Evaluation of Articular Eminence Inclination in Normo-Divergent Subjects with Different Skeletal Classes through CBCT
Abstract
:1. Introduction
1.1. Background
1.2. Objectives
2. Materials and Methods
- L1: a first horizontal line, parallel to the Frankfurt plane (FH) passing through the uppermost point of the glenoid fossa.
- L2: a second line, constructed along the posterior slope of articular eminence, connecting the lowermost and most posterior point of the articular eminence and the uppermost and most anterior point of the glenoid fossa on the temporal bone.
Statistical Analysis
3. Results
4. Discussion
Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Shahidi, S.; Vojdani, M.; Paknahad, M. Correlation between articular eminence steepness measured with cone-beam computed tomography and clinical dysfunction index in patients with temporomandibular joint dysfunction. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. 2013, 116, 91–97. [Google Scholar] [CrossRef]
- Katsavrias, E.G.; Halazonetis, D.J. Condyle and fossa shape in Class II and Class III skeletal patterns: A morphometric tomographic study. Am. J. Orthod. Dentofac. Orthop. 2005, 128, 337–346. [Google Scholar] [CrossRef] [PubMed]
- Tanne, K.; Tanaka, E.; Sakuda, M. Stress distributions in the TMJ during clenching in patients with vertical discrepancies of the craniofacial complex. J. Orofac. Pain 1995, 9, 153–160. [Google Scholar]
- Katsavrias, E.G. Changes in articular eminence inclination during the craniofacial growth period. Angle Orthod. 2002, 72, 258–264. [Google Scholar]
- İlgüy, D.; İlgüy, M.; Fişekçioğlu, E.; Dölekoğlu, S.; Ersan, N. Articular eminence inclination, height, and condyle morphology on cone beam computed tomography. Sci. World J. 2014, 2014, 761714. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Singh, S.; Das, S.; Bhattacharyya, J.; Ghosh, S.; Goel, P.; Dutta, K. A comparative study to correlate between clinically and radiographically determined sagittal condylar guidance in participants with different skeletal relationships. J. Indian Prosthodont. Soc. 2017, 17, 175–182. [Google Scholar] [CrossRef] [PubMed]
- Kwon, O.K.; Yang, S.W.; Kim, J.H. Correlation between sagittal condylar guidance angles obtained using radiographic and protrusive occlusal record methods. J. Adv. Prosthodont. 2017, 9, 302–307. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arieta-Miranda, J.M.; Silva-Valencia, M.; Flores-Mir, C.; Paredes-Sampen, N.A.; Arriola-Guillen, L.E. Spatial analysis of condyle position according to sagittal skeletal relationship, assessed by cone beam computed tomography. Prog. Orthod. 2013, 14, 36. [Google Scholar] [CrossRef] [Green Version]
- Hasebe, A.; Yamaguchi, T.; Nakawaki, T.; Hikita, Y.; Katayama, K.; Maki, K. Comparison of condylar size among different anteroposterior and vertical skeletal patterns using cone-beam computed tomography. Angle Orthod. 2019, 89, 306–311. [Google Scholar] [CrossRef] [Green Version]
- Göymen, M.; Güleç, A. Effects of the vertical malocclusion types on the dimension of the mandibular condyle. Turk. J. Orthod. 2017, 30, 106–109. [Google Scholar] [CrossRef]
- Sa, S.C.; Melo, S.L.; Melo, D.P.; Freitas, D.Q.; Campos, P.S. Relationship between articular eminence inclination and alterations of the mandibular condyle: A CBCT study. Br. Oral Res. 2017, 31, 25. [Google Scholar] [CrossRef] [Green Version]
- Costa, E.D.D.; Peyneau, P.D.; Roque-Torres, G.D.; Freitas, D.Q.; Ramírez-Sotelo, L.R.; Ambrosano, G.M.B.; Verner, F.S. The relationship of articular eminence and mandibular fossa morphology to facial profile and gender determined by cone beam computed tomography. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. 2019, 128, 660–666. [Google Scholar] [CrossRef] [PubMed]
- Verner, F.S.; Roque-Torres, G.D.; Ramírez-Sotello, L.R.; Devito, K.L.; Almeida, S.M. Analysis of the correlation between dental arch and articular eminence morphology: A cone beam computed tomography study. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. 2017, 124, 420–431. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sülün, T.; Cemgil, T.; Duc, J.M.; Rammelsberg, P.; Jäger, L.; Gernet, W. Morphology of the mandibular fossa and inclination of the articular eminence in patients with internal derangement and in symptom-free volunteers. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endod. 2001, 92, 98–107. [Google Scholar] [CrossRef] [Green Version]
- Kerstens, H.C.; Tuinzing, D.B.; Golding, R.P.; Van der Kwast, W.A. Inclination of the temporomandibular joint eminence and anterior disc displacement. Int. J. Oral Maxillofac. Surg. 1989, 18, 228–232. [Google Scholar] [CrossRef]
- Al-Saleh, M.A.; Alsufyani, N.A.; Saltaji, H.; Jaremko, J.L.; Major, P.W. MRI and CBCT image registration of temporomandibular joint: A systematic review. J. Otolaryngol. Head Neck Surg. 2016, 45, 30. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kochhar, A.S.; Nucci, L.; Sidhu, M.S.; Prabhakar, M.; Grassia, V.; Perillo, L.; Kochhar, G.K.; Bhasin, R.; Dadlani, H.; d’Apuzzo, F. Reliability and reproducibility of landmark identification in unilateral cleft lip and palate patients: Digital lateral vis-a-vis CBCT-derived 3D cephalograms. J. Clin. Med. 2021, 10, 535. [Google Scholar] [CrossRef]
- Chen, J.; Duan, Y.; Tu, J.; Yuan, Y.; Lei, Y. Three-dimensional morphological features of temporomandibular joint in skeletal malocclusion Class III patients with different vertical skeletal facial types. Zhong Nan Da Xue Xue Bao Yi Xue Ban 2018, 43, 625–630. [Google Scholar] [CrossRef]
- Paknahad, M.; Shahidi, S. Association between condylar position and vertical skeletal craniofacial morphology: A cone beam computed tomography study. Int. Orthod. 2017, 15, 740–751. [Google Scholar] [CrossRef]
- Mohammed, A.-R. Comparative study of mandibular condylar spatial relationship and morphology in skeletal class II malocclusion patients with different vertical skeletal pattern. Indian J. Med. Res. Pharm. 2019, 6, 1–13. [Google Scholar]
- Rodrigues, A.F.; Fraga, M.R.; Vitral, R.W. Computed tomography evaluation of the temporomandibular joint in Class II Division 1 and Class III malocclusion patients: Condylar symmetry and condyle-fossa relationship. Am. J. Orthod. Dentofac. Orthop. 2009, 136, 199–206. [Google Scholar] [CrossRef]
- Lobo, F.; Tolentino, E.S.; Iwaki, L.C.V.; Walewski, L.Â.; Takeshita, W.M.; Chicarelli, M. Imaginology Tridimensional Study of Temporomandibular Joint Osseous Components According to Sagittal Skeletal Relationship, Sex, and Age. J. Craniofac. Surg. 2019, 30, 1462–1465. [Google Scholar] [CrossRef]
- Paknahad, M.; Shahidi, S.; Abbaszade, H. Correlation between condylar position and different sagittal skeletal facial types. J. Orofac. Orthop. 2016, 77, 350–356. [Google Scholar] [CrossRef]
- Vandenbroucke, J.P.; von Elm, E.; Altman, D.G.; Gøtzsche, P.C.; Mulrow, C.D.; Pocock, S.J.; Poole, C.; Schlesselman, J.J.; Egger, M. STROBE Initiative. Strengthening the Reporting of Observational Studies in Epidemiology (STROBE): Explanation and elaboration. PLoS Med. 2007, 4, e297. [Google Scholar] [CrossRef] [Green Version]
- Scarano, A.; Lorusso, F.; Staiti, G.; Sinjari, B.; Tampieri, A.; Mortellaro, C. Sinus Augmentation with Biomimetic Nanostructured Matrix: Tomographic, Radiological, Histological and Histomorphometrical Results after 6 Months in Humans. Front. Physiol. 2017, 8, 565. [Google Scholar] [CrossRef] [Green Version]
- Shreshta, P.; Jain, V.; Bhalla, A.; Pruthi, G. A comparative study to measure the condylar guidance by the radiographic and clinical methods. J. Adv. Prosthodont. 2012, 4, 153–157. [Google Scholar] [CrossRef] [Green Version]
- Ozkan, A.; Altug, H.A.; Sencimen, M.; Senel, B. Evaluation of articular eminence morphology and inclination in TMJ internal derangement patients with MRI. Int. J. Morphol. 2012, 30, 740–744. [Google Scholar] [CrossRef]
- Pandis, N.; Karpac, J.; Trevino, R.; Williams, B. A radiographic study of condyle position at various depths of cut in dry skulls with axially corrected lateral tomograms. Am. J. Orthod. Dentofac. Orthop. 1991, 100, 116–122. [Google Scholar] [CrossRef]
- Christiansen, E.L.; Chan, T.T.; Thompson, J.R.; Hasso, A.N.; Hinshaw, D.B., Jr.; Kopp, S. Computed tomography of the normal temporomandibular joint. Scand. J. Dent. Res. 1987, 95, 499–509. [Google Scholar] [CrossRef] [PubMed]
- Ikai, A.; Sugisaki, M.; Young-Sung, K.; Tanabe, H. Morphologic study of the mandibular fossa and the eminence of the temporomandibular joint in relation to the facial structures. Am. J. Orthod. Dentofac. Orthop. 1997, 112, 634–638. [Google Scholar] [CrossRef]
- Akahane, Y.; Deguchi, T.; Hunt, N.P. Morphology of the temporomandibular joint in skeletal class iii symmetrical and asymmetrical cases: A study by cephalometric laminography. J. Orthod. 2001, 28, 119–128. [Google Scholar] [CrossRef] [PubMed]
- Krisjane, Z.; Urtane, I.; Krumina, G.; Zepa, K. Three-dimensional evaluation of TMJ parameters in Class II and Class III patients. Stomatologija 2009, 11, 32–36. [Google Scholar] [PubMed]
Cephalometric Parameter | Mean Value | ||
---|---|---|---|
SNA | 82° ± 2° | ||
SNB | 80° ± 2° | ||
ANB | 2° ± 2° | ||
Reconstructed Wits Index | 0 ± 2 mm | ||
A-McNamara | Mixed dentition: 1 mm Permanent dentition: 0 mm | ||
Pog-McNamara | Years | Male | Female |
9 | −6 mm | −8 mm | |
12 | −4 mm | −5 mm | |
15 | −2 mm | −2 mm | |
>16 | 0 mm | 0 mm | |
FH^Upper Inc | Hypodivergent | 113° ± 1° | |
Normodivergent | 110° ± 1° | ||
Hyperdivergent | 107° ± 1° | ||
AnsPns^Upper Inc | Hypodivergent | 113° ± 2° | |
Normodivergent | 110° ± 2° | ||
Hyperdivergent | 107° ± 2° | ||
SN^Upper Inc | 103° ± 2° | ||
Upper Inc/A-Pog | 3.5 mm ± 2 mm | ||
IMPA | Hypodivergent | 93° ± 3° | |
Normodivergent | 90° ± 3° | ||
Hyperdivergent | 87° ± 3° | ||
Lower Inc/A-Pog | 2 mm ± 2 mm | ||
Upper Inc^ Lower Inc | 130° ± 5° |
Male | Female | Tot. | Right AEI | Left AEI | p-Value a | |||||
---|---|---|---|---|---|---|---|---|---|---|
Min. | Max. | Mean ± SD | Min. | Max. | Mean ± SD | |||||
Class I | 5 | 6 | 11 | 31.0° | 59.5° | 44.8° ± 9.0° | 22.0 | 60.0 | 44.1° ± 10.8° | p = 0.527 |
Class II | 6 | 7 | 13 | 28.2° | 62.0° | 42.0° ± 10.8° | 29.5 | 64.0 | 47.0° ± 10.9° | p = 0.004 * |
Class III | 4 | 5 | 9 | 31.0° | 51.5° | 37.8° ± 6.7° | 33.0 | 56.0 | 43.7° ± 7.8° | p = 0.020 * |
Skeletal Class | Mean ± SD | Median | p-Value a | |
---|---|---|---|---|
Right AEI | Class I | 44.8° ± 9.0° | 45.5° | |
Class II | 42.0° ± 10.8° | 41.6° | ||
Class III | 37.8° ± 6.7° | 38.4° | ||
p = 0.174 | ||||
Left AEI | Class I | 44.1° ± 10.8° | 47.0° | |
Class II | 47.0° ± 10.9° | 51.0° | ||
Class III | 43.7° ± 7.8° | 44.0° | ||
p = 0.624 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Moscagiuri, F.; Caroccia, F.; Lopes, C.; Di Carlo, B.; Di Maria, E.; Festa, F.; D’Attilio, M. Evaluation of Articular Eminence Inclination in Normo-Divergent Subjects with Different Skeletal Classes through CBCT. Int. J. Environ. Res. Public Health 2021, 18, 5992. https://doi.org/10.3390/ijerph18115992
Moscagiuri F, Caroccia F, Lopes C, Di Carlo B, Di Maria E, Festa F, D’Attilio M. Evaluation of Articular Eminence Inclination in Normo-Divergent Subjects with Different Skeletal Classes through CBCT. International Journal of Environmental Research and Public Health. 2021; 18(11):5992. https://doi.org/10.3390/ijerph18115992
Chicago/Turabian StyleMoscagiuri, Francesco, Francesco Caroccia, Chiara Lopes, Beatrice Di Carlo, Erica Di Maria, Felice Festa, and Michele D’Attilio. 2021. "Evaluation of Articular Eminence Inclination in Normo-Divergent Subjects with Different Skeletal Classes through CBCT" International Journal of Environmental Research and Public Health 18, no. 11: 5992. https://doi.org/10.3390/ijerph18115992