Roadside Drug Testing Approaches
Abstract
:1. Introduction
Medical Consequences of Drug Abuse
2. Drug Effects on Drivers
2.1. Cannabinoids
2.2. Benzodiazepines
2.3. Opiates
2.4. Methadone
2.5. Cocaine
2.6. Amphetamines, Methamphetamines and Ecstasy (MDMA)
2.7. Prescription Drugs
2.8. Novel Psychoactive Substances
3. Roadside Testing
3.1. Physical/Behavioral Testing
3.2. On-Site Screening Testing
4. Specimen Types
4.1. On-Site Drug Testing Devices
4.2. Securetec Drugwipe
4.3. Draeger DrugTest 5000 Analyzer
4.4. Alere DDS2
4.5. Mavand Rapid STAT
4.6. iScreen Test Device
4.7. OraLab
4.8. AconLabs Oral Fluid Drug Screen
4.9. OralStat
4.10. Oratect® II
4.11. RapiScan
4.12. Sali•Chek™ System
5. SalivaScreen
5.1. Smartclip Multidrug
5.2. Uplink/Drug Test
5.3. Fingerprint Drug Test
5.4. Dried Blood Spot (DBS) Analysis
6. Sample Collection, Storage and Pre-treatment
6.1. Confirmatory Analysis Tests
6.2. Gas Chromatography-Mass Spectrometry (GC-MS)
6.3. Liquid Chromatography-Mass Spectrometry (LC-MS)
6.4. Direct Analysis in Real Time-Mass Spectrometry (DART-MS)
6.5. Liquid Chromatography-Time-of-Flight Mass Spectrometry (LC-TOF-MS)
6.6. Ambient Ion Sources for Direct Forensic Analysis
7. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Hammoudi, A.; Karani, G.; Littlewood, J. Road traffic accidents among drivers in Abu Dhabi, United Arab Emirates. J. Traffic Logist. Eng. 2014, 2, 7–12. [Google Scholar] [CrossRef] [Green Version]
- Penning, R.; Veldstra, J.L.; Daamen, A.P.; Olivier, B.; Verster, J.C. Drugs of abuse, driving and traffic safety. Curr. Drug Abus. Rev. 2010, 3, 23–32. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Asbridge, M.; Ogilvie, R. A Feasibility Study of Roadside Oral Fluid Drug Testing; Dalhousie University: Halifax, NS, Canada, 2015. [Google Scholar]
- Isalberti, C.; van der Linden, T.; Legrand, S.-A.; Verstraete, A.; Bernhoft, I.M.; Hels, T.; Olesen, M.; Houwing, S.; Houtenbos, M.; Mathijssen, R. Prevalence of Alcohol and Other Psychoactive Substances in Injured and Killed Drivers; DTU: Kongens Lyngby, Denmark, 2011. [Google Scholar]
- Van der Linden, G.; Wille, S.M.; Ramírez-Fernandez, M.; Verstraete, A.; Samyn, N. Roadside drug testing: Comparison of two legal approaches in Belgium. Forensic Sci. Int. 2015, 249, 148–155. [Google Scholar] [CrossRef]
- Bunn, T.; Singleton, M.; Chen, I.-C. Use of multiple data sources to identify specific drugs and other factors associated with drug and alcohol screening of fatally injured motor vehicle drivers. Accid. Anal. Prev. 2019, 122, 287–294. [Google Scholar] [CrossRef] [PubMed]
- Wadsworth, E.; Hammond, D. International differences in patterns of cannabis use among youth: Prevalence, perceptions of harm, and driving under the influence in Canada, England & United States. Addict. Behav. 2019, 90, 171–175. [Google Scholar] [CrossRef] [PubMed]
- Bryant, P.; Stevens, M.; Hansen, G. Review of NSW roadside drug testing. In Proceedings of the 2009 Australasian Road Safety Research, Policing and Education Conference, Sydney, Australia, 10–13 November 2009. [Google Scholar]
- Caplan, Y.H.; Goldberger, B.A. Alternative specimens for workplace drug testing. J. Anal. Toxicol. 2001, 25, 396–399. [Google Scholar] [CrossRef] [Green Version]
- Pragst, F.; Balíková, M. State of the art in hair analysis for detection of drug and alcohol abuse. Clin. Chim. Acta 2006, 370, 17–49. [Google Scholar] [CrossRef]
- Galbraith, N. The methamphetamine problem. BJPsych Bull. 2015, 39, 218–220. [Google Scholar] [CrossRef] [Green Version]
- Russell, K.; Dryden, D.M.; Liang, Y.; Friesen, C.; O’Gorman, K.; Durec, T.; Wild, T.C.; Klassen, T.P. Risk factors for methamphetamine use in youth: A systematic review. BMC Pediatr. 2008, 8, 48. [Google Scholar] [CrossRef] [Green Version]
- Khalsa, J.H.; Treisman, G.; McCance-Katz, E.; Tedaldi, E. Medical consequences of drug abuse and co-occurring infections: Research at the national institute on drug abuse. Subst. Abus. 2008, 29, 5–16. [Google Scholar] [CrossRef] [PubMed]
- De Almeida, S.P.; Silva, M.T.A. Ecstasy (MDMA): Effects and patterns of use reported by users in São Paulo. Rev. Bras. Psiquiatr. 2003, 25, 11–17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kalant, H. The pharmacology and toxicology of “ecstasy” (MDMA) and related drugs. Cmaj 2001, 165, 917–928. [Google Scholar] [PubMed]
- Chen, C.-Y.; Lin, K.-M. Health consequences of illegal drug use. Curr. Opin. Psychiatry 2009, 22, 287–292. [Google Scholar] [CrossRef]
- Kolodny, A.; Courtwright, D.T.; Hwang, C.S.; Kreiner, P.; Eadie, J.L.; Clark, T.W.; Alexander, G.C. The prescription opioid and heroin crisis: A public health approach to an epidemic of addiction. Annu. Rev. Public Health 2015, 36, 559–574. [Google Scholar] [CrossRef]
- Memedovich, K.A.; Dowsett, L.E.; Spackman, E.; Noseworthy, T.; Clement, F. The adverse health effects and harms related to marijuana use: An overview review. CMAJ Open 2018, 6, E339–E346. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hartman, R.L.; Huestis, M.A. Cannabis effects on driving skills. Clin. Chem. 2013, 59, 478–492. [Google Scholar] [CrossRef]
- Cusack, D.A. Medical Bureau of Road Safety an Lia-Bhiúró um Shábháilteacht ar Bhóithre Report on Roadside Drug Testing and Equipment and Related Matters; The Department of Transport, Tourism and Sport (DTTAS): Dublin, Ireland, 2012.
- Longo, M.C.; Hunter, C.E.; Lokan, R.J.; White, J.; White, M.A. The prevalence of alcohol, cannabinoids, benzodiazepines and stimulants amongst injured drivers and their role in driver culpability: Part ii: The relationship between drug prevalence and drug concentration, and driver culpability. Accid. Anal. Prev. 2000, 32, 623–632. [Google Scholar] [CrossRef]
- Dassanayake, W.D.M.T.L.; Michie, P.T.; Carter, G.; Jones, A.R. Effects of benzodiazepines, antidepressants and opioids on driving: A systematic review and meta-analysis of epidemiological and experimental evidence. Drug Saf. 2011, 34, 125–156. [Google Scholar] [CrossRef]
- Brandt, J.; Leong, C. Benzodiazepines and Z-drugs: An Updated review of major adverse outcomes reported on in epidemiologic research. Drugs R D 2017, 17, 493–507. [Google Scholar] [CrossRef]
- Chau, D.L.; Walker, V.; Pai, L.; Cho, L.M. Opiates and elderly: Use and side effects. Clin. Interv. Aging 2008, 3, 273–278. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mets, M.A.; de Vries, J.M.; de Senerpont Domis, L.M.; Volkerts, E.R.; Olivier, B.; Verster, J.C. Next-day effects of ramelteon (8 mg), zopiclone (7.5 mg), and placebo on highway driving performance, memory functioning, psychomotor performance, and mood in healthy adult subjects. Sleep 2011, 34, 1327–1334. [Google Scholar]
- O’Donnell, J.; Vogenberg, F.R. Applying legal risk management to the clinical use of methadone. PT 2011, 36, 813–822. [Google Scholar]
- Ali, S.; Tahir, B.; Jabeen, S.; Malik, M. Methadone treatment of opiate addiction: A systematic review of comparative studies. Innov. Clin. Neurosci. 2017, 14, 8–19. [Google Scholar]
- Porrino, L.J.; Smith, H.R.; Nader, M.A.; Beveridge, T.J. The effects of cocaine: A shifting target over the course of addiction. Prog. Neuropsychopharmacol. Biol. Psychiatry 2007, 31, 1593–1600. [Google Scholar] [CrossRef] [Green Version]
- Mahoney, J.J.; Kalechstein, A.D.; de La Garza, R.; Newton, T.F. A qualitative and quantitative review of co-caine-induced craving: The phenomenon of priming. Prog. Neuropsychopharmacol. Biol. Psychiatry 2007, 31, 593–599. [Google Scholar] [CrossRef] [Green Version]
- Gustavsen, I.; Mørland, J.; Bramness, J.G. Impairment related to blood amphetamine and/or methamphetamine concentrations in suspected drugged drivers. Accid. Anal. Prev. 2006, 38, 490–495. [Google Scholar] [CrossRef]
- Tehran, D.S.; Nahvi, A.; Hajirasouli, M.; Naseri, H.; Lotfi, K.; Niknejad, M. Effects of stimulant and opiate drugs on driver behavior during lane change in a driving simulator. Travel Behav. Soc. 2016, 4, 69–78. [Google Scholar] [CrossRef]
- Huestis, M.A.; Brandt, S.D.; Rana, S.; Auwärter, V.; Baumann, M.H. Impact of novel psychoactive substances on clinical and forensic toxicology and global public health. Clin. Chem. 2017, 63, 1564–1569. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kyriakou, C.; Pellegrini, M.; García-Algar, O.; Marinelli, E.; Zaami, S. Recent trends in analytical methods to determine new psychoactive substances in hair. Curr. Neuropharmacol. 2017, 15, 663–681. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Davey, J.; Sheldrake, M. Roadside Drug Testing Scoping Study; CARRS-Q: Kelvin Grove, QLD, Australia, 2017. [Google Scholar]
- Lillsunde, P. Analytical techniques for drug detection in oral fluid. Ther. Drug Monit. 2008, 30, 181–187. [Google Scholar] [CrossRef] [PubMed]
- Kyriakou, C.; Marchei, E.; Scaravelli, G.; García-Algar, O.; Supervía, A.; Graziano, S. Identification and quantifi-cation of psychoactive drugs in whole blood using dried blood spot (DBS) by ultra-performance liquid chromatography tandem mass spectrometry. J. Pharm. Biomed. Anal. 2016, 128, 53–60. [Google Scholar] [CrossRef] [Green Version]
- Evans-Nguyen, K.; Stelmack, A.R.; Clowser, P.C.; Holtz, J.M.; Mulligan, C.C. Fieldable mass spectrometry for forensic science, homeland security, and defense applications. Mass Spectrom. Rev. 2020. [Google Scholar] [CrossRef]
- D’Elia, V.; García, G.M.; Ruiz, C.G. Spectroscopic trends for the determination of illicit drugs in oral fluid. Appl. Spectrosc. Rev. 2015, 50, 775–796. [Google Scholar] [CrossRef]
- Cooper, G.A.; Kronstrand, R.; Kintz, P. Society of Hair Testing guidelines for drug testing in hair. Forensic Sci. Int. 2012, 218, 20–24. [Google Scholar] [CrossRef] [PubMed]
- Crouch, D.J.; Walsh, J.M.; Cangianelli, L.; Quintela, O. Laboratory evaluation and field application of roadside oral fluid collectors and drug testing devices. Ther. Drug Monit. 2008, 30, 188–195. [Google Scholar] [CrossRef] [PubMed]
- Securetec Detektions-Systeme AG. Saliva Drug Test DrugWipe® S. Available online: https://www.securetec.net/en/products/saliva-drug-test-drugwipe/ (accessed on 15 May 2021).
- Pehrsson, A.; Blencowe, T.; Vimpari, K.; Langel, K.; Engblom, C.; Lillsunde, P. An evaluation of on-site oral fluid drug screening devices DrugWipe(R) 5+ and Rapid STAT(R) using oral fluid for confirmation analysis. J. Anal. Toxicol. 2011, 35, 211–218. [Google Scholar] [CrossRef] [Green Version]
- Labianca, D.A. Non-foolproof nature of slope detection technology in the Dräger Alcotest 9510. Forensic Toxicol. 2017, 36, 222–224. [Google Scholar] [CrossRef]
- Gjerde, H.; Clausen, G.B.; Andreassen, E.; Furuhaugen, H. Evaluation of Dräger DrugTest 5000 in a naturalistic setting. J. Anal. Toxicol. 2018, 42, 248–254. [Google Scholar] [CrossRef] [PubMed]
- Blencowe, T.; Pehrsson, A.; Lillsunde, P.; Bernhoft, I.M.; Engblom, C.; Langel, K.; Houwing, S.; Smink, B.; Mathijssen, R.; Pil, K.; et al. Analytical Evaluation of Oral Fluid Screening Devices and Preceding Selection Procedures; DTU: Kongens Lyngby, Denmark, 2010. [Google Scholar]
- Krotulski, A.J.; Mohr, A.L.A.; Friscia, M.; Logan, B.K. Field detection of drugs of abuse in oral fluid using the AlereTM DDS®2 mobile test system with confirmation by liquid chromatography tandem mass spectrometry (LC-MS/MS). J. Anal. Toxicol. 2018, 42, 170–176. [Google Scholar] [CrossRef]
- Moore, C.; Kelley-Baker, T.; Lacey, J. Field testing of the Alere DDS2 mobile test system for drugs in oral fluid. J. Anal. Toxicol. 2013, 37, 305–307. [Google Scholar] [CrossRef]
- Sniegoski, L.T.; Welch, M.J.; Fatah, A.A.; Gackstetter, M.; Thompson, R.Q. Evaluation of Oral Fluid Testing Devices; NIST: Gaithersburg, MD, USA, 2009.
- Goessaert, A.-S.; Pil, K.; Veramme, J.; Verstraete, A. Analytical evaluation of a rapid on-site oral fluid drug test. Anal. Bioanal. Chem. 2010, 396, 2461–2468. [Google Scholar] [CrossRef] [Green Version]
- Verstraete, A.G. Rosita-2 Project Final Report; Ghent University: Gent, Belgium, 2006. [Google Scholar]
- Freye, E. Analysis of saliva, hair and sweat for drug testing. In Pharmacology and Abuse of Cocaine, Amphetamines, Ecstasy and Related Designer Drugs; Springer: Berlin, Germany, 2009; pp. 269–285. [Google Scholar]
- Wong, R.C.; Tse, H.Y. Drugs of Abuse: Body Fluid Testing; Humana Press: Totowa, NJ, USA, 2005. [Google Scholar]
- Wilson, L. Immunological Analysis of Drugs of Abuse with Reference to Anhydroecgonine Methyl Ester. Ph.D. Thesis, Sheffield Hallam University, Sheffield, UK, 2007. [Google Scholar]
- Flaherty, J.M. Defending substantial equivalence: An argument for the continuing validity of the 510(k) premarket notification process. Food Drug Law J. 2008, 63, 901–927. [Google Scholar] [PubMed]
- Carlin, M.G. Forensic science: Roadside drug testing. Meas. Control 2009, 42, 306–309. [Google Scholar] [CrossRef]
- Kacinko, S.L.; Barnes, A.J.; Kim, I.; Moolchan, E.T.; Wilson, L.; Cooper, G.A.; Reid, C.; Baldwin, D.; Hand, C.W.; Huestis, M.A. Performance characteristics of the Cozart® RapiScan Oral Fluid Drug Testing System for opiates in comparison to ELISA and GC/MS following controlled codeine administration. Forensic Sci. Int. 2004, 141, 41–48. [Google Scholar] [CrossRef] [PubMed]
- EFA Global Trade GmbH. SmartClip English. Available online: http://www.efa-global-trade.de/SmartClipEnglish.htm (accessed on 8 September 2020).
- Niedbala, R.; Feindt, H.; Kardos, K.; Vail, T.; Burton, J.; Bielska, B.; Li, S.; Milunic, D.; Bourdelle, P.; Vallejo, R. Detection of analytes by immunoassay using up-converting phosphor technology. Anal. Biochem. 2001, 293, 22–30. [Google Scholar] [CrossRef] [PubMed]
- Intelligent Fingerprinting. Alandale Group Using Fingerprint-based Drug Test for Workplace Testing. Available online: https://www.intelligentfingerprinting.com/alandale-fingerprint-drug-test/ (accessed on 15 May 2021).
- SureScreen Diagnostics. Fingerprint Drug Testing. Available online: https://www.surescreen.com/products/drug-screening (accessed on 15 May 2021).
- Hudson, M.; Stuchinskaya, T.; Ramma, S.; Patel, J.; Sievers, C.; Goetz, S.; Hines, S.; Menzies, E.; Russell, D.A. Drug screening using the sweat of a fingerprint: Lateral flow detection of Δ9-tetrahydrocannabinol, cocaine, opiates and am-phetamine. J. Anal. Toxicol. 2019, 43, 88–95. [Google Scholar] [CrossRef]
- Wille, S.M.; Samyn, N.; Ramírez-Fernández, M.D.M.; de Boeck, G. Evaluation of on-site oral fluid screening using Drugwipe-5+®, RapidSTAT® and Drug Test 5000® for the detection of drugs of abuse in drivers. Forensic Sci. Int. 2010, 198, 2–6. [Google Scholar] [CrossRef]
- Gentili, S.; Solimini, R.; Tittarelli, R.; Mannocchi, G.; Busardò, F.P. A study on the reliability of an on-site oral fluid drug test in a recreational context. J. Anal. Methods Chem. 2016, 2016, 1234581. [Google Scholar] [CrossRef]
- Leamon, S. How the Draeger Drugtest 5000, Canada’s New Roadside Testing Device, FALLS SHORT. 2019. Available online: https://cannabislifenetwork.com/how-the-draeger-drugtest-5000-canadas-new-roadside-testing-device-falls-short/ (accessed on 19 May 2021).
- ACUMEN LAW Corp. The Many Problems of Roadside Drug Screening. 2017. Available online: https://vancouvercriminallaw.com/many-problems-roadside-drug-screening/ (accessed on 15 May 2021).
- Vanstechelman, S.; Isalberti, C.; van der Linden, T.; Pil, K.; Legrand, S.-A.; Verstraete, A.G. Analytical evaluation of four on-site oral fluid drug testing devices. J. Anal. Toxicol. 2012, 36, 136–140. [Google Scholar] [CrossRef] [Green Version]
- Kuijten, C. Evaluation of Oral Fluid Screening Devices by Tispol to Harmonise European Police Requirements (ESTHER); DRUID Report; TISPOL: London, UK, 2009. [Google Scholar]
- Oral, C.; Screening, F. iScreen OFD. Available online: https://www.globalpointofcare.abbott/en/product-details/iscreen-ofd-test-au.html (accessed on 15 May 2021).
- Jehanli, A.; Brannan, S.; Moore, L.; Spiehler, V.R. Blind trials of an onsite saliva drug test for marijuana and opiates. J. Forensic Sci. 2001, 46, 1214–1220. [Google Scholar] [CrossRef]
- MedicalDisposable.us. SalivaScreen—5 Oral Fluids Drug Test. Available online: https://www.medicaldisposables.us/5-panel-saliva-drug-test-p/mds-5.htm (accessed on 15 May 2021).
- Jang, M.; Costa, C.; Bunch, J.; Gibson, B.; Ismail, M.; Palitsin, V.; Webb, R.; Hudson, M.; Bailey, M.J. On the relevance of cocaine detection in a fingerprint. Sci. Rep. 2020, 10, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Tang, M.H.; Ching, C.; Poon, S.; Chan, S.S.; Ng, W.; Lam, M.; Wong, C.; Pao, R.; Lau, A.; Mak, T.W. Evaluation of three rapid oral fluid test devices on the screening of multiple drugs of abuse including ketamine. Forensic Sci. Int. 2018, 286, 113–120. [Google Scholar] [CrossRef]
- Suhail, M.; Ali, I. Gas chromatography: A tool for drug analysis in biological samples. Chem. Int. 2020, 6, 277–294. [Google Scholar] [CrossRef]
- Breidi, S.E.; Barker, J.; Petroczi, A.; Naughton, D.P. Enzymatic digestion and selective quantification of underivatised delta-9-tetrahydrocannabinol and cocaine in human hair using gas chromatography-mass spectrometry. J. Anal. Methods Chem. 2012, 2012, 907893. [Google Scholar] [CrossRef]
- Shah, I.; Petroczi, A.; Uvacsek, M.; Ránky, M.; Naughton, D.P. Hair-based rapid analyses for multiple drugs in forensics and doping: Application of dynamic multiple reaction monitoring with LC-MS/MS. Chem. Cent. J. 2014, 8, 73. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guo, D.-A.; Shen, Y.; Wu, W.-Y. DART-MS: A new research tool for herbal medicine analysis. World J. Tradit. Chin. Med. 2016, 2, 2–9. [Google Scholar] [CrossRef]
- Lesiak, A.D.; Shepard, J.R. Recent advances in forensic drug analysis by DART-MS. Bioanalysis 2014, 6, 819–842. [Google Scholar] [CrossRef] [PubMed]
- Drury, N.; Ramotowski, R.; Moini, M. A comparison between DART-MS and DSA-MS in the forensic analysis of writing inks. Forensic Sci. Int. 2018, 289, 27–32. [Google Scholar] [CrossRef] [PubMed]
- Lesiak, A.D.; Musah, R.A.; Cody, R.B.; Domin, M.A.; Dane, A.J.; Shepard, J.R.E. Direct analysis in real time mass spectrometry (DART-MS) of “bath salt” cathinone drug mixtures. Analyst 2013, 138, 3424–3432. [Google Scholar] [CrossRef]
- Nie, H.; Li, X.; Hua, Z.; Pan, W.; Bai, Y.; Fu, X. Rapid screening and determination of 11 new psychoactive sub-stances by direct analysis in real time mass spectrometry and liquid chromatography/quadrupole time-of-flight mass spec-trometry. Rapid Commun. Mass Spectrom. 2016, 30, 141–146. [Google Scholar] [CrossRef]
- Tsai, I.-L.; Weng, T.-I.; Tseng, Y.J.; Tan, H.K.-L.; Sun, H.-J.; Kuo, C.-H. Screening and confirmation of 62 drugs of abuse and metabolites in urine by ultra-high-performance liquid chromatography-quadrupole time-of-flight mass spectrometry. J. Anal. Toxicol. 2013, 37, 642–651. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marin, S.J.; Hughes, J.M.; Lawlor, B.G.; Clark, C.J.; McMillin, G.A. Rapid screening for 67 drugs and metabolites in serum or plasma by accurate-mass LC-TOF-MS. J. Anal. Toxicol. 2012, 36, 477–486. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guale, F.; Shahreza, S.; Walterscheid, J.P.; Chen, H.-H.; Arndt, C.; Kelly, A.T.; Mozayani, A. Validation of LC–TOF-MS screening for drugs, metabolites, and collateral compounds in forensic toxicology specimens. J. Anal. Toxicol. 2013, 37, 17–24. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Device | Principle of Operation | Tested Drugs/Drug Classes | Cutoff | Time of Analysis | Body Sample Used | Complexity/ Difficulty | Reference |
---|---|---|---|---|---|---|---|
Securetec Drugwipe | Immunological rapid screening test. | Cannabis, Opiates, Cocaine, Amphetamines, Methamphetamines (MDMA, ecstasy), Benzodiazepines and Ketamine. | Amphetamine: 50 ng/mL Methamphetamine: 25 ng/mL MDMA: 25 ng/mL Cocaine: 30 ng/mL Opiates: 10 ng/mL Cannabis: 30 ng/mL | 5 min | saliva, sweat, surface | easy | [3,20,40,41,42] |
Draeger DrugTest 5000 Analyzer | Colorimetric technique. | Amphetamines, Benzodiazepine, THC, Cocaine, Methamphetamines, Opiates and Methadone. | Amphetamine: 50 ng/mL Methamphetamine: 35 ng/mL Cocaine: 20 ng/mL Opiates: 20 ng/mL Cannabis: 25 ng/mL Benzodiazepines: 15 ng/mL Cannabis: 5 ng/mL | It depends on the test kit (normally less than 9 min) | Saliva/surfaces | moderately easy | [43,44,45] |
Alere DDS2 | A lateral flow immunoassay device. | Amphetamine, Benzodiazepines, Cannabis, Cocaine, Methamphetamine, and Opiates. | Cannabis: 25 ng/mL Cocaine: 30 ng/mL Amphetamine: 50 ng/mL Methamphetamine: 50 ng/mL Benzodiazepines: 20 ng/mL Opiates: 40 ng/mL | within 5 min | saliva | easy | [46,47] |
Mavand Rapid STAT | A lateral flow immunoassay device. | Amphetamines, Benzodiazepines, Cocaine, Methamphetamines, MDMA, Opiates and Marijuana (THC). | Amphetamine: 25 ng/mL Benzodiazepines: 25 ng/mL Cocaine: 12 ng/mL Methamphetamine: 25 ng/mL MDMA: 50 ng/mL Opiates: 25 ng/mL Cannabis: 15 ng/mL | Results are ready within around 7 to 12 min | saliva | less easy | [42,45] |
iScreen Test Device | A lateral flow chromatography immunoassay. | Cocaine (COC), Marijuana (THC), Methamphetamine (Meth), Amphetamine (AMP), Opiate (OPI), and Phencyclidine (PCP). | THC: 100 ng/mL Cocaine: 20 ng/mL Methamphetamine: 50 ng/mL Amphetamine: 50 ng/mL Phencyclidine: 10 ng/mL Opiates: 40 ng/mL | Within around 10 min | Saliva/surfaces | easy | [48] |
OraLab | A lateral flow immunoassay device. | Amphetamines, Methamphetamine, Cocaine, Opiates, Cannabis (THC), and Phencyclidine (PCP). | Amphetamine: 50 ng/mL Cocaine: 20 ng/mL Methamphetamine 50 ng/mL PCP: 10 ng/mL Opiates: 40 ng/mL Cannabis: 50 ng/mL | Results will be obtained in 10 to 15 min. | saliva | moderately easy | [45,46,49,50,51] |
AconLabs Oral Fluid Drug Screen | A lateral flow immunoassay technique. | Cocaine, Cannabis, Amphetamines, Methamphetamines, Opiates, and Phencyclidine. | THC: 12 ng/mL Cocaine: 20 ng/mL Amphetamine: 50 ng/mL Methamphetamine: 50 ng/mL Phencyclidine: 10 ng/mL Opiate: 40 ng/mL | Within about 10 min | saliva | moderately easy | [48,50] |
OralStat | Lateral flow immunoassay testing. | Including but not limited to: Benzodiazepines, Amphetamines, Cocaine, Methadone, Methamphetamines, Opiates, Phencyclidine, Barbiturates, Buprenorphine, MDMA, Oxycodone, Tricyclic antidepressants and THC. | Amphetamine: 25 ng/mL Methamphetamine: 25 ng/mL Benzodiazepines: 25 ng/mL Cocaine: 12 ng/mL Methadone: 25 ng/mL Opiate: 20 ng/mL Phencyclidine: 5 ng/mL THC: 25 ng/mL | 2 to 4 min | saliva | less easy | [50] |
Oratect II | Immunoassay technique. | Amphetamine, Marijuana, Cocaine, Benzodiazepines, Opiates, Phencyclidine and Methamphetamine | Amphetamine: 25 ng/mL Methamphetamine: 25 ng/mL MDMA: 25 ng/mL Cocaine: 20 ng/mL Opiates: 10 ng/mL Cannabis: 40 ng/mL Benzodiazepines: 5 ng/mL | 8 min | saliva | easy | [48,50,52] |
RapiScan | Immunoassay technique. | Opiates, Cannabinoids, Benzodiazepines, Methadone, Amphetamine, Methamphetamine and Cocaine. | Opiates: 45 ng/mL THC: 150 ng/mL Benzodiazepines: 60 ng/mL Methadone: 15 ng/mL Amphetamine: 45 ng/mL Methamphetamine: 45 ng/mL Cocaine. 30 ng/mL | few minutes | saliva | moderately easy | [48,50,51] |
Sali•Chek™ System | Immunoassay technique. | Methamphetamines, Amphetamine, THC, Phencyclidine, Cocaine and Opiates. | THC: 12 ng/mL Cocaine. 20 ng/mL Opiates: 40 ng/mL Phencyclidine: 10 ng/mL Amphetamine: 50 ng/mL Methamphetamine: 50 ng/mL | 10 to 20 min | saliva | less easy | [50,51,52,53,54,55] |
SalivaScreen 5 | Immunoassay technique. | THC, Cocaine, Opiates, Methadone, Amphetamine and Methamphetamine. | THC: 2 ng/mL Cocaine. 30 ng/mL Morphine: 30 ng/mL Methadone: 30 ng/mL Amphetamine: 50 ng/mL Methamphetamine: 50 ng/mL | 10 min | saliva | easy | [53,54,55,56,57,58,59,60,61,62] |
Smartclip Multidrug | Immunoassay technique. | Amphetamine, Methamphetamine, Cocaine and Morphine. | Amphetamine: 50 ng/mL (saliva)/20 ng/mL (sweat) Methamphetamine: 100 ng/mL (saliva)/40 ng/mL (sweat) Cocaine: 20 ng/mL (saliva)/ 8 ng/mL (sweat) Morphine: 40 ng/mL (saliva)/ 16 ng/mL (sweat) | 60 s | saliva, sweat | easy | [51,52,53,54,55,56,57] |
Uplink/Drug Test | Immunoassay technique using up-converting phosphor technology. | Amphetamine, Methamphetamine, THC, Cocaine and opiates. | THC: 20 ng/mL Cocaine. 5 ng/mL Opiates: 5 ng/mL Methamphetamine: 10 ng/mL Amphetamine: 10 ng/mL | 4 min | saliva | moderately easy | [58] |
Fingerprint Drug Test | Particle-based immunoassay. | Amphetamines, Opiates, Cocaine, Methamphetamine, Benzodiazepines (BNZ), Buprenorphine, Methadone and Cannabis. | THC: 190 pg/fingerprint BNZ: 90 pg/fingerprint Morphine: 68 pg/fingerprint Amphetamine: 80 pg/fingerprint | 10 min | fingerprint-based | easy | [59,60,61] |
Device | Advantages | Disadvantages | References |
---|---|---|---|
Securetec-DrugWipe |
|
| [63] |
|
| ||
|
| ||
|
| ||
| |||
Draeger DrugTest 5000 Analyzer |
|
| [64,65] |
|
| ||
|
| ||
|
| ||
| |||
Alere DDS2 |
|
| [3,20,65] |
|
| ||
|
| ||
|
| ||
| |||
| |||
Mavand Rapid STAT |
|
| [45,66,67] |
|
| ||
|
| ||
| |||
iScreen Test Device |
|
| [48,68] |
|
| ||
|
| ||
|
| ||
| |||
OraLab |
|
| [49] |
|
| ||
|
| ||
|
| ||
| |||
AconLabs Oral Fluid Drug Screen |
|
| [48] |
|
| ||
| |||
| |||
OralStat |
|
| [50] |
|
| ||
| |||
Oratect® II |
|
| [48] |
|
| ||
|
| ||
| |||
RapiScan |
|
| [69] |
|
| ||
| |||
Sali•Chek™ System |
|
| [50] |
|
| ||
| |||
SalivaScreen 5 |
|
| [70] |
|
| ||
|
| ||
| |||
Smartclip Multidrug |
|
| [51] |
|
| ||
|
| ||
| |||
Uplink/Drug Test |
|
| [50] |
|
| ||
| |||
Fingerprint Drug Test |
|
| [71] |
|
| ||
|
Specimen | Collection | Collection Time | Sample Integrity | Ability in Determining the Presence of Drugs | |
---|---|---|---|---|---|
Oral Fluid | Can be easily collected by any trained officer at roadside. | Takes up to 10 min. | Not easily adulterated if the collection is carefully observed. | Able to detect. | |
Blood | Not practical and requires a nurse/doctor to collect at a clinic/hospital. | Depends on the availability of a nurse/doctor (must be taken within 3 h). | Not easily adulterated. | Able to detect. | |
Urine | Not practical and requires a nurse/doctor to collect at a clinic/hospital. | Depends on the ability of accused to give a sample (must be taken within 3 h). | Not easily adulterated if the collection is carefully observed. | Able to detect. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alhefeiti, M.A.; Barker, J.; Shah, I. Roadside Drug Testing Approaches. Molecules 2021, 26, 3291. https://doi.org/10.3390/molecules26113291
Alhefeiti MA, Barker J, Shah I. Roadside Drug Testing Approaches. Molecules. 2021; 26(11):3291. https://doi.org/10.3390/molecules26113291
Chicago/Turabian StyleAlhefeiti, Manal A., James Barker, and Iltaf Shah. 2021. "Roadside Drug Testing Approaches" Molecules 26, no. 11: 3291. https://doi.org/10.3390/molecules26113291
APA StyleAlhefeiti, M. A., Barker, J., & Shah, I. (2021). Roadside Drug Testing Approaches. Molecules, 26(11), 3291. https://doi.org/10.3390/molecules26113291