | 0.753 | 0.149 | 1.508 | 0.132 |
Other polyphenols (mg) | −0.135 | −1.370 | 0.171 | 0.124 | 1.255 | 0.210 |
Phenolic acids (mg) | −0.005 | −0.052 | 0.958 | 0.012 | 0.122 | 0.903 |
Stilbenes (mg) | 0.012 | 0.122 | 0.903 | −0.039 | −0.395 | 0.693 |
Total Polyphenols (mg) | 0.138 | 1.401 | 0.161 | −0.032 | −0.328 | 0.743 |
TPC Folin (mg) | −0.024 | −0.242 | 0.809 | −0.055 | −0.553 | 0.580 |
Women | Men | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
FPG-Sensitive Sites | H2O2-Induced Damage | FPG-Sensitive Sites | H2O2-Induced Damage | |||||||||
Dietary Markers | Tau | Z | p-Level | Tau | Z | p-Level | Tau | Z | p-Level | Tau | Z | p-Level |
Energy (kcal) | 0.054 | 0.398 | 0.690 | −0.060 | −0.440 | 0.660 | 0.004 | 0.028 | 0.977 | 0.135 | 0.878 | 0.380 |
Total Carbohydrates (% of energy) | −0.052 | −0.377 | 0.706 | 0.080 | 0.586 | 0.558 | 0.083 | 0.538 | 0.591 | −0.135 | −0.878 | 0.380 |
Simple Carbohydrates (% of energy) | 0.040 | 0.293 | 0.769 | −0.034 | −0.251 | 0.802 | −0.113 | −0.735 | 0.462 | −0.035 | −0.226 | 0.821 |
Proteins (% of energy) | −0.123 | −0.902 | 0.367 | −0.014 | −0.105 | 0.917 | 0.130 | 0.848 | 0.397 | −0.052 | −0.339 | 0.735 |
Animal Proteins (% of energy) | −0.057 | −0.419 | 0.675 | −0.040 | −0.293 | 0.769 | 0.009 | 0.057 | 0.955 | 0.087 | 0.565 | 0.572 |
Vegetable Proteins (% of energy) | −0.046 | −0.335 | 0.738 | −0.006 | −0.042 | 0.967 | 0.009 | 0.057 | 0.955 | 0.052 | 0.339 | 0.735 |
Total Lipids (% of energy) | 0.100 | 0.734 | 0.463 | −0.054 | −0.398 | 0.690 | −0.191 | −1.243 | 0.214 | 0.234 | 1.526 | 0.127 |
SFA (% of energy) | 0.109 | 0.796 | 0.426 | 0.046 | 0.335 | 0.738 | −0.182 | −1.187 | 0.235 | 0.139 | 0.904 | 0.366 |
MUFA (% of energy) | 0.080 | 0.586 | 0.558 | −0.006 | −0.042 | 0.967 | −0.304 | −1.978 | 0.048 | 0.191 | 1.243 | 0.214 |
PUFA (%of energy) | 0.052 | 0.377 | 0.706 | 0.000 | 0.000 | 1.000 | −0.174 | −1.130 | 0.258 | 0.148 | 0.961 | 0.337 |
ω-6 (%of energy) | 0.052 | 0.379 | 0.705 | −0.017 | −0.126 | 0.899 | −0.253 | −1.646 | 0.100 | 0.148 | 0.965 | 0.335 |
ω-3 (%of energy) | −0.020 | −0.149 | 0.881 | 0.020 | 0.149 | 0.881 | −0.181 | −1.177 | 0.239 | 0.181 | 1.177 | 0.239 |
Total Fibre (g/1000 kcal) | −0.023 | −0.167 | 0.867 | −0.269 | −1.968 | 0.049 | −0.161 | −1.048 | 0.295 | 0.022 | 0.142 | 0.887 |
Cholesterol (mg) | 0.029 | 0.212 | 0.832 | 0.353 | 2.584 | 0.010 | −0.052 | −0.341 | 0.733 | 0.200 | 1.306 | 0.192 |
Calcium (mg) | 0.063 | 0.461 | 0.645 | −0.137 | −1.005 | 0.315 | −0.087 | −0.565 | 0.572 | 0.148 | 0.961 | 0.337 |
Iron (mg) | 0.114 | 0.837 | 0.402 | −0.097 | −0.712 | 0.477 | 0.200 | 1.300 | 0.194 | 0.052 | 0.339 | 0.735 |
Vitamin B12 (mcg) | −0.036 | −0.264 | 0.791 | 0.181 | 1.322 | 0.186 | 0.113 | 0.738 | 0.461 | 0.131 | 0.856 | 0.392 |
Vitamin C (mg) | −0.263 | −1.926 | 0.054 | 0.057 | 0.419 | 0.675 | −0.300 | −1.954 | 0.051 | 0.170 | 1.105 | 0.269 |
Vitamin E (mg) | −0.172 | −1.260 | 0.208 | −0.046 | −0.336 | 0.737 | −0.312 | −2.035 | 0.042 | 0.200 | 1.300 | 0.194 |
Vitamin B1 (mg) | −0.035 | −0.253 | 0.801 | −0.109 | −0.800 | 0.424 | −0.083 | −0.540 | 0.589 | 0.031 | 0.199 | 0.842 |
Folates (mcg) | −0.391 | −2.864 | 0.004 | 0.197 | 1.443 | 0.149 | −0.229 | −1.494 | 0.135 | 0.100 | 0.649 | 0.517 |
Vitamin B6 (mg) | −0.273 | −1.998 | 0.046 | 0.043 | 0.315 | 0.752 | −0.244 | −1.589 | 0.112 | 0.288 | 1.873 | 0.061 |
Flavonoids (mg) | 0.126 | 0.919 | 0.358 | 0.023 | 0.167 | 0.867 | 0.152 | 0.987 | 0.324 | −0.004 | −0.028 | 0.978 |
Lignans (mg) | 0.009 | 0.064 | 0.949 | 0.155 | 1.138 | 0.255 | −0.115 | −0.751 | 0.453 | 0.177 | 1.156 | 0.248 |
Phenolic acids (mg) | −0.011 | −0.084 | 0.933 | 0.114 | 0.835 | 0.404 | −0.056 | −0.367 | 0.714 | −0.091 | −0.592 | 0.554 |
Stilbenes (mg) | −0.060 | −0.442 | 0.659 | 0.226 | 1.657 | 0.098 | −0.233 | −1.519 | 0.129 | 0.069 | 0.447 | 0.655 |
Other polyphenols (mg) | 0.006 | 0.042 | 0.967 | 0.074 | 0.544 | 0.586 | −0.299 | −1.946 | 0.052 | 0.152 | 0.987 | 0.324 |
Total_Polyphenols (mg) | 0.060 | 0.438 | 0.662 | 0.048 | 0.354 | 0.723 | 0.143 | 0.931 | 0.352 | −0.100 | −0.649 | 0.517 |
TPC_Folin (mg) | 0.157 | 1.147 | 0.252 | −0.003 | −0.021 | 0.983 | −0.195 | −1.269 | 0.204 | −0.126 | −0.818 | 0.414 |
Metabolic and Clinical Markers | FPG-Sensitive Sites | H2O2-Induced Damage | ||||
---|---|---|---|---|---|---|
Tau | Z | p-Level | Tau | Z | p-Level | |
Age (y) | −0.169 | −1.715 | 0.086 | 0.119 | 1.210 | 0.226 |
Weight (kg) | 0.104 | 1.053 | 0.292 | −0.210 | −2.124 | 0.034 |
BMI (kg/m2) | 0.063 | 0.638 | 0.524 | −0.201 | −2.034 | 0.042 |
SBP (mm Hg) | 0.011 | 0.107 | 0.915 | −0.163 | −1.653 | 0.098 |
DBP (mm Hg) | 0.142 | 1.435 | 0.151 | −0.225 | −2.283 | 0.022 |
Glucose (mg/dL) | 0.039 | 0.399 | 0.690 | −0.060 | −0.608 | 0.543 |
Creatinine (mg/dL) | 0.009 | 0.086 | 0.931 | −0.044 | −0.450 | 0.653 |
Uric Acid (mg/dL) | 0.013 | 0.131 | 0.896 | 0.083 | 0.844 | 0.398 |
TC (mg/dL) | −0.130 | −1.314 | 0.189 | 0.087 | 0.881 | 0.378 |
HDL-C (mg/dL) | −0.048 | −0.487 | 0.626 | −0.045 | −0.452 | 0.651 |
TC/HDL (ratio) | −0.083 | −0.845 | 0.398 | 0.133 | 1.345 | 0.179 |
LDL-C (mg/dL) | −0.123 | −1.245 | 0.213 | 0.135 | 1.367 | 0.172 |
LDL/HDL (ratio) | −0.128 | −1.302 | 0.193 | 0.166 | 1.682 | 0.093 |
TG (mg/dL) | −0.001 | −0.009 | 0.993 | 0.037 | 0.372 | 0.710 |
AST (U/L) | 0.029 | 0.292 | 0.770 | −0.212 | −2.151 | 0.031 |
ALT (U/L) | 0.111 | 1.122 | 0.262 | −0.252 | −2.554 | 0.011 |
GGT (U/L) | 0.113 | 1.149 | 0.251 | −0.137 | −1.392 | 0.164 |
Insulin (uU/mL) | −0.043 | −0.432 | 0.665 | −0.128 | −1.297 | 0.194 |
HOMA Index | 0.009 | 0.086 | 0.931 | −0.119 | −1.207 | 0.228 |
C-G index | 0.119 | 1.207 | 0.228 | −0.087 | −0.879 | 0.379 |
Zonulin (ng/mL) | 0.017 | 0.172 | 0.863 | −0.063 | −0.638 | 0.524 |
sICAM-1 (ng/mL) | 0.027 | 0.276 | 0.783 | 0.022 | 0.224 | 0.823 |
sVCAM-1 (ng/mL) | −0.097 | −0.983 | 0.326 | 0.133 | 1.345 | 0.179 |
CRP (mg/L) | 0.085 | 0.862 | 0.389 | 0.172 | 1.741 | 0.082 |
TNF-α (pg/mL) | −0.107 | −1.086 | 0.277 | 0.065 | 0.655 | 0.512 |
IL-6 (pg/mL) | −0.050 | −0.509 | 0.611 | 0.076 | 0.767 | 0.443 |
Markers | Women | Men | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
FPG-Sensitive Sites | H2O2-Induced Damage | FPG-Sensitive Sites | H2O2-Induced Damage | |||||||||
Tau | Z | p-Level | Tau | Z | p-Level | Tau | Z | p-Level | Tau | Z | p-Level | |
Age (y) | −0.095 | −0.696 | 0.486 | 0.176 | 1.286 | 0.198 | −0.205 | −1.337 | 0.181 | 0.048 | 0.313 | 0.754 |
Weight (kg) | 0.114 | 0.835 | 0.404 | −0.171 | −1.253 | 0.210 | 0.057 | 0.368 | 0.713 | −0.143 | −0.935 | 0.350 |
BMI (kg/m2) | 0.048 | 0.354 | 0.723 | −0.293 | −2.147 | 0.032 | 0.108 | 0.705 | 0.481 | −0.117 | −0.761 | 0.446 |
SBP (mm Hg) | −0.178 | −1.302 | 0.193 | −0.136 | −0.998 | 0.318 | 0.149 | 0.974 | 0.330 | −0.202 | −1.317 | 0.188 |
DBP (mm Hg) | 0.081 | 0.590 | 0.555 | −0.158 | −1.159 | 0.246 | 0.156 | 1.018 | 0.309 | −0.317 | −2.066 | 0.039 |
Glucose (mg/dL) | 0.069 | 0.504 | 0.614 | 0.040 | 0.294 | 0.769 | 0.013 | 0.085 | 0.932 | −0.135 | −0.882 | 0.378 |
Creatinine (mg/dL) | −0.080 | −0.586 | 0.558 | −0.029 | −0.209 | 0.834 | −0.066 | −0.427 | 0.670 | −0.118 | −0.768 | 0.442 |
Uric Acid (mg/dL) | −0.020 | −0.147 | 0.883 | 0.278 | 2.034 | 0.042 | 0.031 | 0.199 | 0.842 | −0.100 | −0.654 | 0.513 |
TC (mg/dL) | −0.120 | −0.877 | 0.381 | 0.000 | 0.000 | 1.000 | −0.121 | −0.791 | 0.429 | 0.130 | 0.848 | 0.397 |
HDL-C (mg/dL) | 0.000 | 0.000 | 1.000 | −0.184 | −1.348 | 0.178 | −0.061 | −0.399 | 0.690 | 0.079 | 0.513 | 0.608 |
TC/HDL (ratio) | −0.094 | −0.688 | 0.491 | 0.236 | 1.730 | 0.084 | −0.082 | −0.536 | 0.592 | 0.108 | 0.705 | 0.481 |
LDL-C (mg/dL) | −0.160 | −1.169 | 0.242 | 0.114 | 0.835 | 0.404 | −0.061 | −0.396 | 0.692 | 0.121 | 0.791 | 0.429 |
LDL/HDL (ratio) | −0.134 | −0.980 | 0.327 | 0.288 | 2.106 | 0.035 | −0.134 | −0.874 | 0.382 | 0.126 | 0.818 | 0.414 |
TG (mg/dL) | 0.003 | 0.021 | 0.983 | 0.060 | 0.440 | 0.660 | −0.004 | −0.028 | 0.977 | 0.004 | 0.028 | 0.977 |
AST (U/L) | 0.070 | 0.514 | 0.607 | −0.170 | −1.243 | 0.214 | −0.089 | −0.581 | 0.562 | −0.223 | −1.451 | 0.147 |
ALT (U/L) | 0.230 | 1.686 | 0.092 | −0.190 | −1.387 | 0.165 | −0.058 | −0.376 | 0.707 | −0.325 | −2.114 | 0.035 |
GGT (U/L) | 0.124 | 0.909 | 0.363 | 0.043 | 0.317 | 0.751 | 0.035 | 0.227 | 0.820 | −0.244 | −1.589 | 0.112 |
Insulin (uU/mL) | 0.009 | 0.063 | 0.950 | −0.117 | −0.855 | 0.393 | −0.083 | −0.538 | 0.591 | −0.152 | −0.991 | 0.322 |
HOMA Index | 0.060 | 0.438 | 0.662 | −0.054 | −0.396 | 0.692 | −0.013 | −0.085 | 0.933 | −0.169 | −1.100 | 0.271 |
C-G index | 0.094 | 0.688 | 0.491 | −0.123 | −0.896 | 0.370 | 0.091 | 0.592 | 0.554 | −0.030 | −0.197 | 0.844 |
Zonulin (ng/mL) | −0.020 | −0.146 | 0.884 | −0.088 | −0.646 | 0.518 | 0.048 | 0.310 | 0.756 | −0.022 | −0.141 | 0.888 |
sICAM-1 (ng/mL) | 0.048 | 0.354 | 0.723 | 0.151 | 1.105 | 0.269 | −0.013 | −0.085 | 0.933 | −0.100 | −0.649 | 0.517 |
sVCAM-1 (ng/mL) | −0.037 | −0.271 | 0.786 | 0.077 | 0.563 | 0.574 | −0.108 | −0.705 | 0.481 | 0.255 | 1.664 | 0.096 |
CRP (mg/L) | 0.014 | 0.104 | 0.917 | 0.174 | 1.272 | 0.203 | 0.160 | 1.043 | 0.297 | 0.229 | 1.494 | 0.135 |
TNF-α (pg/mL) | −0.014 | −0.104 | 0.917 | 0.111 | 0.813 | 0.416 | −0.212 | −1.382 | 0.167 | −0.022 | −0.141 | 0.888 |
IL-6 (pg/mL) | −0.066 | −0.479 | 0.632 | 0.105 | 0.771 | 0.441 | 0.056 | 0.367 | 0.714 | 0.039 | 0.254 | 0.800 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Del Bo’, C.; Martini, D.; Bernardi, S.; Gigliotti, L.; Marino, M.; Gargari, G.; Meroño, T.; Hidalgo-Liberona, N.; Andres-Lacueva, C.; Kroon, P.A.; et al. Association between Food Intake, Clinical and Metabolic Markers and DNA Damage in Older Subjects. Antioxidants 2021, 10, 730. https://doi.org/10.3390/antiox10050730
Del Bo’ C, Martini D, Bernardi S, Gigliotti L, Marino M, Gargari G, Meroño T, Hidalgo-Liberona N, Andres-Lacueva C, Kroon PA, et al. Association between Food Intake, Clinical and Metabolic Markers and DNA Damage in Older Subjects. Antioxidants. 2021; 10(5):730. https://doi.org/10.3390/antiox10050730
Chicago/Turabian StyleDel Bo’, Cristian, Daniela Martini, Stefano Bernardi, Letizia Gigliotti, Mirko Marino, Giorgio Gargari, Tomas Meroño, Nicole Hidalgo-Liberona, Cristina Andres-Lacueva, Paul A. Kroon, and et al. 2021. "Association between Food Intake, Clinical and Metabolic Markers and DNA Damage in Older Subjects" Antioxidants 10, no. 5: 730. https://doi.org/10.3390/antiox10050730