Enhanced Electrochemical Performance of Li4Ti5O12 by Niobium Doping for Pseudocapacitive Applications
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Structure and Morphology of Nb-Doped LTO
3.2. Electrochemical Performance
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Augustyn, V.; Simon, P.; Dunn, B. Pseudocapacitive oxide materials for high-rate electrochemical energy storage. Energy Environ. Sci. 2014, 7, 1597–1614. [Google Scholar] [CrossRef] [Green Version]
- Sharma, K.; Arora, A.; Tripathi, S.K. Review of supercapacitors: Materials and devices. J. Energy Storage 2019, 21, 801–825. [Google Scholar]
- Dhananjaya, M.; Guruprakash, N.; Lakshmi Narayana, A.; Hussain, O.M. Microstructural and supercapacitive properties of one-dimensional vanadium pentoxide nanowires synthesized by hydrothermal method. Appl. Phys. A 2018, 124, 185. [Google Scholar] [CrossRef]
- Dhananjaya, M.; Lakshmi Narayana, A.; Guruprakash, N.; Rosaiah, P.; Hussain, O.M. Intertwining network structured VnO2n+1-CNT/GO nanocomposite electrodes for supercapacitors. Mater. Chem. Phys. 2019, 237, 121825. [Google Scholar] [CrossRef]
- Guruprakash, N.; Dhananjaya, M.; Lakshmi Narayana, A.; Hussain, O.M. One-dimensional MoO3/Pd nanocomposite electrodes for high performance supercapacitors. Mater. Res. Express 2019, 6, 085543. [Google Scholar] [CrossRef]
- Rosaiah, P.; Zhu, J.; Hussain, O.M.; Qiu, Y. Synthesis of flower-like reduced graphene oxide-Mn3O4 nanocomposite electrodes for supercapacitors. Appl. Phys. A 2018, 124, 597. [Google Scholar] [CrossRef]
- Lakshmi Narayana, A.; Dhananjaya, M.; Guruprakash, N.; Hussain, O.M.; Julien, C.M. Nanocrystalline Li2TiO3 electrodes for supercapattery application. Ionics 2017, 23, 3419–3428. [Google Scholar] [CrossRef]
- Dhananjaya, M.; Guruprakash, N.; Lakshmi Narayana, A.; Hussain, O.M. Electrochemical performance of nanocrystalline vanadium pentoxide thin films grown by RF magnetron sputtering. J. Electron. Mater. 2020, 49, 1922–1934. [Google Scholar] [CrossRef]
- Winter, M.; Brodd, R.J. What are batteries, fuel cells, and supercapacitors? Chem. Rev. 2004, 104, 4245–4269. [Google Scholar] [CrossRef] [Green Version]
- Chen, G.Z. Understanding supercapacitors based on nanohybrid materials with interfacial conjugation. Prog. Nat. Sci. Mater. Int. 2013, 23, 245–255. [Google Scholar] [CrossRef] [Green Version]
- Jin, S.; Lee, H.; Yim, S. Enhanced capacitive properties of all-metal-oxide-nanoparticle-based asymmetric supercapacitors. RSC Adv. 2019, 9, 31846–31852. [Google Scholar] [CrossRef] [Green Version]
- Jezowski, P.; Crosnier, O.; Brousse, T. Sodium borohydride (NaBH4) as a high-capacity material for next generation sodium-ion. Open Chem. 2021, 19, 432–441. [Google Scholar] [CrossRef]
- Chandra-Sekhar, J.; Dhananjaya, M.; Hussain, O.M. Microstructural and supercapacitive performance of cubic spinel Li4Ti5O12 nanocomposite. Eur. J. Mater. Sci. Eng. 2020, 5, 222–233. [Google Scholar]
- Rho, Y.H.; Kanamura, K. Li+ ion diffusion in Li4Ti5O12 thin film electrode prepared by PVP sol-gel method. J. Solid State Chem. 2004, 177, 2094–2100. [Google Scholar] [CrossRef]
- Michalska, M.; Lemanski, K.; Ptak, M.; Roguska, A.; Chernyayeva, O.; Zurek, P.; Sikora, A.; Golebiewski, P.; Szysiak, A.; Malinowska, A.; et al. Effects of Eu3+ ions doping on physicochemical properties of spinel-structured lithium-titanium oxide (Li4Ti5O12) as an efficient photoluminescent material. Mater. Res. Bull. 2021, 134, 111084. [Google Scholar] [CrossRef]
- Shi, L.; Hu, X.; Huang, Y. Fast microwave-assisted synthesis of Nb-doped Li4Ti5O12 for high-rate lithium-ion batteries. J. Nanopart. Res. 2014, 16, 2332. [Google Scholar] [CrossRef]
- Yang, C.-C.; Hu, H.-C.; Lin, S.J.; Chien, W.-C. Electrochemical performance of V-doped spinel Li4Ti5O12/C composite anode in Li-half and Li4Ti5O12/LiFePO4-full cell. J. Power Sources 2014, 258, 424–433. [Google Scholar] [CrossRef]
- Xue, X.; Yan, H.; Fu, Y. Preparation of pure and metal-doped Li4Ti5O12 composites and their lithium-storage performances for lithium-ion batteries. Solid State Ion. 2019, 335, 1–6. [Google Scholar] [CrossRef]
- Rahman, M.M.; Wang, J.-Z.; Hussan, M.F.; Wexler, D.; Liu, H.K. Amorphous carbon coated high grain boundary density dual phase Li4Ti5O12/TiO2: A nanocomposite anode material for Li-ion batteries. Adv. Energy Mater. 2011, 1, 212–220. [Google Scholar] [CrossRef]
- Choi, H.S.; Kim, T.H.; Im, J.H.; Park, C.R. Preparation and electrochemical performance of hyper-networked Li4Ti5O12/carbon hybrid nanofiber sheets for a battery-supercapacitor hybrid system. Nanotechnology 2011, 22, 405402. [Google Scholar] [CrossRef]
- Zhao, B.; Deng, X.; Ran, R.; Liu, M.; Shao, Z. Facile synthesis of a 3D nanoarchitectured Li4Ti5O12 electrode for ultrafast energy storage. Adv. Energy Mater. 2016, 6, 1500924. [Google Scholar] [CrossRef]
- Dong, S.; Wang, X.; Shen, L.; Li, H.; Wang, J.; Nie, P.; Wang, J.; Zhang, X. Trivalent Ti self-doped Li4Ti5O12: A high performance anode material for lithium-ion capacitors. J. Electroanal. Chem. 2015, 757, 1–7. [Google Scholar] [CrossRef]
- Hao, Y.-J.; Lai, Q.-Y.; Lu, J.-Z.; Ji, X.-Y. Effects of dopant on the electrochemical properties of Li4Ti5O12 anode materials. Ionics 2007, 13, 369–373. [Google Scholar] [CrossRef]
- Tian, S.; Wang, X.; Yang, J. Enhanced lithium-storage performance of Li4Ti5O12 coated with boron-doped carbon layer for rechargeable Li-ion batteries. Solid State Ion. 2018, 324, 191–195. [Google Scholar] [CrossRef]
- Karhunen, T.; Valikangas, J.; Torvela, T.; Lahde, A.; Lassi, U.; Jokiniemi, J. Effect of doping and crystallite size on the electrochemical performance of Li4Ti5O12. J. Alloys Compd. 2016, 659, 132–137. [Google Scholar] [CrossRef] [Green Version]
- Liang, Q.; Cao, N.; Song, Z.; Gao, X.; Hou, L.; Guo, T.; Qin, X. Co-doped Li4Ti5O12 nanosheets with enhanced rate performance for lithium-ion batteries. Electrochim. Acta 2017, 251, 407–414. [Google Scholar] [CrossRef]
- Ming, H.; Ming, J.; Li, X.; Zhou, Q.; Wang, H.; Jin, L.; Fu, Y.; Adkins, J.; Zheng, J. Hierarchical Li4Ti5O12 particles co-modified with C&N towards enhanced performance in lithium-ion battery applications. Electrochim. Acta 2014, 116, 224–229. [Google Scholar]
- Sohib, A.; Priyono, S.; Widayatno, W.B.; Subhan, A.; Sari, S.N.; Wismogroho, A.S.; Hudaya, C.; Prihandoko, B. Electrochemical performance of low concentration Al doped-lithium titanate anode synthesized via sol-gel for lithium ion capacitor applications. J. Energy Storage 2020, 29, 101480. [Google Scholar] [CrossRef]
- Ji, M.; Xu, Y.; Zhao, Z.; Zhang, H.; Liu, D.; Zhao, C.; Qian, X.; Zhao, C. Preparation and electrochemical performance of La3+ and F− co-doped Li4Ti5O12 anode material for lithium-ion batteries. J. Power Sources 2014, 263, 296–303. [Google Scholar] [CrossRef]
- Tian, B.; Xiang, H.; Zhang, L.; Wang, H. Effect of Nb-doping on electrochemical stability of Li4Ti5O12 discharged to 0 V. J. Solid State Electrochem. 2012, 16, 205–211. [Google Scholar] [CrossRef]
- Jeong, E.D.; Han, H.J.; Jung, O.S.; Ha, M.G.; Doh, C.H.; Hwang, M.J.; Yang, H.-S.; Hong, K.S. Characterizations and electrochemical performance of pure and metal-doped Li4Ti5O12 for anode materials of lithium-ion batteries. Mater. Res. Bull. 2012, 47, 2847–2850. [Google Scholar] [CrossRef]
- Zhao, E.; Qin, C.; Jung, H.-R.; Berdichevsky, G.; Nese, A.; Marder, S.; Yushin, G. Lithium titanate confined in carbon nanopores for asymmetric supercapacitors. ACS Nano 2016, 10, 3977–3984. [Google Scholar] [CrossRef]
- Lee, G.-W.; Kim, M.-S.; Jeong, J.H.; Roh, H.-K.; Roh, K.C.; Kim, K.-B. Comparative study of Li4Ti5O12 composites prepared with pristine, oxidized, and surfactant-treated multiwalled carbon nanotubes for high-power hybrid supercapacitors. ChemElectroChem 2018, 5, 2357–2365. [Google Scholar] [CrossRef]
- Yang, J.-J.; Choi, C.-H.; Seo, H.-B.; Kim, H.-J.; Park, S.-G. Voltage characteristics and capacitance balancing for Li4Ti5O12/activated carbon hybrid capacitors. Electrochim. Acta 2012, 86, 277–281. [Google Scholar] [CrossRef]
- Xu, N.; Sun, X.; Zhao, F.; Jin, X.; Zhang, X.; Wang, K.; Huang, K.; Ma, Y. The role of pre-lithiated in activated carbon/Li4Ti5O12 asymmetric capacitors. Electrochim. Acta 2017, 236, 443–450. [Google Scholar] [CrossRef]
- Lee, B.-G.; Lee, S.-H. Application of hybrid supercapacitor using granule Li4Ti5O12/activated carbon with variation of current density. J. Power Sources 2017, 343, 545–549. [Google Scholar] [CrossRef]
- Hu, X.-B.; Huai, Y.-J.; Lin, Z.-J.; Suo, J.-S.; Deng, Z.-H. A (LiFePO4-AC)/Li4Ti5O12 hybrid battery capacitor. J. Electrochem. Soc. 2007, 154, A1026–A1030. [Google Scholar] [CrossRef]
- Lee, B.; Yoon, J.R. Preparation and characteristics of Li4Ti5O12 with various dopants as anode electrode for hybrid supercapacitor. Current Appl. Phys. 2013, 13, 1350–1353. [Google Scholar] [CrossRef]
- Khairy, M.; Faisal, K.; Mousa, M.A. High-performance hybrid supercapacitor based on pure and doped Li4Ti5O12 and graphene. J. Solid State Electrochem. 2017, 21, 873–882. [Google Scholar] [CrossRef]
- Sarantuya, L.; Tsogbadrakh, N.; Sevjidsuren, G.; Altantsog, P. Carrier and transition metals (M = Nb, Cr and Fe) doping effects on structure and electronic structure in spinel Li4Ti5O12 compounds. Solid State Phenom. 2020, 310, 88–95. [Google Scholar] [CrossRef]
- Tian, B.; Xiang, H.; Zhang, L.; Li, Z.; Wang, H. Niobium doped lithium titanate as a high rate anode material for Li-ion batteries. Electrochim. Acta 2010, 55, 5453–5458. [Google Scholar] [CrossRef]
- Yi, T.-F.; Xie, Y.; Shu, J.; Wang, Z.; Yue, C.-B.; Zhu, R.-S.; Qiao, H.-B. Structure and electrochemical performance of niobium-substituted spinel lithium titanium oxide synthesized by solid-state method. J. Electrochem. Soc. 2011, 158, A266–A274. [Google Scholar] [CrossRef]
- Jezowski, P.; Kowalczewski, P.L. Starch as a green binder for the formulation of conducting glue in supercapacitors. Polymers 2019, 11, 1648. [Google Scholar] [CrossRef] [Green Version]
- Lee, S.C.; Lee, S.M.; Lee, J.W.; Lee, J.B.; Lee, S.M.; Han, S.S.; Lee, H.C.; Kim, H.J. Spinel Li4Ti5O12 nanotubes for energy storage materials. J. Phys. Chem. C 2009, 113, 18420–18423. [Google Scholar] [CrossRef]
- Vikram-Babu, B.; Sushma-Reddi, M.; Surendra, K.; Rama-Krishna, A.; Samatha, K.; Veeraiah, V. Synthesis, characterization and electrical studies of Nb-substituted Li4Ti5O12 anode materials for Li-ion batteries. Mater. Today Proc. 2020, 43, 1485–1490. [Google Scholar] [CrossRef]
- Nagarani, N. Structural and optical characterization of ZnO thin films by sol-gel method. J. Phot. Spintron. 2013, 2, 19–21. [Google Scholar]
- Julien, C.M.; Zaghib, K. Electrochemistry and local structure of nano-sized Li4/3Me5/3O4 (Me = Mn, Ti) spinels. Electrochim. Acta 2004, 50, 411–416. [Google Scholar] [CrossRef]
- Jiang, Y.; Liu, J. Definitions of pseudocapacitive materials: A brief review. Energy Environ. Mater. 2019, 2, 30–37. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Polleux, J.; Lim, J.; Dunn, B. Pseudocapacitive contributions to electrochemical energy storage in TiO2 (anatase) nanoparticles. J. Phys. Chem. C 2007, 111, 14925–14931. [Google Scholar] [CrossRef]
- Song, Y.; Pan, Q.; Lv, H.; Yang, D.; Qin, Z.; Zhang, M.; Sun, X.; Liu, X. Ammonium-ion storage using electrodeposited manganese oxides. Angew. Chem. 2021, 60, 5718–5722. [Google Scholar] [CrossRef] [PubMed]
- Wolfenstine, J.; Allen, J.L. Electrical conductivity and charge compensation in Ta doped Li4Ti5O12. J. Power Sources 2008, 180, 582–585. [Google Scholar] [CrossRef]
- Zhang, Q.Y.; Zhang, C.L.; Li, B.; Jiang, D.D.; Kang, S.F.; Li, X.; Wang, Y.G. Preparation and characterization of W-doped Li4Ti5O12 anode material for enhancing the high rate performance. Electrochim. Acta 2013, 107, 139–146. [Google Scholar] [CrossRef]
- Kim, S.-K.; Kwon, E.-S.; Kim, T.-H.; Moon, J.; Kim, J. Effects of atmospheric Ti (III) reduction on Nb2O5-doped Li4Ti5O12 anode materials for lithium ion batteries. Ceram. Int. 2014, 40, 8869–8874. [Google Scholar] [CrossRef]
- Chen, S.; Hu, H.; Wang, C.; Wang, G.; Yin, J.; Cao, D. (LiFePO4-AC)/Li4Ti5O12 hybrid supercapacitor: The effect of LiFePO4 content on its performance. J. Renew. Sustain. Energy 2012, 4, 033114. [Google Scholar] [CrossRef]
- Dabonot, A.; Mailley, S.; Azaïs, P.; Mailleyc, P.; Dagorne-Gutel, E. Hybrid supercapacitors including a Li4Ti5O12/activated carbon composite negative electrode. In Electrochemical Society Meeting Abstracts 223; The Electrochemical Society, Inc.: Philadelphia, PA, USA, 2013. [Google Scholar]
- Gao, L.; Huang, D.; Shen, Y.; Wang, M. Rutile-TiO2 decorated Li4Ti5O12 nanosheet arrays with 3D interconnected architecture as anodes for high performance hybrid supercapacitors. J. Mater. Chem. A 2015, 3, 23570–23576. [Google Scholar] [CrossRef]
- Choi, H.S.; Im, J.H.; Kim, T.-H.; Park, J.H.; Park, C.R. Advanced energy storage: A hybrid BatCap system consisting of battery-supercapacitor hybrid electrodes based on Li4Ti5O12-activated-carbon hybrid nanotubes. J. Mater. Chem. 2012, 12, 16986–16993. [Google Scholar] [CrossRef]
- Du Pasquier, A.; Laforgue, A.; Simon, P. Li4Ti5O12/poly(methyl)thiophene asymmetric hybrid electrochemical device. J. Power Sources 2004, 125, 95–102. [Google Scholar] [CrossRef]
- Jung, H.-G.; Venugopal, N.; Scrosati, B.; Sun, Y.-K. A high energy and power density hybrid supercapacitor based on an advanced carbon-coated Li4Ti5O12 electrode. J. Power Sources 2013, 221, 266–271. [Google Scholar] [CrossRef]
- Dsoke, S.; Fuchs, B.; Gucciardi, E.; Wohlfahrt-Mehrens, M. The importance of the electrode mass ratio in a Li-ion capacitor based on activated carbon and Li4Ti5O12. J. Power Sources 2015, 282, 385–393. [Google Scholar] [CrossRef]
x (Nb) | Rs (Ω) | Rct (Ω) | CPE (µF) | σw (Ω s−1/2) |
---|---|---|---|---|
0.00 | 31.0 | 63.8 | 1.56 | 4.67 |
0.02 | 22.5 | 12.5 | 3.21 | 4.71 |
0.06 | 19.0 | 12.1 | 4.03 | 4.72 |
0.08 | 18.1 | 5.3 | 8.22 | 4.80 |
0.10 | 21.6 | 15.8 | 6.01 | 5.11 |
Material | Synthesis | Energy Density (Wh kg−1) | Power Density (kW kg−1) | Ref. |
---|---|---|---|---|
LTO/AC | Solid-state reaction | 24 | 0.12 | [55] |
TiO2-decorated LTO | Hydrothermal | 75.8 | 0.3 | [56] |
LTO/AC nanotubes | In-situ sol gel | 32 | 6 | [57] |
LTO/MWCNT | Spray drying | 70.9 | 0.03 | [33] |
LTO nanoparticles | Hydrothermal | 10 | 0.2 | [58] |
C-coated LTO | Hydrothermal | 30 | 0.1 | [59] |
LTO | Wet chemistry | 50 | 0.3 | [60] |
LTO | Solid-state reaction | 45.5 | 0.76 | [39] |
Mg-doped LTO | Solid-state reaction | 47.8 | 0.77 | [39] |
Mn-doped LTO | Solid-state reaction | 52.3 | 0.85 | [39] |
V-doped LTO | Solid-state reaction | 58.2 | 0.83 | [39] |
8%Nb-doped LTO | Solid-state route | 68.3 | 0.8 | this work |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chandrasekhar, J.; Dhananjaya, M.; Hussain, O.M.; Mauger, A.; Julien, C.M. Enhanced Electrochemical Performance of Li4Ti5O12 by Niobium Doping for Pseudocapacitive Applications. Micro 2021, 1, 28-42. https://doi.org/10.3390/micro1010004
Chandrasekhar J, Dhananjaya M, Hussain OM, Mauger A, Julien CM. Enhanced Electrochemical Performance of Li4Ti5O12 by Niobium Doping for Pseudocapacitive Applications. Micro. 2021; 1(1):28-42. https://doi.org/10.3390/micro1010004
Chicago/Turabian StyleChandrasekhar, Jinka, Merum Dhananjaya, Obili M. Hussain, Alain Mauger, and Christian M. Julien. 2021. "Enhanced Electrochemical Performance of Li4Ti5O12 by Niobium Doping for Pseudocapacitive Applications" Micro 1, no. 1: 28-42. https://doi.org/10.3390/micro1010004
APA StyleChandrasekhar, J., Dhananjaya, M., Hussain, O. M., Mauger, A., & Julien, C. M. (2021). Enhanced Electrochemical Performance of Li4Ti5O12 by Niobium Doping for Pseudocapacitive Applications. Micro, 1(1), 28-42. https://doi.org/10.3390/micro1010004