3.2. HIWRAP Ocean Wind Vector Validation
As shown in
Figure 5, the wind field from ASCAT is fairly uniform at 10–11
over the HIWRAP swath except that there are no measurements at the beginning (upper portion). On the other hand, the ocean buoy anemometer measurements are very effective in capturing the timeseries of
WS and
WD, associated with the passage of the propagating atmospheric weather front and squall line. This is illustrated in
Figure 6 (right panels), where the timeseries of
WS and
WD are displayed for the East (orange) and West (blue) buoys that are separated by ~180 km. Also shown (left panels) are the corresponding NEXRAD radar reflectivity images (dBZ), which illustrate the leading edge of the weather front arrival, at the respective buoy locations. The East buoy sees the frontal passage ~1.75 h before GH overpass time (red dashed line in panel b), and the arrival time at the West buoy is ~3 h later (blue dashed line in panel b).
For the East buoy, the passage of the weather front is characterized by a rapid increase in WS (of 8 ) and an associated change in wind direction (by 40°). By the time that the weather front reached the West buoy, its intensity is diminished and the change in WS (of 5 ) is less, as is the change in WD (by 15°). Using these data, the average propagation speed for the squall line is estimated to be ~17
As previously mentioned, the aerial extent of HIWRAP wind measurements was relatively small, and the resulting number of collocated comparisons does not provide a sufficient population for a robust statistical analysis, although evaluation of these independent measurements suggests high-quality HIWRAP retrievals.
Figure 7 shows a gridded plot of ASCAT 25 km OVW, with the corresponding 12.5 km gridded retrievals from HIWRAP that selects the closest HIWRAP
WD alias to the ASCAT
WD. Over this lower 2/3rd of the HIWRAP swath, both the HIWRAP and ASCAT OVWs are in good agreement. Over this region, the average ASCAT OVW is 10.5
at 157° and HIWRAP is 11.6
at 144°, which is well within the accepted OVW measurement requirement of
WS ≤ ±2
and
WD ≤ ±20°. Further, it appears that HIWRAP vectors show spatial changes that are not captured in the coarser-spatial-resolution ASCAT results.
Next, concerning the upper 1/3rd of the HIWRAP swath (
Figure 7, longitude 84.6 W to 84.0 W), there is an abrupt reduction in the
WS (~4.7
) and a rapid clockwise rotation of the
WD by (~28°). To better understand the realism of this change, the NEXRAD rain reflectivity image (dBZ) is superimposed onto the ASCAT and HIWRAP wind vector plot in
Figure 8. The rapid changes in OVW occurs precisely at the location of the weather front, which suggests that HIWRAP captures the true change in the surface wind that is consistent with the buoy anemometer timeseries. Moreover, it appears that HIWRAP-retrieved wind vectors are present within the rain cells located at 28.8° N × 84.8° W and 28.3° N × 85.4° W, which also agree with ASCAT.
This is important because ASCAT operates at C-band, which is much less affected by rain than is HIWRAP Ku-band. However, since, the HIWRAP measures rain reflectivity in the atmosphere, it provides excellent quality control to remove rain contaminated surface echo powers, which historically have caused seriously degraded Ku-band OVW retrievals [
16]. For these results, a conservative approach was adopted to make a binary decision to delete all
with rain attenuation. For future hurricane observations, where strong winds and rain cannot be spatially separated, a less conservative approach would be to develop a rain attenuation correction for less severely contaminated surface RG samples, which is the basis of future proposed research.
3.3. HIWRAP Rain Rate Validation
Using the HIWRAP-calibrated return power in RGs (
Appendix A.1), the rain reflectivity
Z is calculated through an iterative single-frequency technique (
Appendix A.2) that involves estimating the
PIA to correct the rain reflectivity, and then the rain rate is calculated using a
Z–R relationship. Therefore, HIWRAP rain rate validation implicitly involves
PIA validation, which unfortunately cannot be independently evaluated with the available NEXRAD data. As a result, the basis of HIWRAP rain rate validation is the comparison of independent, simultaneous, and collocated NEXRAD rain rate measurements. Fortunately, within the radar meteorology community, the NEXRAD rain rate product is an acceptable standard; however, even with this, there are several caveats (uncertainties) that limit the HIWRAP rain measurement validation. As a result, the following are important factors that must be considered in this process.
First, because of the differences in the radar operating frequencies (Ku-band for HIWRAP and S-band for NEXRAD), there are different
Z–R relationships, which are empirically derived for several categories of rain type (assumed raindrop-size distributions). For this comparison, the
Z–R relationships described in
Section 2.2.2 are used. Second, differences in the measurement geometry must be considered. For example, HIWRAP measures from the top of the atmosphere downward at a high grazing angle (50–60°), while the NEXRAD geometry is along a nearly horizontal path. However, to make valid rain rate comparisons, the NEXRAD and HIWRAP atmospheric sampling volumes must be simultaneous and equal.
So, to satisfy the requirement for simultaneous measurements, it is reasonable to assume that on the time scale of a few minutes, the vertical distribution of rain is spatially frozen in altitude, while the entire rain event is advected horizontally by the motion of the propagating weather front. So, sequential NEXRAD rain rate measurements, at different altitude levels, are aligned in time to remove collocation errors associated with the rain advection and dynamic changes in the rain feature that may occur during the ~5 min sampling interval. To accomplish this, we use a morphing technique [
17] to provide time-interpolated rain images at 1 min intervals that results in an acceptable 3D alignment of the rain features with an uncertainty of <±30 s or <±500 m. Further, since the HIWRAP conical scan samples the 2 km cubes at different times, the collocation time is based upon the average HIWRAP sampling time, where forward and aft-looks and inner and outer beam are separated into four different rain retrieval cases.
To ensure equal sampling volumes, NEXRAD rain rate measurements are interpolated to the HIWRAP RGs using the NEXRAD Spatial Interpolator that is described in
Appendix B. These collocated rain rate measurements are then binned and averaged over the many RGs and antenna scans into a common 2 km cube of rain volume that approximates the spatial resolution of NEXRAD.
Finally, because of expected radar calibration differences and of uncertainties in the assumed Z–R relationships, there could be large rain rate differences between two collocated HIWRAP and NEXRAD rain estimates. Therefore, rather than comparing differences, the preferred metric used is the ratio of collocated rain rates (RH/RN), where RH is the HIWRAP rain rate and RN is the corresponding NEXRAD.
On the other hand, we believe that the spatial distribution of relative rain rate is the strongest validation metric. If there is good spatial and temporal collocation of the two radar measurements, then high correlation of the two rain rate images is strong evidence that both radars are performing well.
3.3.1. HIWRAP and NEXRAD Rain Rate Comparisons at Low Resolution
First, consider a comparison of HIWRAP and NEXRAD rain rates at the NEXRAD spatial resolution (2 km cubes) and the lowest elevation L-1 scan (4 km altitude), as shown in
Figure 9. These are Constant-Altitude Plan Position Indicator (CAPPI) images of the rain squall line for HIWRAP (panel a) and NEXRAD (panel b) that occurred at the beginning of the GH flight. These CAPPIs were produced using binned averaged HIWRAP-retrieved rain rates (for the inner and outer beams over all azimuth angles combined) and interpolated NEXRAD rain rates to common 2 km cubes. Rain rates are displayed in logarithmetic units of dBR
, where 0 dBR corresponds to 1
and 20 dBR corresponds to 100
of rain.
The spatial distribution of the precipitation features in these two CAPPIs are in remarkable agreement, and the 2D normalized cross-correlation coefficient is 89%, with zero lag in both longitude and latitude directions. We conclude that this comparison supports the validity of the HIWRAP rain retrieval.
Next, the statistical results of the comparison of HIWRAP and NEXRAD rain rates (>1 mm h
−1 in
Figure 9), are presented in
Table 1. There are four different sub-categories for HIWRAP rain retrievals (combinations of inner and outer beams and fore and aft-looks), and within each, there are three statistical metrics, namely, average of HIWRAP rain rates, average of NEXRAD rain rates, and averages of rain rate ratios (
RH/RN).
First, consider the comparisons between forward and aft-looks for a given beam. For both beams, the statistics are nearly identical, even though the time difference between these CAPPIs is ~2 min. During this interval, the rain event has propagated slightly more than 2 km, and a different NEXRAD time-interpolated (morphed) image is used for the comparisons; yet the results are the nearly the same. We believe that this is the result of the fidelity of the HIWRAP/NEXRAD collocation that results from the use of the NEXRAD Spatial Interpolator model. Further, this is strong evidence that supports the validity of the HIWRAP rain rate retrievals. On the other hand, there are small differences in the statistics for the inner and outer beams, e.g., RH/RN = 0.84 for inner beam and equal 0.63 for outer beam. This minor difference could be related to the geometry differences and possibly in the radar calibration, which will be investigated in future work.
3.3.2. HIWRAP and NEXRAD Rain Rate Comparisons at High Resolution
Next, the validation of HIWRAP measurement of vertical profiles of rain rate is presented, and for this analysis, it is necessary to increase the rain rate spatial sampling resolution to 500 m. For HIWRAP, the native rain rate sampling occurs in 75 m RGs, which is 3× better than the Nyquist spatial sampling requirement. Within a 500 m cube, individual RG volumes are stacked cylinders with the axis oriented vertically with heights of 75 m (vertical) and radii of 500 m (horizontal). Thus, HIWRAP measurement geometry gives excellent vertical rain rate profiling with modest horizontal spatial averaging.
On the other hand, the NEXRAD RG volume are also short cylinders, but now the orientation of the cylinder axis is horizontal, with the cylinder height (horizontal range dimension) of 250 m and a cylinder radius of 800 m (altitude dimension). This poor vertical resolution does not satisfy Nyquist spatial sampling, and the resulting vertical rain rate profile is significantly aliased.
Collocated HIWRAP and NEXRAD rain rates are binned and averaged into 500 m cubes and are displayed in
Figure 10 in three CAPPI plots of increasing altitude at NEXRAD L-1 (3.5 km), L-2 (4.5 km), and L-3 (6 km). In the NEXRAD images, the aliasing of the rain rate vertical profile with increasing altitude is quite evident, which causes precipitation to be present in L-2 and L-3, where the corresponding pixels for HIWRAP have little to no rain. This is especially visible in the heavy rain pattern at 28.825 N × 84.84 W (in the red circle). For example, in the L-3 CAPPI there is no rain detected by HIWRAP, while NEXRAD measures 14 dBR (25
). On the other hand, for the L-1 images, both are highly correlated, but the HIWRAP image has more realistic small-scale rain structure variability.
The final HIWRAP rain rate comparison deals with vertical profile measurements. Consider 2D images of rain rate vertical profiles given in
Figure 11 that are produced using the line-of-sight geometry for the HIWRAP outer beam looking aft along the aircraft ground track (dash-red line). The left image (panel a) is the HIWRAP binned average rain rate vertical profile in 500 m cubes, and the center image (panel b) is a simulated rain rate vertical profile using the HIWRAP measurement (panel a) and convolving with the antenna pattern of NEXRAD. Finally, the right image (panel c) is the corresponding NEXRAD measurements collocated with HIWRAP 500 m cubes. Note that the sloping red lines represent the height of L-1 to L-3 as the radar range increases from left to right. This image is the result of interpolation of NEXRAD measurements from the entire volume scan, except for the lower portion, which is an extrapolation of L-1 measurements to the surface. These images are all quite similar, exhibiting high correlation in the spatial distribution of rain rate, and the major difference between them is small-scale rain structure in the higher-resolution HIWRAP image (panel a), which is examined further in
Figure 12.
Considering the HIWRAP rain rate profile image (
Figure 11a), it is important to determine whether or not the small-scale rain structure is a geophysical signal or rain rate retrieval error. To investigate this, consider
Figure 12, where the left image (panel a) is the same HIWRAP aft looking outer beam vertical profile, with a single beam location indicated by the magenta line of sight. The right panel b is the corresponding series of radar parameters plotted against the RG number (inversely proportional to altitude) for the selected single radar profile.
In panel b, the solid green curve is the raw rain reflectivity (dBZ) that is processed to simultaneously retrieve the PIA (dashed magenta curve), the PIA corrected reflectivity (dashed-black curve), and the rain rate (solid red curve). Also shown is the corresponding NEXRAD-interpolated rain rate (solid blue curve). Next, consider the rain rate vertical profile (red curve), which places the top of the intense rain at ~5.3 km (RG = 210), and over the next 15 RGs, there are two peaks of rain follow the raw reflectivity. Because the PIA is low, there is high confidence that HIWRAP accurately captures this small-scale structure of the rain rate profile, which is plausible given the heterogeneous nature of rain.
Next, over the next 40 RGs, there is a significant drop in reflectivity followed by two peaks in raw reflectivity. Here, the PIA increases from 5 to 10 dB, but the retrieved rain rate also appears plausible. So, we conclude that the HIWRAP-retrieved rain rate is profiling the small-scale structure of the rain cells. Similar scenarios were examined for many profiles with the same conclusion that the HIWRAP rain rates are a reasonable estimate.
Given this conclusion, how does one justify the NEXRAD rain rate profiles? The answer is the effect of the poor vertical resolution of the antenna beam, which is ~1.6 km. When examining the CAPPIs in
Figure 10, it is apparent that the NEXRAD rain rates are aliased too high for the altitude range L-1 (3.5 km) through L-3 (6 km). Thus, the NEXRAD antenna pattern acts as a low pass filter, which smooths the rain rate vertical profile and extends rain into the higher altitudes. To support this hypothesis, consider
Figure 11 panel b, where the simulated HIWRAP rain rate image was processed using a Gaussian spatial filter that represented the NEXRAD antenna pattern. After performing this antenna pattern convolution, the resulting simulated HIWRAP image (panel b) is very similar to the measured NEXRAD image (panel c).