Hydrazine Radiolysis by Gamma-Ray in the N2H4–Cu+–HNO3 System
Abstract
:1. Introduction
2. Theoretical Background
2.1. Radiolysis of Hydrazine in Acidic Solution
k = 4.0 × 108 M−1s−1
k = 1.0 × 109 M−1s−1
k = 1.0 × 109 M−1s−1
2.2. Change of Copper Species during Irradiation
2.3. Radiolysis of Nitrate Ion
3. Results
3.1. Effect of Copper Ions on Hydrazine Decomposition
3.2. Effect of HNO3 on Hydrazine Decomposition
3.3. Decomposition Mechanism of Hydrazine in N2H4–Cu+–HNO3 System
4. Materials and Methods
4.1. Chemicals and Sample Preparation
4.2. γ-rradiation
4.3. Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Nakuia, H.; Okitsub, K.; Maedab, Y.; Nishimura, R. Hydrazine degradation by ultrasonic irradiation. J. Hazard. Mater. 2007, 146, 636–639. [Google Scholar] [CrossRef]
- Choudhary, G.; Hansen, H.; Donkin, S.G.; Kirman, C. Toxicological Profile for Hydrazine; U.S. Department of Health and Human Services: Washington, DC, USA, 1997; pp. 1–3.
- Ionurmanov, V.; Pashevich, V.; Bogancs, J.; Tilky, P.; Schunk, J.; Pinter, T. Influence of hydrazine primary water chemistry on corrosion of fuel cladding and primary circuit components. In Water Chemistry and Corrosion Control of Cladding and Primary Circuit Components, Hluboka nad Vltavou, Czech Republic, 28 Sep–2 Oct 1998; International Atomic Energy Agency: Vienna, Austria, 1999. [Google Scholar]
- Severa, J.; Bár, J. Handbook of Radioactive Contamination and Decontamination, 1st ed.; Elsevier Science Publishers: Amsterdam, The Netherlands, 1991; pp. 1–387. [Google Scholar]
- Won, H.J.; Chang, N.O.; Park, S.Y.; Kim, S.B. Reductive Dissolution of Spinel-Type Iron Oxide by N2H4−Cu(I)−HNO3. J. Korean Ceram. Soc. 2019, 56, 387–393. [Google Scholar] [CrossRef] [Green Version]
- Jung, J.Y.; Park, S.Y.; Won, H.J.; Choi, W.K.; Moon, J.K.; Park, S.J. Crevice Corrosion Properties of PWR Structure Materials under Reductive Decontamination Conditions. J. Nucl. Fuel Cycle Waste Technol. 2014, 12, 199–209. [Google Scholar] [CrossRef] [Green Version]
- Eun, H.C.; Park, S.Y.; Choi, W.K.; Kim, S.B.; Won, H.J.; Chang, N.O.; Lee, S.B.; Park, J.S.; Seo, B.K.; Kim, K.C. A waste-minimized chemical decontamination process for the decontamination of a nuclear reactor coolant system. J. Radioanal. Nucl. Chem. 2020, 326, 665–674. [Google Scholar] [CrossRef]
- Choi, W.; Won, H.; Jung, C.; Park, S.; Kim, S.; Yoon, I.; Moon, J.; Choi, J.; An, B.; Choi, M.; et al. Development of Decommissioning, Decontamination, and Remediation Technology for Nuclear Facilities: Development of Advanced Decontamination Technology for Nuclear Facilities; Korea Atomic Energy Research Institute: Daejeon, Korea, 2017; pp. 1–479. [Google Scholar]
- Chen, L.; Chambelain, D.B.; Conner, C.; Vandegrift, G.F. A Survey of Decontamination Processes Applicable to DOE Nuclear Facilities; Argonne National Laboratory: Lemont, IL, USA, 1997; pp. 1–91. [Google Scholar]
- Sophie, L.C. Water Radiolysis: Influence of Oxide Surfaces on H2 Production under Ionizing Radiation. Water 2011, 3, 235–253. [Google Scholar]
- Pedzinski, T.; Grzyb, K.; Skotnicki, K.; Filipiak, P.; Bobrowski, K.; Chatgilialoglu, C.; Marciniak, B. Radiation- and Photo-Induced Oxidation Pathways of Methionine in Model Peptide Backbone under Anoxic Conditions. Int. J. Mol. Sci. 2021, 22, 4773. [Google Scholar] [CrossRef] [PubMed]
- Buxton, G.V.; Sims, H.E. On the mechanism of the γ-radiolysis of deoxygenated aqueous solutions of hydrazine. Phys. Chem. Chem. Phys. 2000, 2, 4941–4946. [Google Scholar] [CrossRef]
- Garaix, G.; Hrne, G.P.; Venault, L.; Moisy, P.; Pimblott, S.M.; Marignier, J.L.; Mostafavi, M. Decay Mechanism of NO3● Radical in Highly Concentrated Nitrate and Nitric Acidic Solutions in the Absence and Presence of Hydrazine. J. Phys. Chem. B 2016, 120, 5008–5014. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Motooka, T.; Sato, T.; Yamamoto, M. Effect of gamma-ray irradiation on the deoxygenation of salt-containing water using hydrazine. J. Nucl. Sci. Technol. 2013, 50, 363–368. [Google Scholar] [CrossRef]
- Schmidt, E.W. Hydrazine and Its Derivatives: Preparation, Properties, Applications, 2nd ed.; Wiley-Intersicence: Chichester, UK, 1984; pp. 1–2122. [Google Scholar]
- Ware, G.C.; Spulnik, J.B.; Gilbert, E.C. The Ionization Constant of Hydrazine Hydroxide. J. Am. Chem. Soc. 1936, 58, 1605–1606. [Google Scholar] [CrossRef]
- Schwarzenbach, G. Die Dissoziationskonstante von Hydrazin. Helv. Chim. Acta 2004, 19, 178–182. [Google Scholar] [CrossRef]
- Goldstein, S.; Czapski, G.; Cohen, H.; Meyerstein, D. Deamination of β-alanine induced by hydroxyl radicals and monovalent copper ions. A pulse radiolysis study. Inorg. Chim. Acta 1992, 192, 87–93. [Google Scholar] [CrossRef]
- Nakui, H.; Okitsu, K.; Maeda, Y.; Nishimura, R. The effect of pH on sonochemical degradation of hydrazine. Ultrason. Sonochem. 2007, 14, 627–632. [Google Scholar] [CrossRef] [PubMed]
- Buxton, G.V.; Stuart, C.R. Radiation chemistry of aqueous solutions of hydrazine at elevated temperatures. Part 1.−Oxygen-free solutions. J. Chem. Soc. Faraday Trans. 1996, 92, 1519–1525. [Google Scholar] [CrossRef]
- Sunaryo, G.R. The effect of hydrazine addition on the formation of oxygen molecule by fast neutron radiolysis. KnE Energy 2016, 1, 155–162. [Google Scholar] [CrossRef] [Green Version]
- Dey, G.R. Reduction of the copper ion to its metal and clusters in alcoholic media: A radiation chemical study. Radiat. Phys. Chem. 2005, 74, 174–184. [Google Scholar] [CrossRef]
- Filimonov, E.V.; Shcherbakov, A.I. Catalytic Effect of Copper Ions on Nitrate Reduction. Prot. Met. 2004, 40, 280–285. [Google Scholar] [CrossRef]
- Abedini, A.; Daud, A.R.; Hamid, M.A.A.; Othman, N.K.; Saion, E. A review on radiation-induced nucleation and growth of colloidal metallic nanoparticles. Nanoscale Res. Lett. 2013, 8, 474. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Goldstein, S.; Czapski, G.; Cohen, H.; Meyerstein, D. Hydroxyl Radical Induced Decarboxylation and Deamination of 2-Methylalanine Catalyzed by Copper Ions. Inorg. Chem. 1992, 31, 2439–2444. [Google Scholar] [CrossRef]
- Friedrich, L.C.; Machulek, A., Jr.; Silva, V.O.; Quina, F.H. Interference of inorganic ions on phenol degradation by the Fenton reaction. Sci. Agric. 2012, 69, 347–351. [Google Scholar] [CrossRef] [Green Version]
- Liu, R.; Goodell, B.; Jellison, J.; Amirbahman, A. Electrochemical Study of 2,3-Dihydroxybenzoic Acid and Its Interaction with Cu(II) and H2O2 in Aqueous Solutions: Implications for Wood Decay. Environ. Sci. Technol. 2005, 39, 175–180. [Google Scholar] [CrossRef]
- Katsumura, Y.; Jiang, P.Y.; Nagaishi, R.; Oishi, T.; Ishiqure, K.; Yoshida, Y. Pulse Radiolysis Study of Aqueous Nitric Acid Solutions: Formation Mechanism, Yield, and Reactivity of NO3 Radical. J. Phys. Chem. 1991, 95, 4435–4439. [Google Scholar] [CrossRef]
- Forni, L.G.; Mora-Arellano, V.O.; Packer, J.E.; Willson, R.L. Nitrogen Dioxide and Related Free Radicals: Electron-transfer Reactions with Organic Compounds in Solutions containing Nitrite of Nitrate. J. Chem. Soc. Perkin Trans. II 1986, 1, 1–6. [Google Scholar] [CrossRef]
- Dey, G.R. Nitrogen compounds’ formation in aqueous solutions under high ionizing radiation: An overview. Radiat. Phys. Chem. 2011, 80, 394–402. [Google Scholar] [CrossRef]
- Horne, G.P.; Donoclift, T.A.; Sims, H.E.; Orr, R.M.; Pimblott, S.M. Multi-Scale Modeling of the Gamma Radiolysis of Nitrate Solutions. J. Phys. Chem. B 2016, 120, 11781–11789. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ponomarev, A.V.; Bludenko, A.V.; Makarov, I.E. Effect of formate on the radiolytic degradation of nitrate in deaerated aqueous solutions. Mendeleev Commun. 2002, 12, 92–94. [Google Scholar] [CrossRef]
- Faraggi, M.; Zehavi, D.; Anbar, M. Radiolysis of Aqueous Nitrate Solutions. Trans. Faraday Soc. 1971, 67, 701–710. [Google Scholar] [CrossRef]
- Wellman, C.R.; Ward, J.R.; Kuhn, L.P. Kinetics of the oxidation of hydrazine by hydrogen peroxide, catalyzed by copper(II). J. Am. Chem. Soc. 1976, 98, 1683–1684. [Google Scholar] [CrossRef]
- Cheng, Y.; Wu, X.; Xu, H. Catalytic decomposition of hydrous hydrazine for hydrogen production. Sustain. Energy Fuels 2019, 3, 343–365. [Google Scholar] [CrossRef]
- Lim, P.K.; Zhong, Y. The Copper-Catalyzed Redox Reaction between Aqueous Hydrogen Peroxide and Hydrazine. 1. New Experimental Results and Observations. J. Am. Chem. Soc. 1989, 111, 8398–8404. [Google Scholar] [CrossRef]
- Lim, P.K.; Zhong, Y. The Copper-Catalyzed Redox Reaction between Aqueous Hydrogen Peroxide and Hydrazine. 2. Reaction Mechanism, Model Analysis, and a Comparison of Model and Experimental Results. J. Am. Chem. Soc. 1989, 111, 8404–8410. [Google Scholar] [CrossRef]
- Haesik, Y.; Seheon, K.; Jeongwook, S.; Gamwoo, K.; Jongchang, K.; Juyoun, G. Electrochemical Study of Chrome Nickel Ferrites under a HyBRID Decontamination Condition; Korea Atomic Energy Research Institute: Daejeon, Korea, 2017; pp. 1–47. [Google Scholar]
- Belova, E.V.; Egorov, G.F. Radiochemical behavior of hydrazine nitrate in aqueous nitric acid solutions. At. Energy 1997, 83, 622–626. [Google Scholar] [CrossRef]
- Weiner, I.D.; Verlander, J.W. Role of NH3 and NH4+ transporters in renal acid-base transport. Am. J. Physiol.-Ren. Physiol. 2011, 300, F11–F23. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Total Dose (kGy) | G(–N2H4) Value (10−7 mol/J) | |
---|---|---|
w/o Cu+ Ions | w/Cu+ Ions | |
20 | 4.52 | 6.24 |
Total Dose (kGy) | G(–N2H4) Value (10−7 mol/J) | ||
---|---|---|---|
pH 1 | pH 3 | pH 5 | |
40 | 7.49 | 3.98 | 3.35 |
Total Dose (kGy) | G(–N2H4) Value (10−7 mol/J) | |
---|---|---|
Containing HNO3 | Containing H2SO4 | |
40 | 3.98 | 1.25 |
Sample Solution | Concentration (mM) | ||
---|---|---|---|
N2H4 | Cu+ Ions | HNO3 | |
pH 1 | 50 | 0.5 | 144.7 |
pH 3 (without Cu+ ion) | 50 | - | 50.8 |
pH 3 (with Cu+ ion) | 50 | 0.5 | 50.8 |
pH 5 | 50 | 0.5 | 49.9 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chang, N.; Won, H.; Park, S.; Eun, H.; Kim, S.; Seo, B.; Kim, Y. Hydrazine Radiolysis by Gamma-Ray in the N2H4–Cu+–HNO3 System. Int. J. Mol. Sci. 2021, 22, 7376. https://doi.org/10.3390/ijms22147376
Chang N, Won H, Park S, Eun H, Kim S, Seo B, Kim Y. Hydrazine Radiolysis by Gamma-Ray in the N2H4–Cu+–HNO3 System. International Journal of Molecular Sciences. 2021; 22(14):7376. https://doi.org/10.3390/ijms22147376
Chicago/Turabian StyleChang, Naon, Huijun Won, Sangyoon Park, Heechul Eun, Seonbyeong Kim, Bumkyung Seo, and Yongsoo Kim. 2021. "Hydrazine Radiolysis by Gamma-Ray in the N2H4–Cu+–HNO3 System" International Journal of Molecular Sciences 22, no. 14: 7376. https://doi.org/10.3390/ijms22147376
APA StyleChang, N., Won, H., Park, S., Eun, H., Kim, S., Seo, B., & Kim, Y. (2021). Hydrazine Radiolysis by Gamma-Ray in the N2H4–Cu+–HNO3 System. International Journal of Molecular Sciences, 22(14), 7376. https://doi.org/10.3390/ijms22147376