Assessment of Automatically Monitored Water Levels and Water Quality Indicators in Rivers with Different Hydromorphological Conditions and Pollution Levels in Greece
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sites Description
2.2. Monitoring Program
2.3. Time Series Statistical Analysis
3. Results
3.1. Descriptive Statistics
3.2. Time Variations
3.3. Time Series Statistical Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Mehta, L. Water and human development. World Dev. 2014, 59, 59–69. [Google Scholar] [CrossRef] [Green Version]
- Wetzel, R.G. Clean water: A fading resource. Hydrobiologia 1992, 243–244, 21–30. [Google Scholar] [CrossRef]
- Vitousek, P.M.; Mooney, H.A.; Lubchenco, J.; Melillo, J.M. Human domination of Earth’s ecosystems. Science 1997, 277, 494–499. [Google Scholar] [CrossRef] [Green Version]
- Beck, M.B. Transient pollution events: Acute risks to the aquatic environment. Water Sci. Technol. 1996, 33, 1–15. [Google Scholar] [CrossRef]
- D’Arcy, B.; Kim, L.-H.; Maniquiz-redillas, M. Wealth Creation without Pollution: Designing for Industry, Ecobusiness Parks and Industrial Estates; IWA Publishing: London, UK, 2017; ISBN 9781780408347. [Google Scholar]
- Halliday, S.J.; Wade, A.J.; Skeffington, R.A.; Neal, C.; Reynolds, B.; Rowland, P.; Neal, M.; Norris, D. An analysis of long-term trends, seasonality and short-term dynamics in water quality data from Plynlimon, Wales. Sci. Total Environ. 2012, 434, 186–200. [Google Scholar] [CrossRef] [PubMed]
- Kirchner, J.W.; Feng, X.; Neal, C.; Robson, A.J. The fine structure of water-quality dynamics: The (high-frequency) wave of the future. Hydrol. Process. 2004, 18, 1353–1359. [Google Scholar] [CrossRef]
- Jones, A.S.; Aanderud, Z.T.; Horsburgh, J.S.; Eiriksson, D.P.; Dastrup, D.; Cox, C.; Jones, S.B.; Bowling, D.R.; Carlisle, J.; Carling, G.T.; et al. Designing and Implementing a Network for Sensing Water Quality and Hydrology across Mountain to Urban Transitions. J. Am. Water Resour. Assoc. 2017, 53, 1095–1120. [Google Scholar] [CrossRef] [Green Version]
- Mentzafou, A.; Panagopoulos, Y.; Dimitriou, E. Designing the national network for automatic monitoring of water quality parameters in Greece. Water 2019, 11, 1310. [Google Scholar] [CrossRef] [Green Version]
- Meyer, A.M.; Klein, C.; Fünfrocken, E.; Kautenburger, R.; Beck, H.P. Real-time monitoring of water quality to identify pollution pathways in small and middle scale rivers. Sci. Total Environ. 2019, 651, 2323–2333. [Google Scholar] [CrossRef] [PubMed]
- Rabiet, M.; Margoum, C.; Gouy, V.; Carluer, N.; Coquery, M. Assessing pesticide concentrations and fluxes in the stream of a small vineyard catchment. Effect of sampling frequency. Environ. Pollut. 2010, 158, 737–748. [Google Scholar] [CrossRef] [Green Version]
- Kozak, C.; Fernandes, C.V.S.; Braga, S.M.; do Prado, L.L.; Frohner, S.; Hilgert, S. Water quality dynamic during rainfall episodes: Integrated approach to assess diffuse pollution using automatic sampling. Environ. Monit. Assess. 2019, 191, 402. [Google Scholar] [CrossRef]
- Ockenden, M.C.; Deasy, C.E.; Benskin, C.M.W.H.; Beven, K.J.; Burke, S.; Collins, A.L.; Evans, R.; Falloon, P.D.; Forber, K.J.; Hiscock, K.M.; et al. Changing climate and nutrient transfers: Evidence from high temporal resolution concentration-flow dynamics in headwater catchments. Sci. Total Environ. 2016, 548–549, 325–339. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gujral, A.; Bhalla, A.; Biswas, D.K. Automatic water level and water quality monitoring. In Proceedings of the Ninth Symposium on Field Measurements in Geomechanics; Dight, P.M., Ed.; Australian Centre for Geomechanics: Perth, Australia, 2015; pp. 511–523. [Google Scholar]
- Zhu, Y.; Tang, M.; Du, M. An Emergency Monitoring about Sudden Water Pollution Accident in Drinking Water Sources. In IEEE International Conference on Emergency Management and Management Sciences; IEEE: Beijing, China, 2010; pp. 99–101. ISBN 9781424460656. [Google Scholar]
- Outram, F.N.; Lloyd, C.E.M.; Jonczyk, J.; Benskin, C.; Grant, F.; Perks, M.T.; Deasy, C.; Burke, S.P.; Collins, A.L.; Freer, J.; et al. High-frequency monitoring of nitrogen and phosphorus response in three rural catchments to the end of the 2011-2012 drought in England. Hydrol. Earth Syst. Sci. 2014, 18, 3429–3448. [Google Scholar] [CrossRef] [Green Version]
- European Commission. European Commission Council Directive 2000/60/EC of the European Parliament and of the Council of 23 October 2000 establishing a framework for Community action in the field of water policy. Off. J. Eur. Communities 2000, L327, 1–72. [Google Scholar]
- Hellenic Statistical Authority Holdings and Utilised Agricultural Area, Divided into Mixed, Agricultural and Livestock Holdings, by Region and Regional Unit. 2016 Farm Structure Survey. Available online: https://www.statistics.gr/en/statistics/-/publication/SPG32/ (accessed on 1 March 2021).
- Ministry of Rural Development and Food of Greece. 1st Update of River Basin Management Plans of the River Basins of Thessalia Water District (EL08); Ministry of Rural Development and Food of Greece: Athens, Greece, 2017.
- European Commission. Common Implementation Strategy for the Water Framework Directive (2000/60/EC), Guidance Document No.19, Guidance on Surface Water Chemical Monitoring under the Water Framework Directive; Official Publications of the European Communities: Luxembourg, 2009; ISBN 9789279112973. [Google Scholar]
- Ministry of Environment and Energy. Detailed Documentation of the 1st Update of the River Basin Management Plans of Thessalia Water District (EL08). Analysis of the Anthropogenic Pressures and Their Effect on the Surface and Groundwater Waterbodies; Ministry of Environment and Energy: Athens, Greece, 2017.
- Dimitriou, E.; Markogianni, V.; Mentzafou, A.; Karaouzas, I.; Zogaris, S. Ecological status assessment of Pikrodafni stream (Attica, Greece), restoration and management measures. Desalin. Water Treat. 2015, 56, 1248–1255. [Google Scholar] [CrossRef]
- Ministry of Rural Development and Food of Greece. 1st Update of River Basin Management Plans of the River Basins of Attiki Water District (EL06); Ministry of Rural Development and Food of Greece: Athens, Greece, 2017.
- Markogianni, V.; Anastasopoulou, E.; Tsoupras, A.; Dimitriou, E. Identification of Pollution Patterns and Sources in a Semi-Arid Urban Stream. J. Ecol. Eng. 2018, 19, 99–113. [Google Scholar] [CrossRef]
- Hellenic Ministry of Economy & Development-General Secretariat for Industry GIS Decision Support System for Investors in Manufacturing. Available online: http://gis.ggb.gr/ioived/ (accessed on 1 May 2018).
- Trikkaion Municipality GIS Applications of Trikkaion Municipality. Available online: https://trikalacity.maps.arcgis.com/apps/webappviewer/index.html?id=ff72c6b636444ddeac9448c632874582 (accessed on 1 March 2021).
- Ministry of Environment and Energy of Greece Geoportal of Planning Department for Metropolitan, Urban and Suburban Areas. Available online: http://msa.ypeka.gr/ (accessed on 1 March 2021).
- Wetzel, R.G. Limnology. Lake and River Ecosystems, 3rd ed.; Academic Press: San Diego, CA, USA, 2001; ISBN 978-0-12-744760-5. [Google Scholar]
- Poff, N.L.; Allan, J.D.; Bain, M.B.; Karr, J.R.; Prestegaard, K.L.; Richter, B.D.; Sparks, R.E.; Stromberg, J.C. The Natural Flow Regime. Bioscience 1997, 47, 769–784. [Google Scholar] [CrossRef]
- Xu, G.; Li, P.; Lu, K.; Tantai, Z.; Zhang, J.; Ren, Z.; Wang, X.; Yu, K.; Shi, P.; Cheng, Y. Seasonal changes in water quality and its main influencing factors in the Dan River basin. Catena 2019, 173, 131–140. [Google Scholar] [CrossRef]
- Cruz, M.A.S.; Gonçalves, A.d.A.; de Aragão, R.; de Amorim, J.R.A.; da Mota, P.V.M.; Srinivasan, V.S.; Garcia, C.A.B.; de Figueiredo, E.E. Spatial and seasonal variability of the water quality characteristics of a river in Northeast Brazil. Environ. Earth Sci. 2019, 78, 68. [Google Scholar] [CrossRef]
- Nakhle, P.; Ribolzi, O.; Boithias, L.; Rattanavong, S.; Auda, Y.; Sayavong, S.; Zimmermann, R.; Soulileuth, B.; Pando, A.; Thammahacksa, C.; et al. Effects of hydrological regime and land use on in-stream Escherichia coli concentration in the Mekong basin, Lao PDR. Sci. Rep. 2021, 11, 3460. [Google Scholar] [CrossRef] [PubMed]
- World Meteorological Organization. Planning of Water Quality Monitoring Systems; Technical Report Series No. 3. World Meteorological Organization: Geneva, Switzerland, 2013; ISBN 9789263111135. [Google Scholar]
- Bratli, J.L. Classification of the Environmental Quality of Freshwater in Norway. In Hydrological and Lintnological Aspects of Lake Monitoring; Heinonen, P., Ziglio, G., Van Der Beken, A., Eds.; John Wiley & Sons Ltd: Chichester, UK, 2000; pp. 331–343. [Google Scholar]
- Hellenic Centre for Marine Research. Monitoring and Recording of the Water Status (Quality, Quantity, Pressures, Use) in Greece. Annual Report 2019; Hellenic Centre for Marine Research: Anavyssos, Greece, 2020. [Google Scholar]
- Legendre, P.; Legendre, L. Numerical Ecology. Developments in Environmental Modelling, 3rd ed.; Elsevier: Amsterdam, The Netherlands, 2012; Volume 24, ISBN 9780444538680. [Google Scholar]
- Benavente, J.; Pulido-Bosch, A. Application of Correlation and Spectral Procedures to the Study of Discharge in a Karstic System (Eastern Spain). Proc. Ank. Antalya Symp. Karst Water Resour. IAHS 1985, 161, 67–75. [Google Scholar]
- Pinault, J.; Berthier, F. A methodological approach to characterize the resilience of aquatic ecosystems with application to Lake Annecy, France. Water Resour. Res. 2007, 43, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Arhonditsis, G.; Brett, M.T.; Frodge, J. Environmental Control and Limnological Impacts of a Large Recurrent Spring Bloom in Lake Washington, USA. Environ. Manag. 2003, 31, 603–618. [Google Scholar] [CrossRef] [PubMed]
- Lehmann, A.; Rode, M. Long-term behaviour and cross-correlation water quality analysis of the river Elbe, Germany. Water Res. 2001, 35, 2153–2160. [Google Scholar] [CrossRef]
- Larocque, M.; Mangin, A.; Razack, M.; Banton, O. Contribution of correlation and spectral analyses to the regional study of a large karst aquifer (Charente, France). J. Hydrol. 1998, 205, 217–231. [Google Scholar] [CrossRef]
- Garbrecht, J.; Fernandez, G.P. Visualization of Trends and Fluctuations in Climatic Records. J. Am. Water Resour. Assoc. 1994, 30, 297–306. [Google Scholar] [CrossRef]
- Shelton, M.L. Seasonal hydroclimate change in the sacramento river basin, California. Phys. Geogr. 1998, 19, 239–255. [Google Scholar] [CrossRef]
- You, Q.; Jiang, H.; Liu, Y.; Liu, Z.; Guan, Z. Probability analysis and control of river runoff-sediment characteristics based on pair-copula functions: The case of the Weihe River and Jinghe River. Water 2019, 11, 510. [Google Scholar] [CrossRef] [Green Version]
- Dokulil, M.T.; Teubner, K. Deep living Planktothrix rubescens modulated by environmental constraints and climate forcing. Hydrobiologia 2012, 698, 29–46. [Google Scholar] [CrossRef] [Green Version]
- Đurin, B.; Kranjčić, N. Efficient Monitoring of Variation in the Parameters of Drinking and Wastewater Quality Using Spatial Database and Application of Raps. Elektron. Časopis Građevinskog Fak. Osijek 2020, 73–81. [Google Scholar] [CrossRef]
- Bonacci, O.; Patekar, M.; Pola, M.; Roje-Bonacci, T. Analyses of climate variations at four meteorological stations on remote islands in the croatian part of the adriatic sea. Atmosphere 2020, 11, 1044. [Google Scholar] [CrossRef]
- Srajbek, M.; Durin, B.; Sakac, N.; Sirocic, A. Effect of nitrates on underground water resources -analysis by RAPS method. J. Agric. Anim. Prod. Sci. Rural Dev. 2018, VIII, 75–79. [Google Scholar]
- Buishand, T.A. Some methods for testing the homogeneity of rainfall records. J. Hydrol. 1982, 58, 11–27. [Google Scholar] [CrossRef]
- Cardoso, A.C.; Duchemin, J.; Magoarou, P.; Premazzi, G. Criteria for the Identification of Freshwaters Subject to Eutrophication, EUR 19810 EN; EC Joint Research Centre: Ispra, Italy, 2001; ISBN 9289409479. [Google Scholar]
- Hinkle, D.; Wiersma, W.; Jurs, S. Applied Statistics for the Behavioral Sciences, 5th ed.; Houghton Mifflin: Boston, MA, USA, 2003; ISBN 978-0618124053. [Google Scholar]
- Boyd, C.E. Water Quality: An Introduction, 2nd ed.; Springer International Publishing: Cham, Switzerland, 2015; ISBN 9783319174457. [Google Scholar]
- Zhang, L.; Thomas, S.; Mitsch, W.J. Design of real-time and long-term hydrologic and water quality wetland monitoring stations in South Florida, USA. Ecol. Eng. 2017, 108, 446–455. [Google Scholar] [CrossRef]
- Kney, A.D.; Brandes, D. A graphical screening method for assessing stream water quality using specific conductivity and alkalinity data. J. Environ. Manag. 2007, 82, 519–528. [Google Scholar] [CrossRef]
- Thompson, M.Y.; Brandes, D.; Kney, A.D. Using electronic conductivity and hardness data for rapid assessment of stream water quality. J. Environ. Manag. 2012, 104, 152–157. [Google Scholar] [CrossRef]
- De Sousa, D.N.R.; Mozeto, A.A.; Carneiro, R.L.; Fadini, P.S. Electrical conductivity and emerging contaminant as markers of surface freshwater contamination by wastewater. Sci. Total Environ. 2014, 484, 19–26. [Google Scholar] [CrossRef]
- Chapman, D. Water Quality Assessments: A Guide to the Use of biotaWater Quality Assessments A Guide to the Use of Biota, Sediments and Water in Environmental Monitoring, 2nd ed.; CRC Press, Taylor & Francis Group: London, UK, 1996; ISBN 0203476719. [Google Scholar]
- Prowse, C.W. The impact of urbanization on major ion flux through catchments: A case study in Southern England. Water Air. Soil Pollut. 1987, 32, 277–292. [Google Scholar] [CrossRef]
- Diamantini, E.; Lutz, S.R.; Mallucci, S.; Majone, B.; Merz, R.; Bellin, A. Driver detection of water quality trends in three large European river basins. Sci. Total Environ. 2018, 612, 49–62. [Google Scholar] [CrossRef] [PubMed]
- Conservation Ontario. Overview of Integrated Watershed Management in Ontario; Conservation Ontari: Oshawa, ON, USA, 2010; ISBN 0958472815. [Google Scholar]
- Behmel, S.; Damour, M.; Ludwig, R.; Rodriguez, M.J. Water quality monitoring strategies—A review and future perspectives. Sci. Total Environ. 2016, 571, 1312–1329. [Google Scholar] [CrossRef]
Station | Latitude | Longitude | Elevation (m) | Mean Annual Runoff (hm3/y) | Upstream Basin (km2) | Dominant Land Use of Basin | Research Project | Website |
---|---|---|---|---|---|---|---|---|
Nomi | 39.5266 | 21.9383 | 93 | 1398.5 | 2243 | Agricultural | HIMIOFoTS | https://hydro-stations.hcmr.gr/nomi-station-pineios-river/, accessed on 28 April 2021 |
Tempi | 39.8968 | 22.6152 | 7 | 3116.1 | 10,897 | Agricultural | HIMIOFoTS | https://hydro-stations.hcmr.gr/tempi-station-pineios-river/, accessed on 28 April 2021 |
Lithaios | 39.5523 | 21.7707 | 109 | 85.1 | 226 | Urban | Open ELIoT | https://hydro-stations.hcmr.gr/lithaios-station/, accessed on 28 April 2021 |
Pikrodafni | 37.9184 | 23.7023 | 5 | 5.0 | 21 | Urban | Open ELIoT | https://hydro-stations.hcmr.gr/pikrodafni-station/, accessed on 28 April 2021 |
Parameter | Temperature (°C) | DO (mg/L) | E. Conductivity (μS/cm) | Water Depth (m) | Temperature (°C) | DO (mg/L) | E. Conductivity (μS/cm) | Water Depth (m) | |
---|---|---|---|---|---|---|---|---|---|
Descriptive statistics | Tempi | Nomi | |||||||
N | Valid | 8426 | 8426 | 8426 | 8226 | 7415 | 6590 | 7415 | 7395 |
Missing | 362 | 362 | 362 | 562 | 1373 | 2198 | 1373 | 1393 | |
Mean | 15.4 | 9.3 | 591.0 | 0.50 | 17.1 | 5.8 | 540.1 | 0.45 | |
Median | 16.0 | 9.3 | 619.4 | 0.33 | 16.8 | 5.9 | 542.5 | 0.25 | |
Std. Deviation | 3.7 | 1.0 | 143.0 | 0.59 | 6.6 | 4.4 | 166.3 | 0.68 | |
Variance | 13.5 | 1.0 | 20,461.9 | 0.35 | 43.2 | 19.3 | 27,668.7 | 0.46 | |
Skewness | −0.3 | −0.2 | −0.7 | 4.04 | 0.1 | 0.5 | −1.3 | 3.88 | |
Minimum | 7.5 | 5.0 | 146.4 | 0.00 | 5.7 | 0.0 | 56.9 | 0.00 | |
Maximum | 23.1 | 11.7 | 855.8 | 4.38 | 31.3 | 22.9 | 875.3 | 4.40 | |
Percentiles | 25 | 12.0 | 8.6 | 536.8 | 0.23 | 11.2 | 1.7 | 477.1 | 0.18 |
50 | 16.0 | 9.3 | 619.4 | 0.33 | 16.8 | 5.9 | 542.5 | 0.25 | |
75 | 18.4 | 9.9 | 697.3 | 0.54 | 23.0 | 8.6 | 654.8 | 0.42 | |
Correlations | |||||||||
Temperature (°C) | R | 1 | −0.785 ** | 0.184 ** | −0.087 ** | 1 | 0.245 ** | 0.388 ** | −0.338 ** |
Sig. (2-tailed) | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | |||
N | 8426 | 8426 | 8426 | 8226 | 7415 | 6590 | 7415 | 7395 | |
DO (mg/L) | R | −0.785 ** | 1 | −0.244 ** | 0.157 ** | 0.245 ** | 1 | 0.286 ** | −0.137 ** |
Sig. (2-tailed) | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | |||
N | 8426 | 8426 | 8426 | 8226 | 6590 | 6590 | 6590 | 6570 | |
E. Conductivity (μS/cm) | R | 0.184 ** | −0.244 ** | 1 | −0.496 ** | 0.388 ** | 0.286 ** | 1 | −0.061 ** |
Sig. (2-tailed) | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | |||
N | 8426 | 8426 | 8426 | 8226 | 7415 | 6590 | 7415 | 7395 | |
Water depth (m) | R | −0.087 ** | 0.157 ** | −0.496 ** | 1 | −0.338 ** | −0.137 ** | −0.061 ** | 1 |
Sig. (2-tailed) | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | |||
N | 8226 | 8226 | 8226 | 8226 | 7395 | 6570 | 7395 | 7395 |
Parameter | Temperature (°C) | DO (mg/L) | E. Conductivity (μS/cm) | Water Depth (m) | Temperature (°C) | DO (mg/L) | E. Conductivity (μS/cm) | Water Depth (m) | |
---|---|---|---|---|---|---|---|---|---|
Descriptive statistics | Lithaios | Pikrodafni | |||||||
N | Valid | 6946 | 6721 | 6946 | 6946 | 8418 | 8418 | 8418 | 8496 |
Missing | 1842 | 2067 | 1842 | 1842 | 370 | 370 | 370 | 292 | |
Mean | 16.3 | 7.0 | 565.3 | 0.47 | 18.6 | 2.0 | 809.3 | 0.17 | |
Median | 16.5 | 7.0 | 551.2 | 0.41 | 18.4 | 0.7 | 860.1 | 0.17 | |
Std. Deviation | 2.6 | 2.4 | 71.7 | 0.16 | 4.9 | 2.9 | 247.4 | 0.05 | |
Variance | 6.5 | 5.6 | 5142.7 | 0.03 | 24.2 | 8.5 | 61,220.9 | 0.00 | |
Skewness | −0.2 | 0.0 | 0.9 | 4.73 | 0.0 | 2.2 | 0.0 | 10.24 | |
Minimum | 8.4 | 0.0 | 209.0 | 0.31 | 7.5 | 0.0 | 66.9 | 0.2 | |
Maximum | 23.1 | 14.6 | 880.8 | 2.11 | 29.0 | 21.1 | 1696.3 | 1.15 | |
Percentiles | 25 | 14.3 | 5.6 | 528.5 | 0.39 | 14.2 | 0.0 | 625.2 | 0.16 |
50 | 16.5 | 7.0 | 551.2 | 0.41 | 18.4 | 0.7 | 860.1 | 0.17 | |
75 | 18.3 | 8.5 | 591.9 | 0.48 | 23.1 | 3.2 | 996.3 | 0.17 | |
Correlations | |||||||||
Temperature (°C) | R | 1 | −0.097 ** | −0.186 ** | −0.343 ** | 1 | 0.390 ** | 0.341 ** | −0.180 ** |
Sig.(2-tailed) | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | |||
N | 6946 | 6721 | 6946 | 6946 | 8418 | 8418 | 8418 | 8418 | |
DO (mg/L) | R | −0.097 ** | χ1 | −0.351 ** | 0.109 ** | 0.390 ** | 1 | 0.189 ** | 0.094 ** |
Sig.(2-tailed) | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | |||
N | 6721 | 6721 | 6721 | 6721 | 8418 | 8418 | 8418 | 8418 | |
E. Conductivity (μS/cm) | R | −0.186 ** | −0.351 ** | 1 | −0.206 ** | 0.341 ** | 0.189 ** | 1 | −0.368 ** |
Sig.(2-tailed) | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | |||
N | 6946 | 6721 | 6946 | 6946 | 8418 | 8418 | 8418 | 8418 | |
Water depth (m) | R | −0.343 ** | 0.109 ** | −0.206** | 1 | −0.180 ** | 0.094 ** | −0.368 ** | 1 |
Sig.(2-tailed) | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | |||
N | 6946 | 6721 | 6946 | 6946 | 8418 | 8418 | 8418 | 8496 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mentzafou, A.; Varlas, G.; Papadopoulos, A.; Poulis, G.; Dimitriou, E. Assessment of Automatically Monitored Water Levels and Water Quality Indicators in Rivers with Different Hydromorphological Conditions and Pollution Levels in Greece. Hydrology 2021, 8, 86. https://doi.org/10.3390/hydrology8020086
Mentzafou A, Varlas G, Papadopoulos A, Poulis G, Dimitriou E. Assessment of Automatically Monitored Water Levels and Water Quality Indicators in Rivers with Different Hydromorphological Conditions and Pollution Levels in Greece. Hydrology. 2021; 8(2):86. https://doi.org/10.3390/hydrology8020086
Chicago/Turabian StyleMentzafou, Angeliki, George Varlas, Anastasios Papadopoulos, Georgios Poulis, and Elias Dimitriou. 2021. "Assessment of Automatically Monitored Water Levels and Water Quality Indicators in Rivers with Different Hydromorphological Conditions and Pollution Levels in Greece" Hydrology 8, no. 2: 86. https://doi.org/10.3390/hydrology8020086
APA StyleMentzafou, A., Varlas, G., Papadopoulos, A., Poulis, G., & Dimitriou, E. (2021). Assessment of Automatically Monitored Water Levels and Water Quality Indicators in Rivers with Different Hydromorphological Conditions and Pollution Levels in Greece. Hydrology, 8(2), 86. https://doi.org/10.3390/hydrology8020086